
Munich Personal RePEc Archive

Open Source Licensing in Mixed

Markets, or Why Open Source Software

Does Not Succeed

Gaudeul, Alexia

Department of Economics, University of East Anglia, ESRC Centre

for Competition Policy

29 July 2008

Online at https://mpra.ub.uni-muenchen.de/19596/

MPRA Paper No. 19596, posted 29 Dec 2009 00:05 UTC

Electronic copy available at: http://ssrn.com/abstract=1093628

ISSN 1745-9648

Open Source Licensing in Mixed
Markets, or Why Open Source Software

Does Not Succeed

by

Alexia Gaudeul
Dept. of Economics and ESRC Centre for Competition Policy

University of East Anglia

CCP Working Paper 08-2

The support of the Economic and Social Research Council is gratefully
acknowledged.

Electronic copy available at: http://ssrn.com/abstract=1093628

Open Source Licensing in Mixed Markets, or Why

Open Source Software Does Not Succeed�

Alexia Gaudeuly

July 29, 2008

Abstract

The rivalry between developers of open source and proprietary software encourages open

source developers to court users and respond to their needs. If the open source developer

wants to promote her own open source standard and solutions, she may choose liberal license

terms such as those of the Berkeley Software Distribution as proprietary developers will then

�nd it easier to adopt her standard in their products. If she wants to promote the use of

open source software per se, she may use more restrictive license terms such as the General

Public License to discourage proprietary appropriation of her effort. I show that open source

software that comes late into a market will be less likely than more innovative open source

software to be compatible with proprietary software, but is also more likely to be made more

accessible to inexperienced users.

Keywords: Open Source; Software; Standards; Compatibility; Network Effects;

Duopoly; Mixed Markets; Intellectual Property; Copyright; Licensing.

JEL Classi�cations: D23, H41, L13, L22, L31, L86, O34, O38

�Early drafts of this article were written while I was an EC-funded Marie Curie Research Fellow at the University
of Southampton. Jacques Crémer at the University of Toulouse, Robin Mason at the University of Southampton and
Bruce Lyons at the University of East Anglia provided helpful advice. Thang To at the ESRC CCP provided very
able assistance with data collection. This paper was inspired by a case study of the (LA)TEX project (Gaudeul 2007).
The second part of the title is inspired by Bonaccorsi and Rossi's `Why Open Source Software Can Succeed' (2003).
The paper was presented at the OSSEMP workshop in conjunction with the Third International Conference on Open
Source Systems in Limerick in June 2007, at the EEA conference in Amsterdam in August 2005, at the Toulouse
Workshop on Open Source Software and Intellectual Property in the Software Industry in January 2005, at the Open
Source Software conference `Autour du Libre' at ENST Bretagne in Brest in May 2004, and in seminars at the
University of Strathclyde in Glasgow and at the INRA GAEL in Grenoble. Support from the ESRC and from the
European Commission is gratefully acknowledged.

ySchool of Economics and ESRC Centre for Competition Policy, University of East Anglia, Norwich. email:
a.gaudeul@uea.ac.uk, website: http://agaudeul.free.fr

1

1 INTRODUCTION

1 Introduction

Why is open source software (`OSS') widely used in some markets and development areas and

not others? Why is it so dif�cult in some cases to use OSS alongside proprietary software (`PS')

because of incompatibility problems, while in some other cases both type of software are used on

the same types of platforms and use the same standards and may even be integrated seamlessly

into each other? Why do some open source developers (`OSD') decide to adopt liberal license

terms that allow integration of the open source (`OS') standard and its associated implementation

into proprietary software (`PS') while others seek to exclude proprietary use by adopting more re-

strictive license terms? Why do some proprietary software developers (`PSD') choose to develop

add-ons and interfaces to OS products while other PSDs develop software independently? This

paper considers those questions by analyzing competition between a proprietary developer who

wishes to maximize pro�ts from selling his product on the market, and an open source developer

with different motivations:

Motivations: One set of motivations for the OSD is own use or enjoyment; she wants to de-

velop software she needs or enjoys developing (von Hippel, 2005). Another set of motivations

combine to make her want others to use her software. This may be because she bene�ts from

network effects, direct (the more people use software, the higher is its utility, for example com-

munication software), or indirect (users may convert into developers who will then improve the

software, contribute their expertise and knowledge and provide peer review (von Krogh, Spaeth,

and Lakhani, 2003)). It may also be that she derives prestige and reputation from the software's

success (Lerner and Tirole, 2002).

Goals: In addition to those two sets of motivations, I will want to make the difference between

whether the OSD focuses on pragmatic goals, typical of �rms (Bonaccorsi and Rossi, 2006), such

as getting her software's solutions and standards adopted, or on ideological goals, typical of indi-

viduals engaged in OS development, such as protecting and promoting open-source development

methods and the open-source community (again, Bonaccorsi and Rossi, 2006).

� Ideological goals are those of a developer who cares about open source values such as code

reciprocation and software freedom. She cares about providing software that is free (as in

`free beer'), freely modi�able and with speci�cations that are open. In this case she will not

welcome what she would consider as `hijacking' of her code by a proprietary developer.

2

1 INTRODUCTION

She may then choose restrictive license terms such as the GPL, that make it dif�cult for

proprietary developers to make use of her code or adopt her standard.

� Pragmatic goals are those of a developer who is interested in the technological, problem

solving aspect of OSS. She may then choose liberal license terms, such as the BSD, that

facilitate the integration of her solutions and standard into proprietary software and thus

facilitate compatibility between her software and proprietary software.

I will examine in this paper how such different and potentially con�icting goals translate into

market outcomes: market share, type of users served, license used, compatibility with the existing

standard and development of an user interface.

Licensing: The open source developer will have the choice between the General Public License

(`GPL')1 and a license of the type of the Berkeley Software Distribution (`BSD').23 The two

licenses authorize anybody to use, distribute or modify the project's code for free, subject to

acknowledging previous contributions and, in the case of the GPL, subject to distributing the

modi�cations under the same GPL license. The BSD does not impose this later restriction: it

allows developers to distribute modi�cations and improvements under other licenses, including

under proprietary licenses. Because of its license, open source software is essentially free to use.

Unlike open source licenses, proprietary licenses prohibit the unauthorized use, replication and

modi�cation of the product by others. The owner of the project can then sell the right to use his

product.

The choice of license between the GPL and the BSD is the source of great controversy in the

OS community. The open source software model, promoted by Bruce Perens, tries to encourage

the involvement of commercial developers by encouraging the use of the BSD. The free software

model, promoted by Richard Stallman, is more averse to involvement by commercial developers

and promotes the GPL. That reluctance is informed by the bad experience of the hijacking of the

development of Unix by AT&T, which was at the origin of the GNU project (`Gnu is Not Unix').

1http://www.gnu.org/copyleft/gpl.html
2http://www.opensource.org/licenses/bsd-license.php
3This does not imply of course that other types of open source licenses are not covered, only that they either

belong to the same family of licenses as the GPL or the BSD, or that the way they differ from those two does not
have a bearing on the analysis that is made in the model.

3

1 INTRODUCTION

Literature: This paper is part of the literature on the coexistence of open-source and propri-

etary software projects in a competitive setting. OSS provides fringe competition that may dis-

cipline big monopolistic players such as Microsoft. It also provides an opportunity for software

�rms to collaborate in the development of OS industry-wide standards with no fear of seeing their

efforts hijacked by others. OSS has made signi�cant inroads in many areas of software devel-

opment, from servers (Apache) and mail management systems (Sendmail) to operating systems

(Linux), browsers (Mozilla) and typesetting engines (TEX). This leads to hopes (and fears) that

OSS will come to replace proprietary software: `for equal quality, consumers will prefer a free

product to a paying one' (Schmidt and Schnitzer, 2003), `OSS can achieve better quality and

faster adaptation to technological change' (Kuan, 2002), `the OS development method is more

ef�cient than closed source development methods' (Johnson, 2002 and Johnson, 2006), `OSS is

open to innovation from many quarters' (von Hippel, 1994 and von Hippel, 1998), `OSS is more

�exible and offers better control of its internal working', etc...

Evidence shows that OSS breeds a new and more ef�cient `private-collective' innovation model

where OS and proprietary development methods support each other (von Krogh and von Hippel,

2003). Koenig, 2004 offers examples of such collaborative innovation in a list of for-pro�t OS

strategies, followed by such companies as Oracle, IBM, HP or Red Hat. Mustonen, 2005 argues

that PSDs will encourage and support OSS in order to promote their own standards as common

standards, as done by Adobe for example. They may also do so to gain some control over the

OS standard and in�uence its development, as done with Linux by IBM and with Java by Sun

Microsystems. Case studies of the markets for operating systems, servers and web browsers

do actually show that competition by OSS tends to accelerate the pace of innovation across the

whole industry (Bitzer and Schröder, 2006).

Some differences persist however, and they relate to the ability of �rms to provide better user

interfaces, and also to attract users through subsidization of early users and advertising:

Interfaces: Bessen, 2006 argues that pre-packaged PS addresses common uses with limited fea-

ture sets while OSS targets users with more specialized and complex needs. Nichols and Twidale,

2003 point out how OSD usually have preferences in terms of user interface that differ from those

of the common end-user. They tend to prefer command line based interfaces with many short-

cuts, as those allow direct access to the basic functions of the software. They tend to dislike

the more intuitive What You See Is What You Get (�WYSIWYG�) interfaces that automate fre-

quently used tasks but are less �exible. Against all this, Franke and von Hippel, 2003 argue from

a survey of Apache users that developers and end-users do not actually differ much in terms of

their objectives and needs for development.

4

1 INTRODUCTION

Proprietary development will have an organizational advantage over OS development. Raymond,

2002 mentions the advantage for a `big player with a lot of money' in doing `systematic user in-

terface end user testing' as well as `setting up large-scale focus group testing with end users'.

OSDs on the other hand will face problems in coordination, such as when TEX developers faced

the prospect of leading radical mid-life changes to their software (Gaudeul, 2007). Open source

development appears to be too unruly and undirected to provide the stability and support users

need. PSDs would thus bene�t from their ability to reliably direct the work of others in a central-

ized way according to a well de�ned and enforceable strategy de�ned from the point of view of

the customer.

Strategy: Proprietary development will also have a strategic advantage over OS development.

Casadesus-Masanell and Ghemawat, 2006 show that PSD can subsidize purchases by the �rst

users in order to build a user base, and then exploit the latecomers. This, as well as advertising,

is not affordable for OSDs as OSS generates only limited income streams. The case of Microsoft

provides a range of other strategies to counter the emergence of OSS. FUD tactics (spreading

Fear, Uncertainty, and Doubt) underline how OSS is supposedly `unsupported'.4 Prices may be

lowered for vulnerable consumers such as public administrations who get preferential deals and

consumers in less developed countries who get offered Windows XP Starter Edition, a lower cost

lesser quality version of Windows XP. Faced with this array of strategies, OSS may receive the

support of governments through public subsidies, mandated adoption or information campaigns

(Comino and Manenti, 2005).

This paper completes the above literature by clarifying the impact of the differences between the

OS and proprietary development models on the structure of the software markets. I show that

the market outcome in the competition between OS and proprietary software is affected by: (i)

whether the open source developer is a precursor or a follower, and whether open source de-

velopers want to promote adoption of their standard or of their software; (ii) whether network

effects are important and whether the majority of consumers are professionals or non-specialists;

and (iii) how costly user-interface development is and whether open source software's intrinsic

quality is higher than that of proprietary software. An open source developer who is a late-

comer to the market will be less likely than an early entrant to make her product compatible with

that of the proprietary developer, but she is also more likely to orient her software towards the

non-specialist (inexperienced) user. Depending on the factors outlined above, a manager may

seek compatibility with open source software, borrow open source code, offer interfaces to open

4Microsoft's proposed response to the emergence of open source software as a competitor can be found at
http://www.catb.org/~esr/halloween/index.html. Those are commonly called the `Halloween documents'.

5

2 A MODEL

source development, or in other cases, be better off developing well away of open source devel-

opers and users. The OSD may choose the BSD license if she is a precursor and has pragmatic

goals, which are typical of �rms involved in OS development. She may also do so even if her

goals are ideological, but in a more limited number of cases, i.e. if this increases the number

of users of OSS compared to a situation where compatibility would not be achievable, that is,

if allowing use of her standard in proprietary products softens competition. I provide empirical

support for the assertions and �ndings of the paper by considering the market conditions in a

variety of software development areas.

2 A model

Consider two developers. They are identical in every respect, except that one chooses to develop

software under an open source license and the other chooses to develop software under a propri-

etary license. For clarity of exposition, I will refer to the open source developer as `she' and to

the proprietary developer as `he'.5

Quality: Consumers can choose between an open source and a proprietary software of quality

qo and qp respectively. The `o' subscript denotes the open source product and the `p' subscript

denotes the proprietary product. If qp > qo (respectively qo > qp) then proprietary (respectively

open source) software is of higher quality than open source (respectively proprietary) software.

Quality can be interpreted as the number of software functionality if as in the empirical section

they can be ranked from basic to more sophisticated features. It may also represent code quality.

Consumers all agree on the quality of each software.

Interfaces: There is a mass 1 of consumers who differ in their software expertise. Mass M <

1 of consumers (`inexperienced' consumers) need a WYSIWYG interface or a Windows port

of the application or an extensive documentation for the program (`interfaces'). They cannot

use software without those elements. The rest of the consumers do not need those elements.

Signi�cantly, I assume the OSD does not need those elements either, and faces cost c in providing

them. I also assume the PD always develops interfaces, and considers this development as a sunk

cost necessary to the marketing of his software. There are several ways to justify this assumption.

The �rst is ease of exposition; adding the decision to develop interfaces or not for the PD makes

5This choice of convention does not necessarily suggest the likely gender of an open source developer. Only
about 2-5% of OSDs are women (Hertel, Niedner, and Herrmann, 2003 or Ghosh, Glott, Krieger, and Robles, 2002),
compared to about 25-28% of all developers in the proprietary software industry (trade publications). For some work
on issues of gender in open source development, see Adam, 2004, Lin, 2006, Ratliff, 2005 or Lyman, 2005.

6

2 A MODEL

the solving of the model more involved. The second is practical; since a consumer cannot have

access to the source code of proprietary software, it would be very dif�cult for them to port it to

their own preferred platform, or to understand its functioning. It is therefore necessary for the

PD to write documentation for the program and compile it for a variety of platforms to make it

marketable. OSS on the other hand may still be used by experienced users even if no interfaces

or documentation are provided. Indeed, the expert user will be able to make sense of the code or

communicate with the developer directly.

Network effects: The consumers derive utility from the number of other users of the software

they use. k will denote the strength of network effects. Usual sources of network effects �

do consumers bene�t from the use others make of the product? Do they exchange data using

that product? Is that data exchange standardized? � are complemented by the impact that the

continued use and development of the product will have on its quality over time.

Licensing: An open source developer can choose between the (liberal) BSD license that facilitates

integration of her code and/or standard into a proprietary product, in which case compatibility

can be achieved, and the (restrictive) GPL license that makes it more dif�cult and negates most

bene�ts from doing so � the PSD cannot appropriate any improvement to the GPL standard. Con-

versely, the speci�cations of the PS may be made public so the OSD may achieve compatibility

with PS.

Consumers: Suppose the two competing products, open source (o) and proprietary (p), of quality

qo and qp respectively, are used by mass no and np of consumers respectively. The open source

product is free, while the proprietary product is priced at p.

If the two products are incompatible, then a consumer who chooses the open source software

derives bene�t

qo + kno (1)

if the OSS has interfaces or if the OS product does not have interfaces and the consumer is

experienced. She derives no value from the software if the OSS does not have interfaces and she

is inexperienced.

A consumers who chooses the proprietary software derives bene�t

qp + knp � p (2)

from the proprietary product, whether she is experienced or not.

If the two products are compatible, then no and np are replaced in the equations by ne = no+np.

7

2 A MODEL

Developers: The open source developer derives utility from using her own software (Raymond,

2001) and may also develop interfaces to make her software usable by all if that brings about

positive network externalities, such as prestige, increased usage, high network value, etc.

Her utility is

Uo = qo + kn� c (3)

if she develops interfaces and

Uo = qo + kn (4)

if she does not develop interfaces.

� c re�ects the costs of developing interfaces. The OSD incurs those costs fully as she does

not derive any direct bene�t from developing interfaces since she is an experienced user.

� n is 1) the number of users of her software if her goals are ideological, or 2) the number of

consumers who use software based on her standard if her goals are pragmatic (see p.2).

The proprietary developer aims to maximize pro�t. Denote p the price of his software and np the

number of its users. His pro�t is � = pnp.

Timing: I will assume development is sequential; either the OSD or the PSD develops �rst. I will

call the �rst mover a precursor and the second mover a follower. The second mover observes the

licensing choice and development choice of the �rst mover and then decides whether to develop

and what to develop. This dynamic element in the model re�ects a pattern of OS and proprietary

development. Rather than occurring at the same time along different lines, they alternate leader-

ship, catching up and borrowing from each other. The (LA)TEX case study provides an example

of such dynamics in the development of software in the typesetting industry (see Figure 1 in

Gaudeul, 2007 and section 5 in this paper). This dynamic element in the model also re�ects dif-

ferences between software that is pathbreaking and introduces new ideas vs. that which imitates

and borrows from other software. As discussed in section 5, there is some indication that OSS is

very often an imitation of existing software.

Once both developers have developed their product, the proprietary developer chooses the price

p of his product and consumers choose which product to use. The open-source product is free.

I will use the concept of ful�lled expectation equilibrium (Katz and Shapiro, 1985) to determine

the equilibrium product adoption and pro�ts or utility of the developers. A ful�lled expectation

equilibrium is such that equilibrium adoption is what consumers' expected equilibrium adoption

8

4 MIXED MARKET DUOPOLY

to be. I will assume a proprietary developer can always tip the market in his favor. This may be

through a combination of advertising and/or low introductory pricing, all strategies that are not

available to the same extent to an OS developer (see Casadesus-Masanell and Ghemawat, 2006

for an analysis of such forward looking pricing strategies).

3 Monopoly market

In this part, I consider a single developer with software under either the OS or the proprietary

license.

Open source software: In a monopoly situation, the OSD may choose not to develop interfaces

and be used only by portion 1 �M of users, so her utility is Uo = qo + k(1 �M); or she can

develop interfaces and be used by all users, so her utility is Uo = qo + k � c: She will choose the

later s.t. k > c

M
. Intuitively, high M (many inexperienced users) encourages the OSD to serve

all by developing interfaces. High k (high network effects) sustains this tendency as gaining

additional consumers become more valuable.

Proprietary software: The monopoly PSD will sell to all consumers at price p = qp + k and

make pro�t � = qp + k.

4 Mixed market duopoly

This part examines the development, compatibility and licensing decisions of the OS and propri-

etary developers when they compete with each other in a two stage game.

In a �rst part I will analyze the situation where the OSD develops �rst. In a second part I will

look into the case where the PSD is the �rst mover. A �rst mover will have to decide on whether

to allow compatibility as well as on the licensing of its code and on whether to develop interfaces.

The OSD leader's choice between the BSD and the GPL license terms is important. Indeed,

the BSD allows integration of her standard into a proprietary product, so the PSD may then

choose to use the OS standard and build on it. The OSD may derive bene�ts from this as this

means her standard will be used by more people. However, that also means users may prefer the

implementation of her standard in its proprietary form to its OS implementation, for example if

PS has more users, or if PS is of higher quality, or if PS is the only one offering interfaces. The

OSD may therefore choose the GPL to avoid this.

9

4.1 The OSD is a precursor 4 MIXED MARKET DUOPOLY

If the PSD moves �rst, the later coming OS standard will not be integrated into his software

so the OS follower will be indifferent between the GPL or the BSD license. The PSD may

make the speci�cations of the proprietary software available so as to encourage the production of

compatible or add-on products. Rather than adopt the proprietary standard, the OSD may decide

to develop her own standard because incompatibility between OS and PS allows her to gain a

higher share of the market than compatibility.

4.1 The OSD is a precursor

If the OSD is a precursor, then the timing of decisions is as follows:

� Stage 1: The OSD chooses her software license, either BSD or GPL and chooses whether

to develop interfaces or not.

� Stage 2: The PSD chooses whether to adopt the OS standard and be compatible with OSS,

or not adopting the OS standard and not be compatible. Adopting the OS standard is

possible only if OSS is under the BSD.

� Stage 3: The PSD chooses the price p of his software and consumers simultaneously choose

which software to adopt. Those who choose PS must pay for its use, those who choose OSS

do not pay anything.

At any one speci�c stage, all agents observe all decisions made by all other agents in the preced-

ing stages. The game will be solved by backward induction. The different situation in stage 3 are

outlined in appendix A.

4.1.1 Stage 2: the compatibility decision of the PD

There are three cases: either the OSD developed interfaces, in which case both software are in

direct competition so incompatibility is preferred by the PSD. Or the OSD did not develop inter-

faces, in which case the outcome depends on the OSD's licensing choice. If the OSD chose the

GPL, then compatibility is not achievable and this will encourage the PD to serve all consumers.

If the OSD chose the BSD, then the PD may accommodate OSS and serve only inexperienced

consumers while adopting the OS standard. This is summarized in the proposition below:

10

4.1 The OSD is a precursor 4 MIXED MARKET DUOPOLY

Proposition 1 A) If the OSD developed interfaces and if k > qo � qp; then the PD prefers

incompatibility and gains the whole market. If k � qo� qp then the PS does not enter the market,

on which the OSD will have a monopoly.

B) If the OSD did not develop interfaces and chose the GPL, then compatibility is not achievable

and the proprietary developer chooses to serve all consumers s.t. k �
qo�(1�M)qp

1�M2 , and otherwise

serves only inexperienced consumers.

C) If the OSD did not develop interfaces and chose the BSD, then the PSD chooses incompatibility

and serves all consumers s.t. k �
qo�(1�M)qp

1�M
; and otherwise prefers compatibility and serves only

inexperienced consumers.

Proof. The proofs of the above are given in the appendix B of this paper.

Figure 1 below illustrates the above statements. IC denotes incompatibility, C denotes compati-
bility, Inexp. denotes inexperienced consumers.

No OS interfaces:

* IC, PS serves all

OS interfaces:

* IC, PS serves all

No OS interfaces:

* GPL: IC, PS serves inexp.

* BSD: C, PS serves inexp.

OS interfaces:

* IC, PS serves all

No OS interfaces:

* GPL: IC, PS serves inexp.

* BSD: C, PS serves inexp.

OS interfaces:

* OS serves all

0

k

qo ? qp

M

q o?Ý1?MÞqp

1?M2

q o?Ý1?MÞqp

1?M

No OS interfaces:

* GPL: IC, PS serves all

* BSD: C, PS serves inexp.

OS interfaces:

* IC, PS serves all

Figure 1: Market share and compatibility in a mixed market duopoly, as a function of OS
interface and licensing choices.

When the OSD develops interfaces, the PD is in direct competition with OSS and prefers incom-

patibility whatever the choice of license by the OSD. The OSD will gain the whole market only

11

4.1 The OSD is a precursor 4 MIXED MARKET DUOPOLY

if its quality is higher than PS and network effects are low (k � qo�qp). Otherwise, the PD gains

the whole market. This means that OSDs will be keen to develop interfaces only when network

effects in their development area are low and the quality of their product is higher than that of

competing proprietary software.

When the OSD does not develop interfaces and chooses the GPL, then the PD may decide

not to serve the whole market and instead serve only inexperienced users (this happens if

k �
qo�(1�M)qp

1�M2): Since the GPL prevents compatibility, this is with an incompatible product.

When the OSD does not develop interfaces and chooses the BSD, the PD is more likely to serve

only inexperienced users (this happens if k � qo�(1�M)qp
1�M

) and when he does so, this is with a

product that is compatible with OSS. This means that the OSD may prefer the BSD to the GPL

not only in order to get her standard adopted but also in order to share the market when otherwise

the PS would have monopolized it. Choosing the BSD expands the range where OSS or an OS

standard is used by at least a portion of consumers compared to choosing the GPL. The BSD en-

courages compatibility which has two main advantages: for the developer with pragmatic goals,

this gets her standard adopted by more users since it is integrated in a proprietary version. It also

saves her the cost of developing interfaces. For the developer with ideological goals, offering

compatibility may avoid head on competition whereby the PS would gain the whole market.

From this part, I can also point out that higher quality OSS does not necessarily dominate its

market. The analysis in the article admits the possibility that OSS would be intrinsically better

than PS (qp < qo) and yet PS stays on the market by developing interfaces for inexperienced

users. This can happen as long as qp > qo � k. Note also that conversely, one may have qp � qo

and yet open source software maintains a share of the market. This happens if the PSD chooses

to concentrate on inexperienced users. The case where qo > qp and yet PS serves inexperienced

users would validate the paradoxical perception by experienced OSS users that OSS is of higher

quality than PS while at the same time inexperienced, PS users cannot fathom using OSS because

it lacks the interfaces that are essential to them. The case where qo < qp and yet OSS serves

experienced users would validate the perception that users of OSS use OSS because PS is priced

for other types of users that differ from users of OSS in their need for some speci�c, `user-

friendly' interfaces.

4.1.2 Stage 1: Interface development and licensing

Consider in this part whether the OSD will develop an interface for the end-user and if not, which

license it will use. Conclusions in this part will depend on the OSD's goals, either ideological

12

4.1 The OSD is a precursor 4 MIXED MARKET DUOPOLY

or pragmatic. As seen previously, the OSD with pragmatic goals who chose the BSD may see

a proprietary implementation of her standard developed by the PSD. There is therefore no point

in her developing an interface if that is likely to happen. The OSD with ideological goals may

develop an interface to her software if that allow her to gain market shares compared to not doing

so. She will do so provided her software is of suf�ciently better quality than that of the PSD

and the gain in the number of users of her standard more than compensates for the cost c of

developing the interface.

Proposition 2 The OS precursor with pragmatic goals will never develop interfaces.

She will strictly prefer the BSD to the GPL for any k �
qo�(1�M)qp

1�M
, and is indifferent between the

two licenses otherwise.

The OS precursor with ideological goals will develop interfaces only if qo > qp and k � qo � qp;

and if that is so, will do so s.t. k > c

M
:

She will strictly prefer the BSD only if k 2 [qo�(1�M)qp
1�M2 ;

qo�(1�M)qp
1�M

]; and is indifferent between

the two licenses otherwise.

Proof. The proofs are given in the appendix C of this paper.

From this proposition, there is only a limited number of cases where OSS will develop interfaces.

An OS developer with pragmatic goals derives no bene�ts from developing interfaces since the

PSD will provide a proprietary implementation of her standard for use by inexperienced users.

For interfaces to be developed, the OSD must have ideological goals, OS quality must be higher

than that of equivalent proprietary software, and network effects must be neither too high (oth-

erwise the PD would monopolize the market) not too low (otherwise, gaining experienced users

would not be very valuable in terms of network effects). Non availability of an OS interface for

OSS should therefore correlate with OSS being of lower quality than PS, or with the OSD having

pragmatic goals. Availability of an OS interface for OSS should correlate with OSS being of

higher quality than PS and should result with OSS gaining the whole market.

From this proposition, I can also conclude that the pragmatic OSD will almost always prefer the

BSD (except when k � qo�(1�M)qp
1�M

when she is indifferent), while the ideological OSDwill prefer

the BSD only in a very limited range of case. This is because an OS developer with ideological

goals does not care about those users who use the OS standard in its proprietary implementation.

Since the OSD with pragmatic goals is more likely to choose the BSD and does not develop

interfaces, there should be a link between choosing the BSD and not developing an interface.

13

4.2 The OSD is a follower 4 MIXED MARKET DUOPOLY

Figure 2 below shows the utility of the OSD depending on her goals and on her interface and
licensing decision. When the distinction between licensing choices or goals is not shown, this
indicates that the utility is the same irrespective of licensing choices or goals.

No OS interfaces

Uo=0

OS interfaces

Uo=-c

No OS interfaces:

* GPL: Uo=(1-M)k

* BSD: Uo=k if pragmatic

Uo=(1-M)k if ideological

OS interfaces: Uo=-c

No OS interfaces:

* GPL: Uo=(1-M)k

* BSD: Uo=k if pragmatic

Uo=(1-M)k if ideological

OS interfaces: Uo=k-c

0

k

qo ? qp

M

q o?Ý1?MÞqp

1?M2

q o?Ý1?MÞqp

1?M

No OS interfaces:

* GPL: Uo=0

* BSD: Uo=k if pragmatic

Uo=(1-M)k if ideological.

OS interfaces: Uo=-c

Figure 2: Utility for the OSD as a function of her goals and of her interface and licensing
choices.

Consider now brie�y the case where the OSD is a follower:

4.2 The OSD is a follower

If the OSD is a follower, then the timing of decisions is as follows:

� Stage 1: The PSD choose whether to make the speci�cations of his standard available or

not.

� Stage 2: The OSD chooses her software license, either BSD or GPL and chooses whether

to develop interfaces or not.

� Stage 3: The OSD chooses whether to adopt the proprietary standard and be compatible

with PS, or not adopting the proprietary standard and not be compatible with PS. Adopting

the proprietary standard is possible only if the PSD decided to allow this in stage 1.

14

4.2 The OSD is a follower 4 MIXED MARKET DUOPOLY

� Stage 4: The PSD chooses the price of his software and consumers simultaneously choose

which software to use. Those who choose PS must pay for its use, those who choose OSS

do not pay anything.

At any one speci�c stage, all agents observe all decisions made by all other agents in the preced-

ing stages. The game will be solved by backward induction. It will be necessary to distinguish

between OSD with pragmatic and ideological goals in stage 3.

If the OS developer is the second mover (`OS follower'), then her standard will not be integrated

in the proprietary software. That means that the incentive for the OS follower to develop inter-

faces will be the same as those of the precursor with ideological motivations, and this even if the

OS follower has pragmatic goals. She is interested only in maximizing the number of users of her

software, and this whether she has pragmatic or ideological goals. The OS follower is therefore

indifferent between the GPL and the BSD. The PSD will prefer to open his standard only if that

leads the OSD to adopt it, and she will do so only if that increases open source market share.

The above is summarized in the proposition below, that can be understood in comparison with

proposition 2:

Proposition 3 The OS follower with pragmatic goals will behave in the same way as the OS

follower with ideological goals. She will develop interfaces whenever an OS leader with ideo-

logical goals would have done so. There will be compatibility with PS only when k 2 [qo�(1�M)qp
1�M2 ;

qo�(1�M)qp
1�M

]:

Proof. Consider stage 4. This stage can be analyzed in exactly the same way as when the

OSD is a leader (see appendix A). Consider now stage 3. If the PSD chose not to open his

standard in stage 1, then no compatibility may occur, and the analysis is the same as when the

OSD is a leader and chose the GPL. If the PSD chose to open his standard in stage 1, then the

OSD will choose to adopt it only if that leads the PD to choose to serve only inexperienced

users while not adopting the proprietary standard would lead the PD to monopolize the market.

This happens only for k 2 [qo�(1�M)qp
1�M2 ;

qo�(1�M)qp
1�M

]: Consider now stage 2. The OSD will be

indifferent between choosing the GPL or the BSD since her standard will not be adopted by the

PD as she is a latecomer to the market. As before, she will develop interfaces only if qo > qp and

k < qo � qp; when this may gain her the whole market rather than sharing it with PS. Whether

15

5 EMPIRICAL SUPPORT

her goals are ideological or pragmatic, she will develop the interface only s.t. k� c > (1�M)k;

that is, if k � c

M
:

At this point, it is possible to compare OS precursors and followers and BSD and GPL software.

The main question is whether precursors or followers will gain the highest market shares for OSS

and for OS standards, and which license will be associated with the most successful OS software

and/or standards.

BSD standards will generally be more successful than GPL standards because they will be

adopted in proprietary software when GPL standard would not. However, software developed

under the GPL software is more likely to offer interfaces and thus be easily available to all than

BSD software. BSD software, when it coexists with PS that uses the OS standard, will serve

professional or expert (experienced) users. Finally, the BSD license is more likely to be chosen

by a precursor than by a follower, and by an OS developer with pragmatic goals than by an OS

developer with ideological goals.

The standard will be OS in markets with lower network effects if OSS quality is higher than that

of PS and the OSD develops an interface so all consumers use the OSS. The standard may also

be OS when OSS is a precursor in its market as long as it is licensed under the BSD. In that

case the OS standard is adopted by the PSD, the OS implementation of the OS standard serves

the professional/specialist users and the rest use the proprietary implementation with its easy to

use interfaces. This �nding would explain the difference between professionals' markets, where

interfaces for OSS are developed by proprietary �rms, and non professionals' end-users' markets

where the interface will be a key development area for the OS projects (as Gnome is for Linux

for example).

5 Empirical support

I assumed in this paper that OS developers think strategically when choosing whether to devote

efforts to developing interfaces for their product, or when choosing the license terms for their

software. This assumption is supported by my case study of the history of (LA)TEX (Gaudeul,

2007). (LA)TEX powers various widely used typesetting systems. A long series of interviews

with OS and PS developers who participated in the development of (LA)TEX revealed a series

of interactions between OS and proprietary development. PSDs initially developed software to

appeal to those users who were not able or not willing to use (LA)TEX in its OS implementation.

16

5 EMPIRICAL SUPPORT

They were mindful of the need to identify such users, respond to their needs and differentiate

from the OS offering. This is how for example proprietary implementations of (LA)TEX such

as Scienti�c Workplace were able to gain large market shares. As the market for typesetting

software expanded, some PSDs chose to develop typesetting systems independently of (LA)TEX

(Quark, Framemaker...). Over time, they differentiated enough or provided output of suf�ciently

high quality to attract many of those users who previously used (LA)TEX. In later stages, interfaces

were developed from within the OS community, with TEXLive and MiKTEX offering an easy

to install (LA)TEX distributions and LYX offering a WYSIWYG interface for LATEX typesetting.

This history thus evidences a variety of different patterns of cohabitation between OS and PS in

one development area as the relative quality of competing software and degree of experience of

consumers varied over time.

Comparison between BSD and GPL software also support this paper's theoretical predictions. I

showed that OS precursors are more likely than followers to choose the BSD license and for their

standards to be integrated in proprietary software. In practice, one indeed observes that BSD

software such as (LA)TEX, Apache, Sendmail or Unix were all precursors and were all integrated

into proprietary offering which gave themmass-market appeal. On the contrary, one observes that

GPL software such as Linux, Gnome or Firefox (Mozilla) were all inspired by existing software

(Unix, Windows and Netscape respectively) and were initially relegated to niche markets. Only

with gradual improvements in their quality, notably in their interface, did they begin to make

inroads into mass markets. One also notes that BSD software is essentially software for expert,

professional users (Apache for example) while GPL software (such as Linux) is more likely to

be developed as a hobby, to learn, to establish reputation or for ideological reason. This con�rms

the theoretical �ndings from the paper if one accepts that �rms and professionals are more likely

to have pragmatic goals, which motivate the choice of the BSD.

Empirical data on the software industry surveying open and proprietary applications over several

product categories and operating systems is reported in appendix D, and underlines that OSS is

generally of lower quality or with less functionality than PS and dif�cult to access for the majority

of users as it is not available on Windows. This makes it signi�cantly less popular than PS in

most development areas.

1. OSS offered lower quality and less features than proprietary software. 50% of standard

features were available in OSS on average, vs. 70% in proprietary software. However, in

most categories, at least one OSS had as many features as the proprietary software with

17

5 EMPIRICAL SUPPORT

the most features. This means that only few OSS have a chance to overtake PS. I assert

in the paper that OSS that is available on Windows (has an interface) is likely to be of

higher quality than corresponding proprietary software. I found indeed that OSS that is

available on Windows is of signi�cantly higher quality than OSS that is not available on

Windows, and this in all categories and across all OS license terms. However, even OSS

that is available on Windows is generally not of higher quality than proprietary software

that is available on Windows, except for database software. This means there is only partial

support for the assertion in the paper.

2. For software to be available in practice to the 95% of computer users who use the Windows

operating system, it must be available under that platform. Being available on the Windows

platform was used as an indicator for whether interfaces are available or not, since in the

model, providing interfaces means making the software accessible to a wider audience, in

the same way as making software available under Windows makes it available to most.

Only 75% of open source software were found to be available on Windows, vs. 95% for

proprietary software. However OSS was more likely than PS to be available on Mac, Unix,

Linux. This con�rms that OS developers often prefer not to devote efforts to developing

interfaces. The analysis of the data also shows there is strong evidence that OSS that is

available onWindows gets higher market shares than OSS that is not available onWindows,

all of which supports the model's conclusions.

3. OSS rarely got more than 20% of the market according to my measures. In the instant mes-

sengers category, OSS could not compete against free proprietary software, each having its

own proprietary protocol (AOL, Yahoo! and Microsoft). OSS was not very successful ei-

ther in `professionals' markets: In graphic design, incompatible products with proprietary

standards dominate (QuarkXPress, Adobe InDesign, Microsoft Publisher, Framemaker,

Apple Pages). The only signi�cant graphic design package, Scribus, cannot read or write

the native �le formats of commercial programs. In database software, where the common

standard is sql, proprietary �rms dominate too (Microsoft Access, FileMaker Pro) and dual

licensed OSS (MySQL) uses the common standard. The only area where OSS achieves

success is the web browser category where network effects are relatively low, standards

are open (html) and OSS offers good interfaces (Mozilla Firefox is an example). Those

�ndings con�rm the dif�culty for OS software to gain a signi�cant share of the market.

Either it is relegated to a minority of specialist users and its standard is adopted in propri-

etary software that then serves the majority of inexperienced users, or it is displaced by

18

6 CONCLUSION

proprietary software with its own standard when specialist users represent a majority of the

market.

4. Whether the GPL or the BSD was chosen depended on the development area. This con-

�rms that the choice of license is at least partly dependent on the conditions in the market,

as posited in the paper. An assertion from the paper is that BSD software is less likely than

GPL software to offer interfaces, because BSD standards are likely to be taken up by pro-

prietary developers, who will take care of the interface. Data shows however that all BSD

software is available on Windows, while only 65% of GPL software is. This would seem

to contradict the above. However, higher quality of BSD software may be what encourages

the development of OS interfaces for BSD software (BSD software stands a higher chance

to win in frontal competition with PS). It is dif�cult to compare the quality of GPL and

BSD software, as it is only in the web browser category that both BSD and GPL are used.

However, I �nd that BSD software is of signi�cantly higher average quality than GPL soft-

ware, and of equal average quality than proprietary software in that category. I also �nd

that for database software, where all OSS is under the BSD, OSS is of higher average qual-

ity than proprietary software. There is therefore some evidence that BSD software is of

higher quality than GPL software, which might explain its wider availability on Windows.

5. Data relating age and innovativeness of OS vs. proprietary software were not conclusive

(see appendix D). Other sources of data must therefore be used: In a study by Klincewicz,

2005 of the 500 most popular open source projects on Sourceforge, the main OSS reposi-

tory, about 87% of the projects were deemed non-innovative and about 10% were consid-

ered as existing technology that was adapted for use on a new development platform. One

per cent only were considered as radical breakthrough and only 13% of the projects were

not direct imitations of existing products. Whether that level of innovativeness is higher or

lower than that of proprietary software is not discussed, but the perception of open source

software as essentially `me too' products seems to be widespread (The Economist, 2006).

This would explain why the BSD license is rarely used in OS project (as seen in the paper,

the BSD license is primarily used by OS precursors).

6 Conclusion

I offered in this model a typology of the licensing, development and orientation of competing

OS and proprietary developers. The outcome will be affected by whether the OS developer is

19

6 CONCLUSION

a precursor or a follower and by whether the OS developer wants to promote adoption of her

standard or of her software (pragmatic vs. ideological goals). The outcome is also affected by

whether network effects are important and whether consumers are in their majority professionals

(experienced) or non-specialists (inexperienced). The outcome �nally depends on how costly

user-interface development is and on whether OSS's intrinsic quality is higher than that of pro-

prietary software. I draw several observations from the model. Those can be used as guidelines

for the analysis of the development history and present competitive situation of OSS projects.

I consider the availability of user-oriented developments such as an interface that is easy to learn

to use, a distribution that is easy to install, support for users, documentation and so on. I show

that OS precursors will be less likely than OS followers to engage in such activities and such de-

velopments, especially if their goals are pragmatic. They will prefer to let PSDs take on such user

support and enhancements. An OS precursor will engage in such activities only if her product is

of higher quality than PS and development of interfaces gains it a monopoly on the market. Early

and innovative OSS will be used mainly by developers or professionals, which does not however

mean OSS will have a minority share of the market, as professionals and/or developers may form

the majority share of some markets.

Innovative OS development, that is, development that is groundbreaking, anticipates the needs of

the common user and predates proprietary development, may bene�t from being under the BSD

license. On the other hand, OS development that follows in the footsteps of proprietary develop-

ment is not affected by its choice of license. Innovative OSS is more likely to be compatible with

proprietary software than an OS follower is, as a proprietary follower is more motivated than an

OS follower to make his software compatible with the leading software. This is all the more true

when the OSD's development objective is to foster adoption of her standard and solutions (prag-

matic goals) rather than to foster adoption of open source software per se (ideological goals).

In so far as compatibility is socially desirable, as it increases the joint value of proprietary and

OS software, and in so far as letting the proprietary follower adopt OS standard is also socially

desirable, since a single standard is desirable, then an OS precursor who chooses the BSD will

generate higher welfare than an OS follower or than an OS precursor who chooses the GPL.

Further work in this area should focus on empirical investigations of the link between 1) the

market positioning of OS and the compatibility and licensing decisions of OSDs on the one

hand, and 2) the chronology of innovation in software design and the strength and origin of

network effects in OS development on the other hand. There is also work to do in comparing the

development dynamics of OSS that is under the BSD license with that of OSS that is under the

GPL license.

20

REFERENCES REFERENCES

References

ADAM, A. E. (2004): �Hacking into Hacking: Gender and the Hacker Phenomenon,� ACM

SIGCAS Computers and Society, 32(7).

BESSEN, J. (2006): �The Economics of Open Source Software Development,� in Open Source

Software: Free Provision Of Complex Public Goods, ed. by J. Bitzer, and P. J. H. Schröder, pp.

57�81. Elsevier: Amsterdam, http://ssrn.com/abstract=588763.

BITZER, J., AND P. J. H. SCHRÖDER (2006): �The impact of entry and competition by open

source software on innovation activity,� in The Economics of Open Source Software Develop-

ment, ed. by J. Bitzer, and P. J. H. Schröder, pp. 219�246. Elsevier: Amsterdam.

BONACCORSI, A., AND C. ROSSI (2003): �Why open source sofware can succeed,� Research

Policy, 32, 1243�1258.

(2006): �Comparing Motivations of Individual Programmers and Firms to Take Part

in the Open Source Movement: From Community to Business,� Knowledge, Technology, and

Policy, 18(4), 40�64.

CASADESUS-MASANELL, R., AND P. GHEMAWAT (2006): �Dynamic mixed duopoly: A model

motivated by Linux vs. Windows,� Management Science, 52(7), 1072�1085.

COMINO, S., AND F. M. MANENTI (2005): �Government Policies Supporting Open Source

Software for the Mass Market,� Review of Industrial Organization, 26, 217�240.

FRANKE, N., AND E. VON HIPPEL (2003): �Satisfying heterogeneous user needs via innovation

toolkits: the case of Apache security software,� Research Policy, Special Issue on Open Source

Software, 32(7), 1199�1215.

GAUDEUL, A. (2007): �Do Open Source Developers Respond to Competition?: The (LA)TEX

case study.,� Review of Network Economics, 6(2), 239�263.

GHOSH, R. A., R. GLOTT, B. KRIEGER, AND G. ROBLES (2002): �Free/Libre and Open Source

Software: Survey and Study,� Part IV: Survey of Developers.

HERTEL, G., S. NIEDNER, AND S. HERRMANN (2003): �Motivation of software developers in

Open Source projects: an Internet-based survey of contributors to the Linux Kernel,� Research

Policy, 32(7), 1159�1177.

21

REFERENCES REFERENCES

JOHNSON, J. P. (2002): �Open Source Software: Private Provision of a Public Good,� Journal

of Economics & Management Strategy, 11(4), 637�662.

JOHNSON, J. P. (2006): �Collaboration, Peer Review and Open Source Software,� Information

Economics and Policy, 18(4), 477�497.

KATZ, M., AND C. SHAPIRO (1985): �Network Externalities, Competition and Compatibility,�

American Economic Review, 75, 424�440.

KLINCEWICZ, K. (2005): �Innovativeness of open source software projects,� Discussion paper,

Tokyo Institute of Technology and Warsaw University.

KOENIG, J. (2004): �Seven open source business strategies for competitive advantage,� IT Man-

ager's Journal, http://www.itmanagersjournal.com/feature/314.

KUAN, J. (2002): �Open Source Software as Lead User's Make or Buy Decision: A study of

Open and Closed Source Quality,� Stanford Institute for Economic Policy Research, Stanford

University.

LERNER, J., AND J. TIROLE (2002): �Some Simple Economics of Open Source,� Journal of

Industrial Economics, 50(2), 197�234.

LIN, Y. (2006): �Women in Free/Libre Open Source Software Development,� in The Encyclope-

dia of Gender and Information Technology, ed. by E. M. Trauth, vol. 2, pp. 1286�1291. Idea

Group Publishing: Hershey, PA.

LYMAN, J. (2005): �Getting in touch with the feminine side of open source,� NewsForge,

http://www.newsforge.com/articles/05/08/08/1449259.shtml.

MUSTONEN, M. (2005): �When Does a Firm Support Substitute Open Source Programming?,�

Journal of Economics & Management Strategy, 14(1), 121�139.

NICHOLS, D., ANDM. TWIDALE (2003): �The usability of open source software,� First Monday,

8(1).

RATLIFF, C. (2005): �Gender and Open Source,� http://culturecat.net/node/889.

RAYMOND, E. (2001): The Cathedral and the Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary. O'Reilly Media, Inc.

(2002): �Why Open Source will rule,� ZDNet, March 28.

22

A STAGE 3: THE PRICING AND CONSUMPTION DECISIONS

SCHMIDT, K., AND M. SCHNITZER (2003): �Public Subsidies for Open-Source? Some Eco-

nomic Policy Issues of the Software Market,� Harvard Journal of Law and Technology, 26,

473�505.

THE ECONOMIST (2006): �Open-source business,� March 16th 2006.

VON HIPPEL, E. (1994): ��Sticky Information� and the Locus of Problem Solving: Implications

for Innovation,� Management Science, 40(4), 429�439.

(1998): �Economics of Product Development by Users: The Impact of �Sticky� Local

Information,� Management Science, 44(5), 629�644.

(2005): Democratizing Innovation. The MIT Press: Cambridge, MA.

VON KROGH, G., S. SPAETH, AND K. R. LAKHANI (2003): �Community, joining, and special-

ization in open source software innovation: a case study,� Research Policy, 32, 1217�1241.

VON KROGH, G., AND E. VON HIPPEL (2003): �Special Issue on Open Source Software Devel-

opment,� Research Policy, 32, 1149�1157.

A Stage 3: the pricing and consumption decisions

Denote nep; n
e
o the consumers' expected share of each software.

� 1. Suppose the OSD developed interfaces in stage 2.

� 1.a. Suppose both software are incompatible. Consumers, whether inexperienced

or not, will choose PS only if qo + kneo < qp + kn
e
p � p: The PSD may price at

p = qp � qo + k(n
e
p � n

e
o) and if so is chosen by all and gains the whole market. In

a ful�lled expectation equilibrium, one then has ne = 1: The PSD then makes pro�t

� = qp � qo + k: This strategy is pro�table only if k > qo � qp:

� 1.b. Suppose both software are compatible. All consumers use software, so ne = 1:

Consumers, whether inexperienced or not, will choose PS only if qo+k < qp+k�p:

The PSD may price at p = qp � qo and gain the whole market. The PSD then makes

pro�t � = qp � qo: This strategy is pro�table only if qp > qo: If this is not the case

then the PS does not enter the market.

23

B STAGE 2: THE COMPATIBILITY DECISION

� 2. Suppose now that the OSD did not develop interfaces in stage 2.

� 2.a. Suppose both software are incompatible. Inexperienced consumers only have

access to PS and buy it s.t.

qp + kn
e
p � p � 0 (5)

Experienced consumers buy the PS only s.t.

qp + kn
e
p � p � qo + kn

e
o (6)

There are thus two cases,

� the PSD sets p = qp � qo + k(nep � n
e
o) and serves all consumers. In a Ful�lled

Expectation Equilibrium, np = 1 and no = 0; so that p = qp � qo + k and

proprietary pro�t is� = qp�qo+k: This strategy is pro�table only if k > qo�qp:

� or the PSD sets p = qp + kn
e
p and serves only inexperienced consumers. In a

FEE, np = M and no = 1 �M and the PSD makes pro�t � = M(qp + kM):

This is always pro�table.

The proprietary developer will thus choose to serve all consumers s.t.

qp � qo + k �M(qp + kM) (7)

which can be rewritten

k �
qo � (1�M)qp

1�M2
(8)

� 2.b. Suppose both software are compatible. Then either the PSD sells to inexperi-

enced consumers only with price p = qp + k and makes pro�t � =M(qp + k) or the

PSD sells to all at price p = qp � qo and makes pro�t � = qp � qo: He will choose to

serve all consumers s.t.

qp � qo �M(qp + k)

which can be rewritten

k �
qp(1�M)� qo

M

B Stage 2: The compatibility decision

This part makes reference to appendix A.

24

C STAGE 1: OS INTERFACES AND LICENSING

� Consider �rst the case where the OSD chose the BSD and the PD may thus choose to make

his software compatible with OSS.

� When the OSD develops interfaces, then the PSD will always prefer incompatibility

to compatibility, as this allows it to keep consumer captive and make them pay for his

proprietary network of users.

� When the OSD does not develop interfaces, there are then two cases:

� If qo� (1�M)qp > 0 : Then, if there is compatibility, the PD prefers to serve in-

experienced consumers and makes pro�t of � =M(qp+ k): He will always pre-

fer this to incompatibility and serving inexperienced consumers. He will prefer

this to incompatibility and serving all consumers only ifM(qp+k) > qp�qo+k;

that is, if k < qo�qp(1�M)

1�M
:

� If qo � (1 �M)qp < 0 (A) Then if there is incompatibility, the PD prefers to

serve all consumers and make pro�t qp� qo + k. He prefers this to compatibility

and serving all consumers, and prefers this to compatibility and serving inexpe-

rienced consumers only if qp � qo + k > M(qp + k); that is, if k >
qo�qp(1�M)

1�M
;

that is, always since qo � (1�M)qp < 0 from (A).

� This can be summarized by saying that if the OSD does not develop inter-

faces, the PD prefers incompatibility and serves all consumers for any k �
qo�qp(1�M)

1�M
; and prefers compatibility and serves inexperienced consumers for

any k � qo�qp(1�M)

1�M
:

� Consider now the case where the OSD chose the GPL. Then the PD may not make his

software compatible with OSS. This does not change the situation when the OSD develops

interfaces, since in that case the PD did prefer no compatibility. If the OSD does not

develop interfaces, then the PD will serve all consumers for any k � qo�(1�M)qp
1�M2 ; and will

serve only inexperienced consumers for k � qo�(1�M)qp
1�M2 :

C Stage 1: OS interfaces and licensing

� Consider �rst the case where the OSD developed interfaces. If k � qo � qp she gets no

share of the market and PS is incompatible with OSS, so her utility is Uo = �c: Therefore,

the OSD never develops interfaces for any k � qo � qp: If k � qo � qp she gains the

whole market and her utility is Uo = k � c: Suppose she does not develop interfaces and

25

D EMPIRICAL STUDY

k � qo � qp: Then, if she chose the GPL, there will be incompatibility and she will gain

only experienced users, so her utility is Uo = (1 �M)k: If she chose the BSD, then there

will be compatibility, so the OSD with pragmatic goals gets her standard adopted by all and

gains utility Uo = k; while the OSD with ideological goals does not care about adoption

of her standard by the PD and gets utility Uo = (1�M)k: Therefore, for k � qo � qp; the

OSD with pragmatic goals will choose the BSD and gain utility Uo = k; while the OSD

with ideological goals will be indifferent between the BSD and the GPL and will develop

interfaces s.t. k � c � (1�M)k; that is, if k � c

M
:

� Suppose now k � qo�qp:As we saw previously, this means the OSDwill not develop inter-

faces. If k � qo�(1�M)qp
1�M

; the PDwill never choose compatibility with OSS and will gain the

whole market, so Uo = 0 whatever the choice of license. If k 2 [
qo�(1�M)qp

1�M2 ;
qo�(1�M)qp

1�M
];

then the PD will gain the whole market if compatibility is not possible, so the OSD will not

choose the GPL in that domain and will prefer the BSD. Her utility will then be Uo = k if

her goals are pragmatic (her standard is adopted by all), and Uo = (1 �M)k if her goals

are ideological (her software is used only by experienced users). If k � qo�(1�M)qp
1�M2 ; then

the PD will serve only experienced users whether compatibility is possible or not, so the

OSD with ideological goals is indifferent between the BSD and the GPL. The OSD with

pragmatic goals however will prefer the BSD as the PD will then adopt her standard and

her utility will be Uo = k rather than Uo = (1�M)k if she had chosen the GPL.

D Empirical study

In order to motivate and illustrate the model, data was collected in May 2006 on the prices,

supported platforms, number of key features, age, and popularity of software, licensed either

under Proprietary, GPL, BSD or Dual licenses, across six categories (Word processors, back-up

software, database software, graphical applications, instant messengers and web browser). 84

software were surveyed in total, about half of them proprietary, half of them open source, with 13

to 15 software in each category. The sample was drawn from four main sources: Amazon (mainly

proprietary software), Download.com (mainly freeware and shareware), Sourceforge (mainly

open source software) and Google Directory (any type of software). Those sources spanned the

four main software marketing/distribution/development categories (shareware, freeware, open

source and shelfware). The sample included software for non-specialists (word processors, in-

stant messengers, web browser) and software oriented towards specialists and professionals (data-

26

D.1 Popularity D EMPIRICAL STUDY

base, graphic design).6 The sample also includes software with higher network effects (instant

messengers, word processors) and those with lower network effects (back up, graphic design).

The sample �nally included highly standardized categories and others with many different stan-

dards: there was little compatibility between systems for instant messaging, between graphic

design packages or between back-up systems. There was more compatibility, with at least some

basic standard everyone can use, in word processors (rtf), database (sql) and web browsers (html).

D.1 Popularity

The sampling was designed to identify the main OS and proprietary software in each development

category. This resulted in an about equal number of OS and proprietary software being studied

in each development category (Figure D1). Quite striking is that the BSD and dual licenses were

never used in word processors, backup software, graphic design and instant messaging, while

the GPL was never used in database development. The only area where BSD, dual and GPL

licensed software cohabited was web browser development. There thus seems to be preferences

for different OS licenses depending on the development area. Among proprietary software, which

were divided between freeware and commercial software, freeware was very present in Internet

communication software such as web browsers and instant messengers.

0

2

4

6

8

10

12

14

16

18

Graphic

Design

Back Up Word

Processor

Database Instant

Messenger

Web Browser

GPL

BSD

Dual

Freeware

Proprietary

Figure D1: Number of software in the sample, by license and by category.

Popularity was measured according to three Web metrics: the number of links to the publisher's

website (backlinks), Google's page rank for the website (from 0 to 10, higher is better), and

6In each category, some less sophisticated software did serve the non-specialist and others served more sophisti-
cated users, which means for example that back up software did not �t neatly into either category.

27

D.2 Quality D EMPIRICAL STUDY

the number of mentions of the software's name on the web. Those numbers, all collected from

Google, the main search engine, indicate how easy it is to �nd the software on the Internet

(Google Rank), but also how widely diffused the software is (number of mentions) and how

often it is endorsed by others (backlinks). Those measures were strongly correlated with each

other. Software popularity within its category was computed by averaging the proportion of the

exponential of page rank, backlinks and mentions of that software within its category. Figure D2

below shows popularity of open source, dual license, proprietary software and freeware in their

respective market categories.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Graphic

Design

Back Up Word

Processor

Database Instant

Messenger

Web

Browser

Open Source

Dual License

Freeware

Proprietary

Figure D2: Popularity of software in the sample, by type and by category.

D.2 Quality

A list of the main features that could be available for software in a given category was established

and was used to assess the quality of the software. Software with the most features was found

to also include the features of software with less features. The number of features thus appeared

to be an ordinal measure of quality. At the least, it could be considered as a measure of the

capabilities of the software, without judging of the number of bugs, of the quality of output, or

of the software's reliability and ease of use. Table D1 below summarizes the �ndings:

28

D.3 End-user orientation D EMPIRICAL STUDY

Graphic Design Back Up Word Processor

Max Mean N Max Mean M Max Mean N
Proprietary 100% 71% 11 80% 67% 9 100% 86% 7
Freeware . . 0 40% 40% 1 50% 50% 1
Open Source 100% 43% 4 80% 60% 4 100% 38% 5

Database Instant Messenger Web Browser

Max Mean N Max Mean M Max Mean N
Proprietary 100% 63% 7 71% 47% 3 . . 0
Freeware . . 0 100% 67% 6 90% 70% 4
Open Source 100% 79% 4 43% 22% 4 100% 52% 10

Table D1: Percentage of key features provided, mean and maximum by license and by category
(dual licenses not shown).

On this quality scale, OSS proved to be of signi�cantly lower quality than proprietary software in

word processors, instant messenger and graphic design. It was of lower quality in web browsers,

of equal quality in backup software and of better quality in database software. On average,

OSS included 50% of the maximum number of features, while proprietary software and freeware

included 70%. In most categories however, at least one OSS and one PS had all the features on

our list of main features.

There was little correlation between price and number of features, either on the whole or category

by category, and popularity did not exhibit a link with price or our measure of quality. I cannot

therefore go much further than comparing the popularity and quality of commercial software,

freeware and OSS as was done above. This is especially so one could argue that less featured

OSS may be faster and more reliable than proprietary software (an argument often made by OS

proponents).

D.3 End-user orientation

Open source software was less likely than freeware and proprietary software to be available on

Windows and PDA/Smartphones, but far more likely to be available on Mac, Unix and Linux.

Indeed, only 75% of OSS was available on Windows, compared to about 95% of proprietary

software while proprietary software was signi�cantly less likely to be available on Unix and

Linux (about 10% vs. about 65% for OSS) and also less likely to be available on Mac (about

40% vs. 60% for OSS). Overall therefore, OSS was less likely to be easily available to the mass

market of Windows users but more likely to be available on many platforms than proprietary

29

D.4 Leadership D EMPIRICAL STUDY

software was. BSD software itself was more likely than GPL software to be available on the

Windows platform.

0

10

20

30

40

50

60

70

80

90

100

Windows Mac Unix Linux PDA/Smart-Phone

Proprietary

Freeware

Open Source

Figure D3: Platform availability, by category and by license terms.

D.4 Leadership

The date of inception of each software project under study was gathered in an attempt to deter-

mine which of OSS or proprietary software was the precursor in each different market. However,

differences between the age of OS and proprietary software projects were not found to be statis-

tically signi�cant. Proprietary software tended to be either rather old (more than 10 years, maybe

established software having gone through many versions) or very new (less than one year, maybe

newly launched software by established software companies). OSS tended to be more evenly

distributed in age, around 5 years in existence. This is maybe because very new OSS projects

do not achieve suf�cient popularity as fast as proprietary software with marketing tools can, and

maybe also because the concept of OSS is too new for very old projects to exist. I can also posit

that PS is able to persists for longer thanks to constant reinvestment in the development of the

product and into related software. OSS on the other hand takes longer to establish and does not

persist as an organization when the software becomes outdated.

Software that was old may be seen as either a precursor (in its own time) or as outdated (now),

which makes age an improper measure of innovativeness. Because age and innovativeness cannot

thus be related in a straightforward way, it is dif�cult to determine who were the leaders and who

were the followers in the market. The version number or number of versions released was also

tried as an indicator, but there are wide differences in the release cycles of the two types of

software. For example, proprietary software may be repackaged with a new name rather than

being given a new version number, while OSS may go through frequent minor releases that do

not necessarily represent meaningful improvements.

30

