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Abstract 

 
Basel II suggests that banks estimate downturn loss given default (DLGD) in capital 
requirement calculation. There have been studies that focused on the dependence of 
default rates and loss given defaults through economic cycles. However, the models 
proposed are still not satisfactory. In this paper, we propose a new model framework 
based on our recent work of stochastic spot recovery for Gaussian copula. We also 

compare our model with the previous approaches. 

 

 

1. Introduction 
 
Evidence from historic data suggests that recovery rates on corporate defaults tend to go 
down when default rates go up in an economic downturn [1]. This phenomenon leads the 
BIS to suggest banks estimate downturn loss given default (DLGD) for capital 
requirement calculation [4, 5]. The main reason for this requirement is that the Vasicek 
model [20] used in the Basel Accord does not have systematic correlation between 
probability of default (PD) and loss given default (LGD), which would underestimate 
downturn risk.  
 
There have been several attempts to model the dependence between PD and LGD, see for 
example [2, 3, 7, 8, 9, 10, 11, 16, 17, 18, 19, 21]. All these approaches model the period 
loss given default by assuming it is driven by a latent variable that is correlated with the 
latent variable driving default. This kind of approach has some drawbacks, as will be 
discussed in section 2 of the current paper. The key point is that the relationship between 
expected loss and probability of default may produce results not supported by economic 
evidence or intuition. Similar problems in CDO pricing with stochastic recovery have 
lead to the direct modeling of spot recovery (or recovery upon default) to avoid the 
problems [6, 14]. The purpose of this paper is to use our recently proposed stochastic spot 
recovery model for Gaussian copula to build a consistent downturn LGD model for Basel 
II capital calculation. 
 
The paper is organized as follows. In section 2, we discuss the Tasche model [20] and 
other factor models [7] and show that they may have features not supported by economic 
evidence. In section 3, we present our stochastic spot recovery model using the two factor 
setup for a homogeneous portfolio discussed in [7]. We also derive the Gaussian copula 
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that correlates both default time and recovery rate. A special form of recovery 
distribution is presented to be used in capital calculation. In section 4, we derive the large 
homogeneous pool limit for the Tasche model, the Chabaane-Laurent-Salomon model 
and our spot recovery model in the single factor case. Then we show how VaR and 
expected shortfall can be calculated and define the downturn LGD for all these models. 
In section 5, we give numerical examples to compare the downturn LGD in these models. 
Section 6 concludes the paper. 
 
 

2. Problems with current LGD factor models 
 
The models proposed for downturn LGD are mostly factor models except that of Giese 
[10], where the conditional expected LGD was specified to have non-linear dependence 
structure on the conditional PD. There are two types of factor models. The Tasche model 
[19] assumes the same latent variable drives both default and loss give default so that the 
latent variable is actually driving the unconditional loss, see also our discussion in [13]. 
All other models assume a correlated latent variable drives the loss given default, where 
the difference is in the number of systematic or idiosyncratic factors. Frye [9] uses a 
single systematic factor with an independent idiosyncratic factor to drive the loss given 
default. Pykhtin [17] also uses a single systematic factor but with an idiosyncratic factor 
that is correlated with the idiosyncratic factor driving default. Barco [3] assumes two 
systematic factors but no idiosyncratic factor. Chabaane, Laurent and Salomon [7] 
discusses a more general factor correlation structure which is equivalent to two correlated 
systematic factors and two correlated idiosyncratic factors. The two types of models both 
have problem with the relationship between expected loss and probability of default, 
which has been touched on in our previous paper [13] and will be discussed below. We 
will see in section 3 the problem can be solved in a stochastic spot recovery model. 
 

2.1. The Tasche Model 
 
First we discuss the Tasche model [19] following our previous work [13]. Let L  be the 
unconditional loss before time  as a percentage of the total exposure to an obligor. Then t

L  will be zero with probability p−1  when the obligor is not in default before time t . L  

may take positive values with probability p  when the obligor defaults before time t . 

Formally, the cumulative distribution function  of LF L  has the following general form 

(see Tasche [19]) 
 

  )(1)()( lFpplLPlF DL ⋅+−=≤=   for ]1,0[∈l   (1) 

 

where )()( tlLPlFD ≤≤= τ  is the cumulative distribution of loss given default and τ  is 

the default time random variable. We will not make the assumption of hard default where 

obligor default is equivalent to loss greater than zero. So  is possible in the 

current framework. Define the generalized inverse or quantile function  of  as 

0)0( >DF
1−

LF LF
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})(:]1,0[min{)(1
ylFlyF LL ≥∈=−   for ]1,0[∈y   (2) 

 

Assume default of an obligor is determined by the latent variable ερρ −+= 1ZV  

through a default threshold , where )(1
pv

−Φ= Z  and ε  are independent standard 

normal random variables , )1,0(~ N Z  is the systematic factor and )(xΦ  is the standard 

cumulative normal distribution function. Then we can model the dependence of loss and 
default by defining  
 

         (3) ))((1
VFL L −Φ= −

 
where the negative sign is meant to introduce a negative correlation between loss and 
asset value represented by the latent variable. Note that this definition will not change the 

distribution of L , which is still . LF

 
Conditional on zZ = , the probability of default is  
 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−Φ
Φ==Φ≤=

−
−

ρ
ρ

1

)(
)|)(()(

1
1 zp

zZpVPzP    (4) 

 
The conditional cumulative loss distribution is 
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The last line in the above equation is just the definition of loss given default conditional 
on . So z
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The conditional expected loss is 
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Next we compare the change in conditional expected loss and the change in conditional 
probability of default induced by an infinitesimal change in marginal probability of 
default : p
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It is obvious that, when −∞→z , the above ratio will go to ∞+ . This means that, when 

 is sufficient negative, conditional expected loss will increase at a much higher speed 
than that of conditional PD. This does not make sense since PD is equivalent to 100% 
loss and will always dominant expected loss such that the ratio should never exceed one. 
The other argument against the model is that, since default and recovery are driven by the 
same latent variable, the model is too restrictive and may not be able to calibrate to 
economic data. 

z

 
 

2.2. Other LGD Factor Models 
 
Chabaane, Laurent and Salomon [7] discussed the general factor structure for the 
underlying latent variables driving default and recovery under the assumption of a 
homogeneous credit portfolio. This general structure covers the models of Frye [9], 
Pykhtin [17] and Barco [3]. We will use their setup to discuss the problem with this type 
of models. 
 

Again, we assume ερρ −+= 1ZV  drives the default of an obligor. The latent 

variable driving LGD has the following form 
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where Z ,  are independent systematic factors and rZ ε , ξ  are independent idiosyncratic 

factors. Loss given default is defined as . Conditional on ))((1
WFL D −Φ= −

Z  and , 

default and loss will be independent between obligors, although they are still correlated 
through the idiosyncratic factors for each obligor. The conditional cumulative loss given 
default distribution will be 

rZ
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where );,(2 ρyxΦ  is the cumulative bivariate normal distribution with correlation ρ .  

 
So 
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such that, after integration over  and , z rz
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where )1)(1( βργρβη −−+=K  is the correlation between V  and W . We have 

used the following formula in the integration, see Appendix in [13], 
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So the marginal loss given default distribution is 
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Note that the marginal loss given default distribution  is different from  unless the 

correlation term in the above formula is zero. The correlation term is always negative, 

which make sense since increase in  means decrease in the expected LGD. However, 

when marginal probability of default  increases, will always increase which leads 

to the decrease of the expected LGD. This is counter-intuitive and is not supported by any 
economic evidence. So this kind of models has an unwelcome side-effect. Besides, the 
distribution of marginal LGD and the expected LGD will depend on PD and correlation, 
which makes the model calibration more complicated. 

M

DF DF

DF

p
M

DF

 
 

3. Stochastic Recovery in the Default Time Copula Framework 
 
The problems of the previous section can be solved through a stochastic spot recovery 
model in a default time copula framework. The term structure of default probability curve 
means that PD is always increasing with time. So the problem with the Tasche model is 
equivalent to an unlimited conditional spot LGD or negative conditional spot recovery, 
see [13]. The way to solve it would be to model the spot LGD or spot recovery directly to 
make sure it is in proper range. Meanwhile, the Tasche model preserves the marginal loss 
distribution, which is a problem for other factor models. So we hope this is also preserved 
in the spot recovery model, which is indeed the case [14]. Here we generalize our one-
factor Gaussian model of spot recovery [14, 15] to two systematic factors with correlation 
between idiosyncratic variables. We will follow the factor structure of Chabaane, Laurent 
and Salomon [7] for a homogeneous credit portfolio. It is straight forward to extend the 
model to multi-factor or non-Gaussian copula cases. 
  
In the default time copula framework of D. Li [12], the joint distribution of default times 
is determined by the marginal default time distributions (given by default probability 
curve) and the default time copula. In the Gaussian Copula setup, the latent 

variable ii ZV ερρ −+= 1  drives the default of obligor i  of a homogeneous credit 

portfolio. The default event can be characterized by , where ti ≤τ1 ))((1
tpvVi ≤

−Φ= iτ  is 

the default time random variable,  is the cumulative default probability of the obligor 

. We define the default time random variable 

)(tp

i iτ  as 
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We assume that the stochastic spot recovery is driven by the latent variable  

)1(1)1( 22
iiri ZZW ξγγεβηηβ −+−+−+=  through a time-independent 

cumulative distribution function . )(rFR

 

Conditional on ti =τ  or ,   follows a normal distribution with mean 

 and standard deviation 
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ensure that  is indeed the marginal cumulative distribution for the spot recovery 

upon default at time t , we define  

)(rFR
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where )1()1( βργρβη −−−=D . If 0=D , then  is linear in . We may require 

 such that, when  increases, the conditional cumulative distribution decreases and 
conditional expected recovery will increase. Conditional on the systematic factor 

iW iV

0>D z

Z , 
obligor defaults are independent and the conditional default probability for each obligor 
is given by 
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Now we can derive the distribution for conditional period recovery rate defined as 
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The unconditional period recovery distribution can be calculated using equation (13) as 
follows 
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So the marginal distribution of period recovery rate is the same as the marginal 
distribution of spot recovery rate and is time-independent. Note that, in a dynamic model, 

the spot recovery distribution  could be time dependent, then the integration in 

equation (20) would be more complicated. 
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Consider two obligors with correlated default and recovery rate, here we derive the 

copula of default time and recovery rate. Conditional on Z  and , the default and 
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Integrating over  and , we will have the copula as  z rz
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where  is the 4-variable cumulative normal distribution and the correlation matrix is 

defined as 
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This can be proven through the following result 
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If we define  
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where ε , 1ε , 2ε , ξ , 1ξ , 2ξ , Z ,  are independent standard normal random variables, 

then 
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which leads to the equation (25). 
 
Equation (24) can be compared with the standard Gaussian copula of default times with 
fixed recovery 
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Note that, in equation (24), default and recovery of an obligor are not correlated, this is 
because recovery is always conditional on default. The copula for default and recovery is 
still Gaussian. However, the correlation matrix can not be generated by a simple one-
factor model. Equation (24) can be easily extended to more than two obligors, multi-
factors and other types of copulas. 
 
For capital calculation, we need the conditional expected loss for each obligor before 
time t   
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For numeric purpose, we consider the recovery distribution discussed in [14], which is 
similar to the beta distribution as shown in the Figure below.  
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It has the following form 
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or, for the density function, 
 

   
))((

))(1)((
)(

1

0
121

r

rara
arf R −

−−

Φ
Φ+−Φ⋅

⋅=
φ

φ
   (29) 

 
where  and 0≥a 10 0 ≤≤ r . This distribution will simplify calculation for Gaussian 

Copula model. The expected recovery rate is  and the variance of recovery rate is 0r
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When  goes to zero, the variance goes to the maximum value a )1( 00 rr − , which 

corresponds to the case where R  takes the extreme value 0 or 1. When  goes to infinity, 
the variance goes to zero and the distribution reduces to a constant recovery . 

a

0r

 
The original spot recovery equation (16) can be written as  
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Then we have 
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The expected conditional spot recovery is 
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The expected conditional loss up to time  is t
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Conditional on Z  and , the expected recovery rate will be time-dependent through 

. 
rZ

)(tp

 
 

4. Large Homogeneous Pool Limit and Downturn LGD 
 
In the Basel II capital requirement calculation, the portfolio is normally assumed to be 
fully granular which corresponds to the large homogeneous pool (LHP) limit. We look at 
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the LHP limit for the Tasche model, the Chabaane-Laurent-Salomon model and our spot 
recovery model and compare them to the standard Vasicek model. 
 
In all these models, conditional on the systematic factors, loss of each obligor is 
independent. So in the LHP limit, the portfolio loss equals to the expected loss of each 
obligor conditional on the systematic factors,  or . )(ZL ),( rZZL

 
In the Tasche model, the conditional expected loss is shown in equation (7). We will use 
the distribution in equation (28) as an example for calculation purpose. Since RL −= 1 , 
we have 
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where . So the conditional expected loss is rl −=1
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The portfolio loss in the LHP limit is )(ZLL p = . The portfolio loss distribution can be 

calculated as 
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where the negative sign is because  is a monotonically decreasing function of . 

Equivalently, we have . This gives an easy way to calculate VaR as 
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where α  is the confidence level. Specifically, for the Tasche model, we have 
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The expected shortfall can be calculated as 
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For the recovery distribution (28), the VaR and expected shortfall do not have analytical 
solution and numerical integration or Monte Carlo method has to be used for calculation. 
 
Next, we look at the Chabaane-Laurent-Salomon model as discussed in section 2.2. For 
the two factor model, loss is no longer a monotonic function and calculation is more 
complicated. In the special case 0=γ , Hillebrand [11] proposed an estimation method 

and it was used in Barco [3] for the two systematic factor case. Here we will confine to 
the special case of a single systematic factor when 1=η , which is the Pykhtin case. The 

conditional cumulative LGD distribution is 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

−Φ

−

+Φ
Φ==≤≤

−−

γ
ρ

ρ
β

β
τ ;

1

)(
,

1

))((
),(

11

2

zpzlF
zZtlLP D   (41) 

 
So the conditional expected loss is 
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So VaR will be 
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And expected shortfall is 
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where we have used equation (33) in [14], );,,(3 ΣΦ zyx  is the 3-variable cumulative 

normal distribution and the correlation matrix is 
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In the special case of the recovery distribution in equation (28), we have 
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The correlation matrix can be easily derived by looking at pair-wise correlation through 
equation (13). 
 
For our new model, again we assume 1=η  and the results will be similar to the above 

except correlations. The conditional cumulative LGD distribution from equation (21) is 
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So the conditional expected loss is 
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So VaR will be 
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And expected shortfall is 
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Note that the zero entry in the correlation matrix means there is no correlation between 
default and LGD of an obligor, same as what we saw in equation (24). 
 
In the special case of the recovery distribution in equation (28), we have 
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In the limit , the recovery distribution converges to the constant case, which is just 
the original Basel II formulation with no correlation between default and LGD: 

∞→a
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where  is the expected loss given default of each obligor. This limit can also 

be obtained if , which is equivalent to 
01 rLGD −=
0=K 0=β  and 0=γ . 

 
The downturn LGD (DLGD) for a general LGD model is defined as (see [3]) 
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which will be 1 for the Vasicek model, and may be greater than 1 for correlated models 
with more tail risk. We will study this phenomenon in the next section. 
 
 

5. Numeric Examples 
 
We present some numerical examples here to compare downturn LGD in our model with 
those of other models. The confidence level is set at %9.99=α . Below is a table 
showing the ratio between downturn LGD and expected 01 rLGD −=  under various 

parameter combinations (any parameter change is colored in yellow). The ratio is 
equivalent to the ratio between VaR of the correlated model and VaR of the Vasicek 
model. 
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0r  a  p  ρ  β  γ  Tasche Chabaane Ours 

40% 10 1% 15% 15% 25% 101.9% 110.0% 104.0% 

  1         112.3% 154.4% 127.0% 

  0.1         116.1% 163.3% 136.7% 

40% 10 5% 15% 15% 25% 102.6% 109.2% 104.4% 

  1         116.7% 151.9% 129.3% 

  0.1         121.7% 161.8% 139.5% 

40% 10 1% 50% 15% 25% 103.2% 108.9% 101.2% 

  1         120.9% 150.9% 108.5% 

  0.1         127.4% 161.1% 111.9% 

40% 10 1% 15% 50% 25% 101.9% 115.4% 109.0% 

  1         112.3% 165.1% 153.4% 

  0.1         116.1% 166.7% 164.1% 

40% 10 1% 15% 15% 50% 101.9% 112.4% 103.0% 

  1         112.3% 160.8% 120.8% 

  0.1         116.1% 166.1% 128.7% 

70% 10 1% 15% 15% 25% 103.5% 119.0% 107.3% 

  1         127.5% 245.4% 155.8% 

  0.1         139.6% 293.5% 180.7% 

40% 10 1% 50% 15% 50% 103.2% 110.2% 99.4% 

  1         120.9% 156.0% 95.4% 

  0.1         127.4% 164.6% 93.6% 

 
 
From the table we can see the following features: 
 

1. The ratio generally increases with recovery volatility (decreasing with a ) ; 
2. The ratio generally increases with default probability ( p ) for the Tasche model 

and our model, but decreases for the Chabaane-Laurent-Salomon model, which is 
related to the problem discussed in section 2.2; 

3. The ratio generally increases with default correlation ( ρ ) for the Tasche model, 

but decreases for the Chabaane-Laurent-Salomon model and our model; 
4. The ratio generally increases with β , however the Tasche model does not depend 

on β ; 

5. The ratio increases with γ  for the Chabaane-Laurent-Salomon model, but 

decreases with γ  for our model. The Tasche model does not depend on γ ; 

6. The ratio generally increases with the mean recovery 0r , but the actual mean 

recovery for the Chabaane-Laurent-Salomon model may be smaller, which leads 
to a higher ratio; 

7. The ratio is less than 100% for our model in case 0<D  which leads to negative 
correlation between default and LGD  and is against economic evidence, in this 
case, the ratio is decreasing with recovery volatility (increasing with a ); 

8. In general, the Chabaane-Laurent-Salomon model has the highest ratio, the 
Tasche model has lower ratio, and our model has more flexible behavior; 
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6. Conclusion 
 
In this paper, we present a new model framework for the quantification of downturn LGD 
in the Basel II capital requirement. We show the problems with previous approaches 
which are avoided in our new model of stochastic spot recovery in a default time copula 
framework. We also give the large homogeneous pool limit and derive analytic formula 
for VaR and expected shortfall given a specific form of recovery distribution. The 
downturn LGD in the new model is compared with previous models with numerical 
examples.  
 
Further research is required to connect the model with economic data to verify the 
soundness of the model and to make robust estimation of model parameters. 
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