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Abstract

Basel II suggests that banks estimate downturn loss given default (DLGD) in capital
requirement calculation. There have been studies that focused on the dependence of
default rates and loss given defaults through economic cycles. However, the models
proposed are still not satisfactory. In this paper, we propose a new model framework
based on our recent work of stochastic spot recovery for Gaussian copula. We also
compare our model with the previous approaches.

1. Introduction

Evidence from historic data suggests that recovery rates on corporate defaults tend to go
down when default rates go up in an economic downturn [1]. This phenomenon leads the
BIS to suggest banks estimate downturn loss given default (DLGD) for capital
requirement calculation [4, 5]. The main reason for this requirement is that the Vasicek
model [20] used in the Basel Accord does not have systematic correlation between
probability of default (PD) and loss given default (LGD), which would underestimate
downturn risk.

There have been several attempts to model the dependence between PD and LGD, see for
example (2, 3,7, 8,9, 10, 11, 16, 17, 18, 19, 21]. All these approaches model the period
loss given default by assuming it is driven by a latent variable that is correlated with the
latent variable driving default. This kind of approach has some drawbacks, as will be
discussed in section 2 of the current paper. The key point is that the relationship between
expected loss and probability of default may produce results not supported by economic
evidence or intuition. Similar problems in CDO pricing with stochastic recovery have
lead to the direct modeling of spot recovery (or recovery upon default) to avoid the
problems [6, 14]. The purpose of this paper is to use our recently proposed stochastic spot
recovery model for Gaussian copula to build a consistent downturn LGD model for Basel
II capital calculation.

The paper is organized as follows. In section 2, we discuss the Tasche model [20] and
other factor models [7] and show that they may have features not supported by economic
evidence. In section 3, we present our stochastic spot recovery model using the two factor
setup for a homogeneous portfolio discussed in [7]. We also derive the Gaussian copula
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that correlates both default time and recovery rate. A special form of recovery
distribution is presented to be used in capital calculation. In section 4, we derive the large
homogeneous pool limit for the Tasche model, the Chabaane-Laurent-Salomon model
and our spot recovery model in the single factor case. Then we show how VaR and
expected shortfall can be calculated and define the downturn LGD for all these models.
In section 5, we give numerical examples to compare the downturn LGD in these models.
Section 6 concludes the paper.

2. Problems with current LGD factor models

The models proposed for downturn LGD are mostly factor models except that of Giese
[10], where the conditional expected LGD was specified to have non-linear dependence
structure on the conditional PD. There are two types of factor models. The Tasche model
[19] assumes the same latent variable drives both default and loss give default so that the
latent variable is actually driving the unconditional loss, see also our discussion in [13].
All other models assume a correlated latent variable drives the loss given default, where
the difference is in the number of systematic or idiosyncratic factors. Frye [9] uses a
single systematic factor with an independent idiosyncratic factor to drive the loss given
default. Pykhtin [17] also uses a single systematic factor but with an idiosyncratic factor
that is correlated with the idiosyncratic factor driving default. Barco [3] assumes two
systematic factors but no idiosyncratic factor. Chabaane, Laurent and Salomon [7]
discusses a more general factor correlation structure which is equivalent to two correlated
systematic factors and two correlated idiosyncratic factors. The two types of models both
have problem with the relationship between expected loss and probability of default,
which has been touched on in our previous paper [13] and will be discussed below. We
will see in section 3 the problem can be solved in a stochastic spot recovery model.

2.1. The Tasche Model

First we discuss the Tasche model [19] following our previous work [13]. Let L be the
unconditional loss before time ¢ as a percentage of the total exposure to an obligor. Then
L will be zero with probability 1— p when the obligor is not in default before time 7. L

may take positive values with probability p when the obligor defaults before time .

Formally, the cumulative distribution function F, of L has the following general form
(see Tasche [19])

F,()=P(L<l)=1-p+p-F, () for [ €[0,1] (1)

where F,(l)=P(L< l|2' <t) is the cumulative distribution of loss given default and 7 is

the default time random variable. We will not make the assumption of hard default where
obligor default is equivalent to loss greater than zero. So F,,(0) > 0 is possible in the

current framework. Define the generalized inverse or quantile function F,' of F, as



F'(y)=min{l €[0,1]: F,(l) > y} for y e[0,1] ()

Assume default of an obligor is determined by the latent variable V = \/;Z + 41— pe

through a default threshold v=®'(p), where Z and ¢ are independent standard
normal random variables ~ N(0,1), Z is the systematic factor and ®(x) is the standard
cumulative normal distribution function. Then we can model the dependence of loss and

default by defining

L=F (®(-V)) 3)
where the negative sign is meant to introduce a negative correlation between loss and
asset value represented by the latent variable. Note that this definition will not change the

distribution of L, which is still F, .

Conditional on Z = z, the probability of default is

. @ (p)-pz
P(2)=P(V <@ (p)|Z=2)= @[—j (4)
Vi=p

The conditional cumulative loss distribution is

; O '(F, (1)) +\/;z]
P(L=F (®(-V)<Z=z7) =]
2= 0-of TULD.

. q{—cb- (p(1-F, (1)))+JEZJ )

Ji-p

=1-P(2)+P(z)-P(L<lr<1,Z =2)

The last line in the above equation is just the definition of loss given default conditional
on z.So

(6)

P(L<lr<t,Z=2)=1-P(z)" .@(‘D (pd-Fp (”))—\/&J

Ji-p

The conditional expected loss is



1
EWzZ=2)= jz-d,P(L <z =2
0

= P(z)(l—IP(L < l|r <t,Z= Z)-a’lj (7

:Iq{cb- (p(l—FDa)))—JEzJ_dl
0 NI=-p

Next we compare the change in conditional expected loss and the change in conditional
probability of default induced by an infinitesimal change in marginal probability of
default p:

d@[cp- (p(-F, (l)))—ﬁz],dp
dE(L|Z=z)/dP:J1‘ vi-p dl
dP()ldp 4 (@%;a)—ﬁz}
dd| ——=—="|/dp
vi-p
_ jexp(q“(p)z =0 (p(1= F, (0)* ~2pa@” (p) - "' (p(1 = F, (1))
0 2(1- p)

O (p)’ -0 (p-F, ()’
2

®)

j-(l—FD(l»-dl

It is obvious that, when z — —o0, the above ratio will go to + oo . This means that, when
z is sufficient negative, conditional expected loss will increase at a much higher speed
than that of conditional PD. This does not make sense since PD is equivalent to 100%
loss and will always dominant expected loss such that the ratio should never exceed one.
The other argument against the model is that, since default and recovery are driven by the
same latent variable, the model is too restrictive and may not be able to calibrate to
economic data.

2.2. Other LGD Factor Models

Chabaane, Laurent and Salomon [7] discussed the general factor structure for the
underlying latent variables driving default and recovery under the assumption of a
homogeneous credit portfolio. This general structure covers the models of Frye [9],
Pykhtin [17] and Barco [3]. We will use their setup to discuss the problem with this type
of models.

Again, we assume V = \/;Z +4/1— p¢& drives the default of an obligor. The latent
variable driving LGD has the following form



W =JBMZ+1-n*Z,)+{1- B(re +/1-y7&) 9)

where Z, Z, are independent systematic factors and &, & are independent idiosyncratic

factors. Loss given default is defined as L = F, "(®(-W)) . Conditional on Z and Z,

default and loss will be independent between obligors, although they are still correlated
through the idiosyncratic factors for each obligor. The conditional cumulative loss given
default distribution will be

P(L=F, (®(-W)<l|r<t,Z=2,Z, =z,)

2 O (F,(D))++Baz+1-17°2,)
{78+«/ r ¢ =5

O (F, () + B+ 1-17z,) ©"(p)—fpz. y]

TSt,Z—z,Zr—zrj (10)

- N

where @, (x,y; p) is the cumulative bivariate normal distribution with correlation p .

= P(Z)_l ‘(Dz(

So

P(L<Z =22, =z,)

O FEy ) +BUEt1=n"s) (P -z | (D
1-4 , NIE) ,

such that, after integration over z and z,,

1—P(z)+CD2[

P(L<D)=1-p+®, (@7 (F, (), @™ (p)i-K) (12)

where K =n,/pf +y/(1—p)(1— ) is the correlation between V and W . We have

used the following formula in the integration, see Appendix in [13],

T b d +
'[d)z(az+b,cz+d;p)'¢(z)dz=<I>2 , ; @wrp (13)
ks V+a® 1+c2 Ja+a®)1+c?)
So the marginal loss given default distribution is

Fy' () =P(L<lr<0)= p™ - @, (@7 (F,1),®” (p)K) (14)



Note that the marginal loss given default distribution F,;' is different from F), unless the
correlation term in the above formula is zero. The correlation term is always negative,
which make sense since increase in F,, means decrease in the expected LGD. However,

when marginal probability of default p increases, F, will always increase which leads

to the decrease of the expected LGD. This is counter-intuitive and is not supported by any
economic evidence. So this kind of models has an unwelcome side-effect. Besides, the
distribution of marginal LGD and the expected LGD will depend on PD and correlation,
which makes the model calibration more complicated.

3. Stochastic Recovery in the Default Time Copula Framework

The problems of the previous section can be solved through a stochastic spot recovery
model in a default time copula framework. The term structure of default probability curve
means that PD is always increasing with time. So the problem with the Tasche model is
equivalent to an unlimited conditional spot LGD or negative conditional spot recovery,
see [13]. The way to solve it would be to model the spot LGD or spot recovery directly to
make sure it is in proper range. Meanwhile, the Tasche model preserves the marginal loss
distribution, which is a problem for other factor models. So we hope this is also preserved
in the spot recovery model, which is indeed the case [14]. Here we generalize our one-
factor Gaussian model of spot recovery [14, 15] to two systematic factors with correlation
between idiosyncratic variables. We will follow the factor structure of Chabaane, Laurent
and Salomon [7] for a homogeneous credit portfolio. It is straight forward to extend the
model to multi-factor or non-Gaussian copula cases.

In the default time copula framework of D. Li [12], the joint distribution of default times
is determined by the marginal default time distributions (given by default probability
curve) and the default time copula. In the Gaussian Copula setup, the latent

variableV, = \/;Z +4/1—= pe, drives the default of obligor i of a homogeneous credit

portfolio. The default event 1__, can be characterized by V, <v = ®'(p(1)), where T, 18

the default time random variable, p(¢) is the cumulative default probability of the obligor
i . We define the default time random variable 7, as

7, =p (@) (15)

We assume that the stochastic spot recovery is driven by the latent variable

W, =\[B(Z +\1-1>Z,) + 1= By, + J1- &) through a time-independent

cumulative distribution function Fj(r).

Conditionalon 7, =t or V, = o' (p()), W, follows a normal distribution with mean

K -®'(p(t)) and standard deviation v1— K> , where K =1./08 + 71— p)1- ) . To



ensure that F(r) is indeed the marginal cumulative distribution for the spot recovery
upon default at time ¢, we define

R - FRI(CD(W,» K- (p(r))j] 6

V1I-K?

Thus

PR <r|z, =1) =P[FR{(D[W[ _%p(t»ﬁﬁ r|z, =tJ=FR(r) 17)

O (p@t) -
Ifwefix Z=z and Z, =z, , then ¢, = (f/ilﬁz and the conditional spot
-P

recovery distribution will be
PR, <r|t,=t,Z=2,Z,=2,)

3 A (W, K- 07 (p(t) 7 -
= P(F, {q{ e Dﬁrhi—t,Z—z,Z,—z,) (18)

_ q)[—Dz—Jﬂa—p)(l—nQ)z, 1= p)1-K?) -®1<FR<r>>+DJZ-®1(p<r>>J

Ja-p)a-pa-y*

where D = n\/ﬂ(l -p) - 7/\/,0(1 —p).If D=0, then W, is linear in V,. We may require
D > 0 such that, when z increases, the conditional cumulative distribution decreases and
conditional expected recovery will increase. Conditional on the systematic factor Z ,

obligor defaults are independent and the conditional default probability for each obligor
is given by

O~ (p(1)) —+/pz
p(t,z):p(z'St|Z:z):d)( J (19)
Vi=p

Now we can derive the distribution for conditional period recovery rate defined as

PR <r|t,St,Z=2,Z =z,)

_ 1 _jq) — Dz U= p)1—=17)z, +/(1= p) 1= K?) - @ (Fo(r)) + Dy p -7 (p(s))
p(t,2) 4 Ja-p)i-pa-y?

1 _sz—\/ﬂ(l—nz)z,+\/1—K2®"(FR(r))
P2 Ja= =7+ D |

]-dp(s,z)

c(t, z);—ﬁJ

(20)



where

DJp

Ja-p)i-y*)+Dp

O (p(t) —+/pz
c(t,z)=
Vi=-p

We also have

=™ (p(t,2)) and j =

P(l{fiét} ‘1{R,‘Sr} |Z = Z’Zr = Zr)

:P(R,'ST|TI.SZ',Z:Z,Zr:Zr).P(Z-iSI|Z:Z) (21)

=D\1- pz—yBU-1")z, +V1- K’ O~ (Fy(r))
Ja-pia-yH+0%p

) C(ta 2)7_15

:Q)2

The unconditional period recovery distribution can be calculated using equation (13) as
follows

PR <rle, <0 =——[[PU, Vo |Z = 2.2, = 2,)- $(2H(, dedz, = Fo(r) (22)
p() / /

So the marginal distribution of period recovery rate is the same as the marginal
distribution of spot recovery rate and is time-independent. Note that, in a dynamic model,

the spot recovery distribution F (r) could be time dependent, then the integration in
equation (20) would be more complicated.

Consider two obligors with correlated default and recovery rate, here we derive the
copula of default time and recovery rate. Conditional on Z and Z,, the default and

recovery process are independent for the two obligors, and we have

P(I[Tlﬁtll ‘1{R15r1) ‘1(723’2} '1[R25’2} |Z = Z’ZV :Z")
N ELRET: B A=)z, +1-K 207 (F, ()
- 2

Ja=B)a-7)+D>p,

o | 22T B )z, LK (F ()
2
Ja=B)1=7,")+D,’p,

(23)

’cl (t’ Z)’ﬁl]

,Cz(t, Z)’ﬁZJ

Integrating over z and z,, we will have the copula as



C(p,(t)), Fy (n); py(8,), Fy (ry)) = P(z, <t,R <137, <t,,R, <1,)
- ij(l{rlsrl} Liren) Loen) Limen | 2= 2.2, = 2,)- §(2)P(z,)dzdz, (24)
= ‘1)4(@_1(191(f1)),<13_1(FRl (Vl),CD_l(192(f2)),CI)_1(FR2 ()X ,)

where @, is the 4-variable cumulative normal distribution and the correlation matrix is
defined as

1—
1 0 s DyAac 2,02)
3
0 . Dipd-a) DDJA(-p-p)HABI--E)
5 1K KK
P 1—
na Dypl-a) .

0
K
DJalt-p) DDapl-a)l-p)+ ABI-1)1-7) 0 .

1K’ (-K))(-K;)

This can be proven through the following result

[[o,(@z+b,cz+d +e2,:p) Dy (a,24+b,.¢,2+d, +e,2,3p,) - HOH(z, )dzdz,

25
— q) bl dl b2 d2 2 ( )
4 ’ s s s
\/l+al2 \/1+c12+el2 \/l+a22 \/1+022+€22
where
1 P+ ac a,d, a,6,
JaraHaee 1e) Ja+a)a+al) Ja+ad)i+cl +e)
P, +ac, 1 c,a, c,c, +ee,
. Ja+at)i+cl +e) Ja+c+e)1+al) Ja+cl +e)l+cl +e))
a,a, €14y 1 Pr ta,¢,
Ja+a)(d+a?) \/(1+cf +e)1+al) \/(1+a22)(1+c§ +e,’)
a1C2 C1C2 +elez p2 +CZ2C2 1
Ja+ad)a+c+e) Ja+cl +e) )1+ +e,7) JA+al)l+cl+e,)

If we define




X, =\/7,£+ﬂgl -a,Z
Y, =Jpe+l-p &, —cZ—eZ,
X, :\/p—2§+M§1 —a,Z
X, :\/p—zé"'\/l_pz )~ -eZ,

where ¢, ¢, &,, &, &, &, Z, Zr are independent standard normal random variables,
then

jjq)z(alZ+b1’01Z+d1 +e,2,:0) D,(a,2+b,,c,2+d, +e,2,5p,) 9(2)dz-P(z,)dz,
=E(X,<b.Y, <d,,X,<b,,Y,<d,)

which leads to the equation (25).

Equation (24) can be compared with the standard Gaussian copula of default times with
fixed recovery

C(p, (1), p, (1)) = P(z, 1,7, <1,) = O, (D7 (p, (1)), @7 (P, (1,)iy/ 2102 (26)

Note that, in equation (24), default and recovery of an obligor are not correlated, this is
because recovery is always conditional on default. The copula for default and recovery is
still Gaussian. However, the correlation matrix can not be generated by a simple one-
factor model. Equation (24) can be easily extended to more than two obligors, multi-
factors and other types of copulas.

For capital calculation, we need the conditional expected loss for each obligor before
time ¢

1
LII(Z’ Zr) = I(l_ r) 'drP(l{T/-St} .l{RISr} | Z= Z’Zr = Zr)
’ (27)

P(l{m} '1{Rigr} |Z=2,Z, =z,)-dr

S C—y —

For numeric purpose, we consider the recovery distribution discussed in [14], which is
similar to the beta distribution as shown in the Figure below.
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It has the following form
Fo(r)=P(R<r) =®(a- @' (r)—VJ1+a’® (1)) (28)
or, for the density function,

'¢(a-<D_l(r)—\/1+a2(I)_l(r0))

29
4@ () 29

fR(r):a

where a >0 and 0 <r, <1. This distribution will simplify calculation for Gaussian

Copula model. The expected recovery rate is 7, and the variance of recovery rate is
1
V(R):(I)Z(d)l(ro),d)l(ro);—zj—ro2 (30)
I+a

When a goes to zero, the variance goes to the maximum value 7, (1-7,), which
corresponds to the case where R takes the extreme value 0 or 1. When a goes to infinity,
the variance goes to zero and the distribution reduces to a constant recovery 7,.

The original spot recovery equation (16) can be written as

11



Rz(D[Wi_K(D (p@) 1+i2q>1(r0)] 31)
a

av1-K?

Then we have

P(R<r|t=t,Z=2,Z, =z,)

=®{—Dz—\/ﬂ(l—p>a—n2>z, +JA=p)1-K?) - (@@ (r) -1+’ D (r0>)+Dﬁ-<D“<p<r»]
Ja-p)a-pa-»?

(32)

The expected conditional spot recovery is

1
’"(t,Z,Z,)=J.I’~dVP(RSr|r=t,Z=Z,ZV =z,)
0

=CD[DZ +yBU=p)L-1")z, +y(1=p)1-K*) N1+a D (1) - D\/E-dﬂ(p(z))]
Ja-p)a=pa-yH+a’a-pa-K?

(33)

The expected conditional loss up to time ¢ is
L(z.2,)=[(=r(5,2,2,))-dp(s,2) = @, (c(t,2),b(z,2,)=p)  (34)
0

where c(¢,z) is defined in equation (20) and

Dqll—pz-i-,/ﬂ(l—nz)zr +«/1—K2\/1+a2<l>"1(r0)

Ja=p-yH+D*p+a*(1-K?)

. Dyp

p= 2 2 2 2
JI-p1-y)+D’p+a’(1-K?)

b(z,z,)=-

Conditional on Z and Z,, the expected recovery rate will be time-dependent through
p().

4. Large Homogeneous Pool Limit and Downturn LGD

In the Basel II capital requirement calculation, the portfolio is normally assumed to be
fully granular which corresponds to the large homogeneous pool (LHP) limit. We look at

12



the LHP limit for the Tasche model, the Chabaane-Laurent-Salomon model and our spot
recovery model and compare them to the standard Vasicek model.

In all these models, conditional on the systematic factors, loss of each obligor is

independent. So in the LHP limit, the portfolio loss equals to the expected loss of each
obligor conditional on the systematic factors, L(Z) or I(Z,Z,).

In the Tasche model, the conditional expected loss is shown in equation (7). We will use
the distribution in equation (28) as an example for calculation purpose. Since L =1-R,
we have

F,()=P(L<)=PR=21-1)=1-F(r) (35)

where [ =1—r. So the conditional expected loss is

o [ R I PR

The portfolio loss in the LHP limit is L, = L(Z) . The portfolio loss distribution can be

calculated as
FLP D=PL,<DH=PL(Z)<])= d-L"'()) 37

where the negative sign is because L(z) is a monotonically decreasing function of z .

Equivalently, we have [ = L(-® ' (F L, (1))). This gives an easy way to calculate VaR as
VaR(a) = F, " (a) = L(-® "' () (38)

where « is the confidence level. Specifically, for the Tasche model, we have

VaR(a)sz[ (PFy (\r/)l_\/_q) (“)]
0

~ j‘b @ (pcb(adf‘ () =V1l+a’ @' (7, )))+ VP (@)
= -dr
0 ‘\ll_p

(39)

The expected shortfall can be calculated as

13



-0 ()

ES(a) = E[L| L > VaR(a)] = IL [L()dd(2)

:ﬁ~ q)z(q)_l(pFR(r))’q)_l(l—a);\/;)_dr (40)

= ﬁ'[sz(@’l(pd)(a@‘l(r) ~Vl+a* @™ (1)), (l—a);\/;)-dr

For the recovery distribution (28), the VaR and expected shortfall do not have analytical
solution and numerical integration or Monte Carlo method has to be used for calculation.

Next, we look at the Chabaane-Laurent-Salomon model as discussed in section 2.2. For
the two factor model, loss 1s no longer a monotonic function and calculation is more
complicated. In the special case y = 0, Hillebrand [11] proposed an estimation method
and it was used in Barco [3] for the two systematic factor case. Here we will confine to
the special case of a single systematic factor when 77 =1, which is the Pykhtin case. The
conditional cumulative LGD distribution is

(41)

P(L<lt<i|Z=2)= q){q)_ (F,()+~/Bz @7 (p)—+/pz '_7J

J1-8 Cofi-p

So the conditional expected loss is

L(2) =Il-d,c1>2[q)_ (F )+ Pz O (p)pz -—yJ

N o l-p
L[ OTF, W) +4fz @7 (p)—pz ]
=P(2)- [@, : -~y |-di (42)
! [ JI=5 Ji=p
:j‘b [CD—I(FR(I’))—\/EZ q)_l(p)_\/zz'y}-dr
RGN Ji-p

So VaR will be
1 -1 -1 -1 -1
VaR(a) = I®2[® (Fu+Jpo (@) ()P0 (@ ;7J dr o (43)
0 1-p vi=p
And expected shortfall is
1 p 1 ~ -1
ES(@) = o @ (.0 (F (.0 A-a)z. ) -dr (44)
0

14



where we have used equation (33) in [14], @, (x,y,z;X) is the 3-variable cumulative
normal distribution and the correlation matrix is

1 K p
.=l K 1 B
Vo B 1

In the special case of the recovery distribution in equation (28), we have

~N1+a? @ (1) + /O (@) D' (p)+Jpd (@) y1-B (45)

VaR(a) = ® : ;
e ’ \/1—ﬂ+a2 Ji=-p 1/1—ﬂ+a2
and
ES(“)=ﬁ-Q%(CD_I(p),(D_l(l—ro),CD_l(l—a);iC) (46)
where
K
1 - p
1+a
s | K 1 A
‘ \/1+a2 1+a’
N L

The correlation matrix can be easily derived by looking at pair-wise correlation through
equation (13).

For our new model, again we assume 7 =1 and the results will be similar to the above
except correlations. The conditional cumulative LGD distribution from equation (21) is

P(R<rr<iZ=2)=®, “DVIZpiNIZ KD (FR(F)),QY (p(t))_‘/zz; ~Dip
Ja-pa-yH+D%p Vi-p  Ju-pa-rH+np
47)

So the conditional expected loss is



Ja-pa-yH+p’p I-p  Ja-pa-yH+Dp
(48)

L(Z)=I®2[—D,/l—pz+ 1=K 07 (Fy(r)) @ (p(t)—+/pz_ _Dyp J'dr
0

So VaR will be

! [D,/l—pd)'(a)+\/1—K2<D1(FR(r)) O (p(1))++/p® " (@) “Dyp J'dr

VaR(a) =@,
0

Ja-pa-yH+D%p I-p a-pa-yH+0p

49)
And expected shortfall is
1 1

ES(a) = o @ (.0 (F (.07 1-a)z, )-dr (50)
0

where

Note that the zero entry in the correlation matrix means there is no correlation between
default and LGD of an obligor, same as what we saw in equation (24).

In the special case of the recovery distribution in equation (28), we have

VaR(@) = © V1=K V1+a* 07 (1) + D1 - p®~' (@) ©7'(p)++/p® () -Dyp ]
1 Ja-pa-H+ppraa-ky - Jl-p Ja-pU-y)+ D pra’d-K?)
(5D
and
1 _ _ B ~
ES(a)=E-<D3(CD (P @ 1= 1), (- a): S, ) (52)
where
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1 0 Jp

$,=| 0 I Dvi-p
' NEVENS

\/; D\1-p !
Vi+a’1-K?

In the limit a — oo, the recovery distribution converges to the constant case, which is just
the original Basel II formulation with no correlation between default and LGD:

VaR

o |
vﬂsicek(a)=LGD-q)[q) (1’)+\/;<D (a)} 53)

Ji-p

and

, [0 (p). @ (1-a)\p)

ESVasicek (a) = LGD '
-«

(54)

where LGD =1-r, is the expected loss given default of each obligor. This limit can also
be obtained if K =0, which is equivalentto =0 and y =0.

The downturn LGD (DLGD) for a general LGD model is defined as (see [3])

VaR(a) (55)
(D(CD‘(p) +/po™ (a)}

l-p

DLGD(xx) =

which will be 1 for the Vasicek model, and may be greater than 1 for correlated models
with more tail risk. We will study this phenomenon in the next section.

5. Numeric Examples

We present some numerical examples here to compare downturn LGD in our model with
those of other models. The confidence level is set at & =99.9% . Below is a table
showing the ratio between downturn LGD and expected LGD = 1-r, under various
parameter combinations (any parameter change is colored in yellow). The ratio is
equivalent to the ratio between VaR of the correlated model and VaR of the Vasicek
model.
DLGD(«x)  VaR(«)

LGD VaR, ;... ()

ratio =
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0 a |P |p s Y Tasche | Chabaane | Ours
40% | 10 | 1% | 15% | 15% 25% | 101.9% 110.0% | 104.0%
1 112.3% 154.4% | 127.0%
0.1 116.1% 163.3% | 136.7%
40% | 10 | 5% | 15% | 15% 25% | 102.6% 109.2% | 104.4%
1 116.7% 151.9% | 129.3%
0.1 121.7% 161.8% | 139.5%
40% | 10 | 1% | 50% | 15% 25% | 103.2% 108.9% | 101.2%
1 120.9% 150.9% | 108.5%
0.1 127.4% 161.1% | 111.9%
40% | 10 | 1% | 15% | 50% 25% | 101.9% 115.4% | 109.0%
1 112.3% 165.1% | 153.4%
0.1 116.1% 166.7% | 164.1%
40% | 10 | 1% | 15% | 15% 50% | 101.9% 112.4% | 103.0%
1 112.3% 160.8% | 120.8%
0.1 116.1% 166.1% | 128.7%
70% | 10 | 1% | 15% | 15% 25% | 103.5% 119.0% | 107.3%
1 127.5% 245.4% | 155.8%
0.1 139.6% 293.5% | 180.7%
40% | 10 | 1% | 50% | 15% 50% | 103.2% 110.2% | 99.4%
1 120.9% 156.0% 95.4%
0.1 127.4% 164.6% | 93.6%

From the table we can see the following features:

—

The ratio generally increases with recovery volatility (decreasing with a) ;

The ratio generally increases with default probability ( p ) for the Tasche model
and our model, but decreases for the Chabaane-Laurent-Salomon model, which is
related to the problem discussed in section 2.2;

The ratio generally increases with default correlation ( p ) for the Tasche model,
but decreases for the Chabaane-Laurent-Salomon model and our model;

The ratio generally increases with S, however the Tasche model does not depend
on f;

The ratio increases with y for the Chabaane-Laurent-Salomon model, but
decreases with y for our model. The Tasche model does not depend on y ;

The ratio generally increases with the mean recovery 7, but the actual mean

recovery for the Chabaane-Laurent-Salomon model may be smaller, which leads
to a higher ratio;

The ratio is less than 100% for our model in case D < 0 which leads to negative
correlation between default and LGD and is against economic evidence, in this
case, the ratio is decreasing with recovery volatility (increasing with a);

In general, the Chabaane-Laurent-Salomon model has the highest ratio, the
Tasche model has lower ratio, and our model has more flexible behavior;
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6. Conclusion

In this paper, we present a new model framework for the quantification of downturn LGD
in the Basel II capital requirement. We show the problems with previous approaches
which are avoided in our new model of stochastic spot recovery in a default time copula
framework. We also give the large homogeneous pool limit and derive analytic formula
for VaR and expected shortfall given a specific form of recovery distribution. The
downturn LGD in the new model is compared with previous models with numerical
examples.

Further research is required to connect the model with economic data to verify the
soundness of the model and to make robust estimation of model parameters.
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