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Abstract

Efficient GMM estimation of the semi-strong GARCH(1,1) model requires simultaneous

estimation of the conditional third and fourth moments. This paper proposes a simple alter-

native to efficient GMM based upon the unconditional skewness of residuals and the autoco-

variances of squared residuals. An advantage of this simple alternative is that neither the third

nor the fourth conditional moment needs to be estimated. A second advantage is that linear

estimators apply to all of the parameters in the model, making estimation straightforward in

practice. The proposed estimators are IV-like with potentially many instruments. Sequential

estimation involves TSLS in a first step followed by linear GMM. Simultaneous estimation

involves either two-step GMM or CUE. A Monte Carlo study of the proposed estimators is

included.
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1. Introduction

Despite a plethora of alternative volatility models intended to capture certain "stylized facts" of

financial time series, the standard GARCH(1,1) model of Bollerslev (1986) remains the workhorse

of conditional heteroskedasticity (CH) modeling in financial economics. By far, the most common

estimator for this model is QML. While in an IV context, efficient GMM estimation is also possi-

ble, the instruments required are nonlinear functions of the third and fourth conditional moments

as well as derivatives of the conditional variance function. This paper develops simple GMM es-

timators for the GARCH(1,1) model also with an IV interpretation, but where the instruments are

only a small (relative to the sample size) collection of past residuals and squared residuals. The

advantage of these simple estimators over efficient GMM is that the conditional third and fourth

moments do not need to be estimated. The advantage over QML is that estimation of the ARCH

and GARCH parameters can be conducted with linear estimators.

Weiss (1986) first demonstrates the CAN properties of the QMLE for ARCH models. Lums-

daine (1996) relaxes some of the conditions from Weiss in her study of the GARCH(1,1) model,

but continues to assume that the model’s standardized residuals are iid. It is well known that fi-

nancial return data often exhibit non-zero skewness and excess kurtosis. Works by such authors

as Hansen (1994) and Harvey and Siddique (1999, 2000), find this skewness and kurtosis to be

time-varying. These findings do not square with the notion that conditional dependence be rele-

gated to the first two moments. While Bollerslev and Wooldridge (1992), Lee and Hansen (1994),

and Escanciano (2009) investigate the CAN properties of the QMLE minus the need for iid inno-

vations (i.e., they study the asymptotic properties of the QML estimator for semi-strong GARCH

processes; see Drost and Nijman 1993 for a definition), this estimator does not utilize any of the

information contained in the higher moments.

As recognized by Bollerslev and Wooldridge (1992), the "results of Chamberlain (1982), Hansen

(1982), White (1982), and Cragg (1983) can be extended to produce an instrumental variables es-

timator asymptotically more efficient than QMLE under nonnormality" (p. 5-6). Skoglund (2001)

demonstrates this claim for the strong GARCH(1,1) model. The drawback of such an approach to

semi-strong GARCH(1,1) estimation is the need to either parameterize or treat nonparametrically

the conditional third and fourth moments. Weis (1986), Rich, Raymond and Butler (1991), and

Guo and Phillips (2001) discuss GMM estimation of the ARCH(p) model given the existence of a

finite fourth moment. Their results have the advantage of not requiring treatment of the third and

fourth moment dynamics. However, their results do not extend to the GARCH(1,1) case because

the autocovariances of squared residuals do not separately identify the ARCH and GARCH terms.

This paper uses cross-moment covariances and squared residual autocovariances to identify the

GARCH(1,1) model. The key to identification is nonzero skewness of the residuals. Consistency
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of the resulting estimator, therefore, only requires a finite third moment. Two-stage least squares

can be used to estimate the ARCH parameter. Conditional on this estimate, the GARCH parameter

can then be retrieved with linear GMM.

The remainder of this paper is organized as follows. Section 1.1 briefly discusses how the

testing of a common model for pricing risky assets would benefit from the estimators proposed

in this paper. Section 2 outlines the model’s assumptions, states two lemmas that define a set of

moment conditions and proposes a GMM estimator based upon these moment conditions. Section

3 establishes consistency of this estimator and a multi-step approach comprised entirely of linear

estimators. A generalized IV-estimator for the ARCH(1) model is also proposed, and a method for

calculating standard errors and conducting specification testing is discussed. Section 4 summarizes

the results from Monte Carlo studies of the proposed estimators. Section 5 concludes.

1.1 A Conditional Asset Pricing Model

For the sequence
{(
ri,t, rm,t

)
, i = 1, . . . , N ; t = 1, . . . , T

}
, let ri,t and rm,t be the return on

the ith risky asset and the return on the market for all risky assets, respectively, measured in excess

of an observable risk free rate. Let Jt−1 be the set of information observable to the econometrician

at time t− 1. Consider the following model for risky assets:

ri,t =
E
[
ui,tum,t | Jt−1

]

E
[
u2m,t | Jt−1

] E
[
rm,t | Jt−1

]
+ ui,t (1)

rm,t = E
[
rm,t | Jt−1

]
+ um,t

where ui,t and um,t are both mean zero residuals conditional on Jt−1. Since cov
[
ri,t, rm,t | Jt−1

]
=

E
[
ui,tum,t | Jt−1

]
, and var

[
rm,t | Jt−1

]
= E

[
u2m,t | Jt−1

]
, (1) is a statement of the conditional

CAPM, where the conditional risk premium for the ith asset is a function of its conditional beta

and the conditional risk premium for the market. A large literature centers around testing various

specifications of (1).

Estimation of (1) requires specification of the conditional momentsE
[
rm,t | Jt−1

]
,E
[
ui,tum,t | Jt−1

]
,

and E
[
u2m,t | Jt−1

]
. Usually, E

[
rm,t | Jt−1

]
= X ′

t−1δ, where Xt−1 is a vector of supposed fore-

casting instruments for risky assets. Mark (1988) and Bodurtha and Mark (1991) specifyE
[
ui,tum,t | Jt−1

]

and E
[
u2m,t | Jt−1

]
as low order ARCH processes. As a result, the system in (1) can be estimated

by GMM using Xt−1 and a collection of lagged squared residuals and cross-products of residuals

Zt−1 as instruments. Given the estimators developed in this paper, E
[
u2m,t | Jt−1

]
can be gen-

eralized to a GARCH(1,1) process and the system can be estimated in the same way by simply

supplementing Zt−1 with lags of the residuals. Moreover, if E
[
u2i,t | Jt−1

]
is also considered to
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be GARCH(1,1), then so too can E
[
ui,tum,t | Jt−1

]
given the method for estimating restricted bi-

variate diagonal GARCH(1,1) processes discussed in Prono (2006). Such generalizations seem

advantageous for characterizing the time variation in conditional betas, since the GARCH(1,1)

specification tends to dominate its ARCH(1) counterpart in terms of in-sample fit and out-of-

sample forecasting power (see, e.g., Hansen and Lunde 2005), and since the performance of (1) is

often characterized in terms of a test of the overidentifying restrictions from the GMM objective

function.

2. The Model, Assumptions, and Estimation

For the sequence {Yt, t ∈ Z}, define Ψt−1 as the σ-field generated by
{
Yt−1, Yt−2, . . .

}
. Con-

sider the model

E
[
Yt | Ψt−1

]
= 0, E

[
Y 2t | Ψt−1

]
= ht (2)

where

ht = ω0 + α0Y
2
t−1 + β0ht−1. (3)

In what follows, ω0 denotes the true value, ω any one of a set of possible values, and ω̂ an estimate.

Parallel distinctions hold for all other parameter values. The model of (2) and (3) defines the

semi-strong GARCH process of Drost and Nijman (1993). The usual assumptions regarding this

model’s standardized residuals (i.e., that they originate from some known parametric distribution

and that they are iid) are not made.

Let σ20 =
ω
0

1−(α
0
+β

0
)
, and define θ0 = (σ

2
0, α0, β0)

′. The usual parameter vector considered for

the GARCH(1,1) model is ϑ0 = (ω0, α0, β0)
′. Consideration of θ0, instead, has the advantage

of guaranteeing that the unconditional variance implied by the model equals the sample variance.

Such a feature is particularly attractive in the current context since moments-based estimators of

(3) are being considered. The VTE method of Engle and Mezrich (1996), the asymptotic properties

of which are developed by Francq, Horath, and Zakoian (2009), replies upon a similar reparame-

terization. Retrieval of ω̂ is straightforward given θ̂.

ASSUMPTION A1: The true parameter vector θ0 ∈ Θ ⊆ <3 is in the interior of Θ, a compact

parameter space. For any θ ∈ Θ, there exists a ∂ ∈ (0, 1
2
) such that ∂ ≤ ω ≤ W ,

∂ ≤ α ≤ 1− ∂, and 0 ≤ β ≤ 1− ∂, where ∂ and W are given a priori.
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The restrictions on θ ensure that ht is everywhere strictly positive and that α + β < 1. As

a consequence, {Yt} is covariance stationary following Theorem 1 of Bollerslev (1986), with

E [Y 2t ] = σ20. From Lumsdaine (1996), α is strictly positive because if α = 0, then ht is com-

pletely deterministic, in which case ω0 and β0 are not separately identified. Since β ≥ 0, A1 nests

the ARCH(1) model.

The mean-adjusted form of (3) is

h̃t = α0Ỹ
2
t−1 + β0h̃t−1, (4)

where h̃t = ht − σ20 and Ỹ 2t = Y
2
t − σ20. An implication of (4) is that

Ỹ 2t = h̃t +Wt, (5)

where E
[
Wt | Ψt−1

]
= 0. Guo and Phillips (2001) consider an analogous specification to (5) in

their development of an efficient IV estimator for the ARCH(p) model. Recursively substituting

h̃t−τ into (4) for τ ≥ 1 produces

h̃t =
t−1∑
i=0

α0β
i
0Ỹ

2
t−1−i + β

t
0h̃0, (6)

for some arbitrary constant h̃0. Using (6) to solve (5) forward from t = 1 setting Ỹ 20 = 0 produces

Ỹ 2t = Wt + α0
t−1∑
i=1

(α0 + β0)
i−1Wt−i + β0 (α0 + β0)

t−1 h̃0, (7)

which shows that the GARCH(1,1) model relates Ỹ 2t to weighted sum of current and pastWt. The

instruments from Guo and Phillips (2001) are based on weighted sums of innovations similar to

(7). Properties of {Wt} are central in defining simple GMM estimators for (3) and are the subject

of the following two assumptions.

ASSUMPTION A2: (i) E [WtYt] = γ0 6= 0 ∀ t. (ii) The sequence {WtYt − γ0} is an L1

mixingale as defined in Andrews (1988) that is uniformly integrable. (iv) The sequences
{
Wt−lYt−k

}
where k, l = 1, . . . , K and k 6= l are uniformly integrable.
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Given (5) and an application of iterated expectations,

E
[
Y 3t
]
= E

[
Ỹ 2t Yt

]
(8)

= E
[(
h̃t +Wt

)
Yt

]

= E [WtYt]

Given A2(i), therefore, {Yt} is asymmetric with a stationary third moment. Seen through (8),

A2(ii) imposes restrictions on the process governing E
[
Y 3t | Ψt−1

]
. L1 mixingales exhibit weak

temporal dependence that need not decay towards zero at any particular rate and that include certain

infinite order moving average and autoregressive moving average processes. Given the functional

form of (3), allowing the third moment to display similar dynamics seems natural. Moreover,

Harvey and Siddique (1999) present empirical evidence from stock return data that the conditional

third moment is autoregressive. Uniform integrability allows a weak LLN to apply to {WtYt − γ0}
and

{
Wt−lYt−k

}
(See Lemma 3 in the Appendix). A sufficient condition for this result is that the

given sequence be Lp bounded for some p > 1. According to Andrews (1988), however, "it is

preferable to impose the uniform integrability assumption rather than an Lp bounded assumption

because the former allows for more heterogeneity in the higher order moments of the rv’s" (p. 3).

ASSUMPTION A3: (i)E [W 2
t ] = λ0 ∀ t. (ii) The sequences

{
WtWt−k

}
are uniformly integrable.

(iii) The sequence {W 2
t − λ0} is an L1 mixingale that is uniformly integrable.

Suppose

Yt =
√
htεt, (9)

where {εt} is iid with a mean of zero and a unit variance. Then A3(i) is equivalent to assuming

that

(κ+ 1)α20 + 2α0β0 + β
2
0 < 1; κ = E

[
ε4t
]
− 1,

which is the necessary and sufficient condition for establishing existence of the fourth moment

of {Yt} according to Theorem 1 of Zadrozny (2005).2 A3(ii)-(iii) permit a weak LLN to apply

to the sample autocovariances of {Y 2t }. A3(iii) assumes that the same general type of process

2If {ε
t
} is normally distributed, then this inequality follows from Theorem 2 of Bollerslev (1986).
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that governs the third moment (see A2ii) also governs the fourth. This assumption is supported

empirically by the results of Hansen (1994).

LEMMA 1. Let Assumptions A1 and A2(i) hold for the model of (2) and (3). Then

E
[
Ỹ 2t Yt−1

]
= α0E [WtYt] , (10)

and

E
[
Ỹ 2t Yt−(k+1)

]
= (α0 + β0)E

[
Ỹ 2t Yt−k

]
(11)

for k ≥ 1.

All proofs are given in the Appendix. Lemma 1 relates the covariance between Y 2t and Yt−k to

the third moment of Yt. Lemma 1 of Guo and Phillips (2001) establishes an analogous result for

the ARCH(p) model. From (10), α0 is identified as

α0 = E
[
Ỹ 2t Yt−1

]
/E
[
Y 3t
]
.

Let Z̃t−2 =
[
Ỹ 2t−2 · · · Ỹ 2t−K

]′
. From (11), β0 is then identified as

β0 =

(
E
[
Ỹ 2t Z̃t−1

]′
E
[
Ỹ 2t Z̃t−1

])−1
E
[
Ỹ 2t Z̃t−1

]′
E
[
Ỹ 2t Z̃t−2

]
− α0.

Lemma 1, therefore, provides a moments-based identification condition for the GARCH(1,1)

model.

Newey and Steigerwald (1997) explore the effects of asymmetry on the identification of CH

models using the QML estimator. This paper conducts a similar exploration for the GMM estima-

tor. Newey and Steigerwald (1997) show that given asymmetry, there exist conditions under which

the standard QML estimator for CH models is not identified. In contrast, this paper develops a

simple GMM estimator that is not identified without such asymmetry.

LEMMA 2. Given the model of (2) and (3), {Y 2t } is covariance stationary if and only if A1 and
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A3(i) hold. In this case,

E
[
Ỹ 2t Ỹ

2
t−(k+1)

]
= (α0 + β0)E

[
Ỹ 2t Ỹ

2
t−(k)

]
(12)

for k ≥ 1.

Mark (1988) as well as Rich, Raymond, and Butler (1991) estimate ARCH models from the

autocovariances of squared residuals. Such an approach requires these squared residuals to be co-

variance stationary. Lemma 2 provides necessary and sufficient conditions for this result and is

closely related to Theorem 1 of Hafner (2003). (12) shows that the autocovariances of {Y 2t } iden-

tify the ARCH(1) but not the GARCH(1,1) model. With respect to the latter, these autocovariances

do compliment identification of β0 conditional on the results from Lemma 1.

The moment conditions in (10)–(12) imply that the standard GMM estimator of Hansen (1982)

can be used to obtain θ̂. For the observed data {Yt, t = 1, . . . , T}, letXt−2 =
[
Yt−2 · · ·Yt−K

]′
and

Zt−2 =
[
Y 2t−2 − σ2 · · ·Y 2t−K − σ2

]′
for k ≥ 2. Consider the vector functions

g1 (Y1, . . . , YT ; θ) = Y
2
t − σ2 (13)

g2 (Y1, . . . , YT ; θ) =
(
Y 2t − σ2

)
Yt−1 − αY 3t

g3 (Y1, . . . , YT ; θ) =
(
Y 2t − σ2

) (
Xt−2 − (α + β)Xt−1

)

g4 (Y1, . . . , YT ; θ) =
(
Y 2t − σ2

) (
Zt−2 − (α + β)Zt−1

)

and stack them into a single vector g (·; θ). An estimator for θ can then be defined as

θ̂ = argmin
θ∈Θ

[
T−1

T∑
t=1

g (·; θ)
]′
WT

[
T−1

T∑
t=1

g (·; θ)
]
, (14)

for some sequence of positive definiteWT . The sample moments T−1
T∑
t=1

g2 (·; θ) and T−1
T∑
t=1

g3 (·; θ)
reflect the restrictions imposed by the conditional variance model in (3) on the degree of asymme-

try in {Yt}. Similarly, the sample moments T−1
T∑
t=1

g4 (·; θ) summarize the restrictions of (3) on

the autocovariances of {Y 2t } that, of course, imply restrictions on the fourth moment of {Yt}.
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By utilizing information from the third and fourth moments, (14) relates to the Quadratic M-

Estimators of Meddahi and Renault (1997) and the efficient GMM estimator of Skoglund (2001).3

Given Theorem 4.2 in Meddahi and Renault, (14) can even be efficient conditional on a given

filtration of the information set available at t − 1. For instance, if It−1 is the set of information

available at t − 1, and Jt−1 ⊂ It−1, then if Jt−1 preserves the parametric form of (3) and renders

E
[
Y it | Jt−1

]
constant for i = 3, 4, then (14) would be efficient with respect to the third and

fourth moments. In general, however, the use of the third and fourth moments in (14) will tend

to correspond with some loss of efficiency because these moments will tend to vary with respect

to It−1. This loss of efficiency is less of a concern in this paper as is the construction of simple

estimators for the GARCH(1,1) model, and the inclusion of conditional third and fourth moments

greatly complicates any GMM estimator.

3. A Theorem and Implications

Substitution of (6) into (5) yields

Ỹ 2t = α0Ỹ
2
t−1 +Rt; Rt = Wt + α0

t−1∑

i=1

βi0Ỹ
2
t−1−i + β

t
0h̃0, (15)

a result that is useful for establishing a sequence of linear estimators for θ (See Corollary 1).

THEOREM. For the model of (2) and (3), consider the estimator in (14). Let Assumptions A1–A3

hold, and assume that WT

p→ W0, a positive definite matrix. Then θ̂
p→ θ0.

The Theorem establishes a weakly consistent GMM estimator of the univariate GARCH(1,1)

model that is based on the asymmetry of {Yt} and the autocovariances of {Y 2t }. IfWT = WT

(
θ̃
)

,

where θ̃ is some preliminary consistent estimate of θ0, then (14) is the familiar two-step GMM

estimator. IfWT = WT (θ), then (14) is the CUE of Hansen, Heaton, and Yaron (1996). Depending

on the choice ofK, the number of moment conditions in (14) can be large. While the use of many

moment conditions leads to higher asymptotic efficiency, it can also lead to higher bias in the two-

step GMM estimator (see, e.g., Han and Phillips 2005). The CUE has a relatively smaller bias (see

Newey and Windmeijer 2005).

3First discussed by Hansen (1982), efficient GMM estimation utilizes the optimal choice of instruments from a set

of conditional moment restrictions.
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The Theorem assumes a stationary fourth moment. Works by Weis (1986), Rich, Raymond, and

Butler (1991), and Guo and Phillips (2001) all require fourth moment stationarity for consistency.

As is evident from the proof of the Theorem, consistency still follows if only Assumptions A1-A2

hold and if g (·; θ) is redefined to only include the vector functions g1 (·; θ)−g3 (·; θ). In this case,

third moment stationarity of {Yt} is a necessary condition for both identification and an application

of the LLN. In the event that {Yt} is fourth moment stationary, (14) defines a strictly more efficient

estimator than one that omits g4 (·; θ) from g (·; θ). However, the Theorem can still apply in cases

where this fourth moment condition appears violated (see Bollerslev 1986 and Zadrozny 2005).

Let ai be the element from the ith row of a row vector a, and Aij be the element from the ith

row and jth column of a matrix A. Adapting the efficient GMM estimator of Skoglund (2001) to

the model of (2) and (3) produces

ϑ̂ = argmin
ϑ∈Θ

[
T−1

T∑
t=1

f (·; ϑ)
]′
ΛT (ϑ)

[
T−1

T∑
t=1

f (·; ϑ)
]
,

where

fi (·; ϑ) =
1

∆t

(
∂ht
∂ϑi

)
h−1t

[(
Yt

h
1/2
t

)
E
[
Y 3t | Ψt−1

]
−
((

Y 2t
ht

)
− 1
)]
,

∆t =
(
E
[
Y 4t | Ψt−1

]
− 1
)
− E

[
Y 3t | Ψt−1

]2
,

and ΛT (ϑ) =

(
T−1

T∑
t=1

f (·; ϑ) f (·; ϑ)′
)−1

for i = 1, 2, 3. The moments from ϑ̂ depend on both

the third and fourth moment of {Yt} conditional onΨt−1 as well as on derivatives of the conditional

variance function. In contrast, the moments from (14), while implied by the conditional variance

function, do not take this function as an explicit input. In addition, these moments depend on the

third and fourth moments of {Yt} only unconditionally. Therefore, while less efficient than ϑ̂, θ̂ is

much simpler to implement. The following two corollaries further bolster this claim by showing

that estimation of θ̂ is possible through a sequence of linear estimators.

COROLLARY 1. Consider σ̂2 = T−1
T∑
t=1

Y 2t . Let g
(
·; σ̂2, α̂, β

)
=


 g3

(
·; σ̂2, α̂, β

)

g4
(
·; σ̂2, α̂, β

)


,

where g3
(
·; σ̂2, α̂, β

)
and g4

(
·; σ̂2, α̂, β

)
are defined in (13). Let Assumptions A1–A3
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hold for the model of (2) and (3). Consider

α̂ =

(
T∑
t=1

̂̃
Y
2

t−1Yt−1

)−1 T∑
t=1

̂̃
Y
2

tYt−1, (16)

where
̂̃
Y
2

t = Y
2
t − σ̂2, and

β̂ = argmin
β∈Θ

[
T−1

T∑
t=1

g
(
·; σ̂2, α̂, β

)]′
W T

[
T−1

T∑
t=1

g
(
·; σ̂2, α̂, β

)]
(17)

for some sequence of positive definite W T . Assume that W T

p→ W 0, a positive definite

matrix. Then α̂
p→ α0 and β̂

p→ β0. Furthermore, if W T = W T

(
β̃
)

, where β̃ is a consistent

preliminary estimate of β0, then

β̂ =

((
T∑
t=1

̂̃
Y
2

t Ût−1

)′
W T

(
β̃
)( T∑

t=1

̂̃
Y
2

t Ût−1

))−1(
T∑
t=1

̂̃
Y
2

t Ût−1

)′
W T

(
β̃
)( T∑

t=1

̂̃
Y
2

t Ût−2

)
−α̂,

(18)

where Ût−2 =


 Xt−2

Ẑt−2


.

The power of Corollary 1 is the realization that estimation of α0 and β0 can be conducted

separately and that this separation affords a linear estimator for each. (16) is the feasible linear

TSLS estimator of α0 in (15), where Yt−1 serves as the instrument for Ỹ 2t−1. (18) is the solution to

the two-step GMM estimator in (17), also linear. Calculating σ̂2 first, then α̂ by (16) and, finally,

β̂ by (18), permits θ̂ to be obtained without the need for numerical optimization techniques and

consistent starting values. If W T = W T (β), then (17) is no longer linear. However, β̂ can still be

easily obtained via a grid search, thereby avoiding the need to calculate numerical derivatives and

the potential problem of finding local minima.

COROLLARY 2 Consider σ̂2 = T−1
T∑
t=1

Y 2t . Let Assumptions A1–A3 hold for the model of (2)

and (3), and assume that β0 = 0. Consider

α̂ = argmin
α∈Θ

[
T−1

T∑
t=1

(
̂̃
Y
2

t − α
̂̃
Y
2

t−1

)
Ût−1

]′
ΩT

[
T−1

T∑
t=1

(
̂̃
Y
2

t − α
̂̃
Y
2

t−1

)
Ût−1

]
, (19)
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where
̂̃
Y
2

t = Y 2t − σ̂2 and Ût−1 =


 Xt−1

Ẑt−1


 for some sequence of positive definite ΩT .

Assume that ΩT
p→ Ω0, a positive definite matrix. Then α̂

p→ α0. Furthermore, if ΩT =

ΩT (α̃), where α̃ is some consistent preliminary estimate of α, then

α̂ =

((
T∑
t=1

̂̃
Y
2

t−1Ût−1

)′
ΩT (α̃)

(
T∑
t=1

̂̃
Y
2

t−1Ût−1

))−1(
T∑
t=1

̂̃
Y
2

t−1Ût−1

)′
ΩT (α̃)

(
T∑
t=1

̂̃
Y
2

t Ût−1

)
.

(20)

If ΩT = I , then Corollary 2 supports TSLS estimation of (15) using Ut−1 as instruments for

Ỹ 2t−1. (20) nests the OLS estimator of Weis (1986) and the IV estimator of Rich, Raymond, and

Butler (1991) where lags of the squared residuals comprise the instrument vector.4 (20) should

be strictly more efficient than either of these, however, owing to the consideration of the third

moment. (20) is also more general since it does not require fourth moment stationarity for consis-

tency. If ΩT = ΩT (α), then (19) links univariate ARCH estimation to the class of GEL estimators

introduced by Smith (1997).

From Hansen (1982), the optimal GMM weighting matrix is the inverse of the variance-

covariance matrix of the moment conditions. In the context of (14), (17), or (19), however, con-

sistency of this optimal weighting matrix requires {Yt} to be eighth moment stationary. For many

applications in financial economics, this assumption proves overly restrictive. Of course, the iden-

tity matrix supports consistency of the proposed estimators. A question is, therefore, to what extent

can a data dependent weighting matrix improve finite sample efficiency?

For the moment conditions E [g (·; θ0)] where g (·; θ0) = (gi (·; θ0)) for i = 1, . . . , 2K,

the optimal weighting matrix is E
[
g (·; θ0) g (·; θ0)′

]−1
, assuming that {g (·; θ0)} is not auto-

correlated. Preventing the use of this weighting matrix is a concern over the existence of mo-

ments. A natural choice for an alternative weighting matrix would involve a robust analog to

E
[
g (·; θ0) g (·; θ0)′

]
. Towards that end, consider the matrix Wρ (θ0) =

(
wij,ρ (θ0)

)
, where

wij,ρ (θ0) is Spearman’s (1904) rho-statistic measured between gi (·; θ0) and gj (·; θ0). Alterna-

4Corollary 2 is stated in terms of the ARCH(1) model. Extension to the ARCH(p) case, however, is completely

straightforward. Specification of the semi-strong GARCH model in (2) and (3) does not reflect this fact because the

focus of this paper is on standard GMM estimation of univariate GARCH models, and Theorem 1 does not extend to

GARCH(p,q) models where p,q ≥ 1. For a general GARCH(p,q) model, the presence of skewness is not sufficient for

GMM identification. Causing this insufficiency is a lack of suitable instruments.
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tively, one can consider the matrix Wτ (θ0) =
(
wij,τ (θ0)

)
, where wij,τ (θ0) is Kendall’s (1938)

tau-statistic measured between the same moment conditions. Each of these two statistics is a rank

dependent measure of correspondence ranging between -1 and 1. Therefore, Wρ (θ0) or Wτ (θ0)

is a robust correlation matrix since according to Taskinen, Oja, and Randles (2005), even assump-

tions regarding the existence of the first moments of g (·; θ0) are not needed for consistency of

either statistic.

Similar to Weiss (1986) and Rich, Raymond, and Butler (1991), the estimators in the theorem

and corollaries can be shown to be asymptotically normal if {Yt} is eighth moment stationary.

Given the restrictive nature of this assumption, standard errors for θ̂ can alternatively be generated

by the parametric bootstrap. Suppose that the data generating process for {Yt} is characterized by

(2), (3), and (9) where E
[
εt | Ψt−1

]
= 0 and E

[
ε2t | Ψt−1

]
= 1, which is the semi-strong GARCH

model of Lee and Hansen (1994) and Escanciano (2009). Using one of the estimators described

above, obtain ĥt. Then ε̂t = Yt/

√
ĥt. Apply the nonoverlapping block bootstrap method of Carl-

stein (1986) to these standardized residuals to obtain the bootstrap sample ε̂∗t . Use these bootstrap

residuals to construct the series Ŷ ∗t =

√
ĥ∗t ε̂

∗
t , where ĥ∗t depends on the parameter estimates from

the original data sample. Estimate the model of (2) and (3) on Ŷ ∗t , making sure to center the boot-

strap moment conditions with the original parameter estimates as in Hall and Horowitz (1996).

Repetition of this procedure permits the calculation of bootstrap standard errors for θ̂ that are ro-

bust to higher moment dynamics in εt.
5 This same procedure can also be used to bootstrap the

GMM objective function as discussed in Brown and Newey (2002) for a non-parametric test of

overidentifying restrictions that speaks to the fit of the GARCH(1,1) model to the given data under

study.

4. Monte Carlo

Consider the data generating process in (2), (3), and (9), where εt is a standardized Gamma(2,1)

random variable. This DGP is one of strong GARCH. The skewness and kurtosis of εt is 2/
√
2

and 6, respectively. All simulations are conducted across 1,000 trials with sample sizes ranging

from 5,000 to 40,000 observations. In each simulation, the first 200 observations are dropped in

5Escanciano (2009) shows that fourth moment dependence of ε
t

impacts the calculation of standard errors for the

QMLE.
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order to avoid initialization effects. Because of a concern over the existence of moments, summary

statistics for the parameter estimates are robust measures of bias and dispersion. The standard

deviation of the parameter estimates is also reported which, while not a robust measure, gives an

indication of the effects of outliers.

Table 1 summarizes the results from simulations of a GARCH(1,1) model. The values for α0

and β0 are chosen to reflect the low ARCH and high GARCH terms frequently encountered in

empirical studies. Five different estimators are considered: (1) the QMLE of ϑ̂; (2) the CUE of θ̂;

(3) the traditional two-step GMM estimator of θ̂ (GMM); (3) the multi-step estimator of σ̂2 by OLS,

α̂ by TSLS, and β̂ by CUE (OLS/TSLS/CUE)6; (4) the multi-step estimator of σ̂2 by OLS, α̂ by

TSLS, and β̂ by GMM (OLS/TSLS/GMM). The QMLE serves as a benchmark. For the CUE and

GMM estimators, the weighting matrix is the robust correlation matrix formed using Spearman’s-

rho.7 The applications of CUE and GMM setK = 10. This value was chosen because it tended to

minimize the bias-variance trade-off from increasing the lag order of the GMM estimator.

A significant finding is that QMLE does not dominate the simple GMM estimators. As ev-

idenced in Table 1, σ̂ and α̂ have the same biases, smaller median absolute errors, and smaller

decile ranges when estimated with CUE as opposed to QMLE. The dispersion of the CUE can be

heightened relative to comparable estimators as seen, for example, through a comparison of both

the decile ranges and standard deviations of the OLS/TSLS/CUE and OLS/TSLS/GMM estimates.

This finding compliments simulation evidence presented in Hansen, Heaton, and Yaron (1996). Of

the simple GMM estimators, CUE is associated with the smallest biases. This statement is most

apparent for β̂, where GMM and OLS/TSLS/GMM have biases nearly twice as large as CUE and

OLS/TSLS/CUE. Also apparent from β̂ is a tendency for the simple GMM estimators as a group to

display higher biases than QMLE. For the GMM and OLS/TSLS/GMM estimators, these height-

ened biases are particularly acute. However, these biases significantly dissipate with an increasing

sample size as is evidenced by the results in Table 2. Here, small and uniformly decreasing biases

are shown for the OLS/TSLS/GMM estimator. Uniformly decreasing levels of dispersion in the

parameter estimates are evidenced as well. Recall from Corollary 1 that OLS/TSLS/GMM utilizes

6σ̂
2

is obtained from a regression of Y 2
t

on a constant.
7Simulations (not reported here) also considered the robust correlation matrix formed with Kendall’s-tau. Results

for the two weighting matrices were very similar. Since Kendall’s-tau is computationally expensive, Spearman’s-rho

is used instead.
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a linear estimator at each step to obtain θ̂. The results of Table 2, thus, support simple GMM es-

timators as advantageous alternatives for GARCH(1,1) model estimation on very high frequency

data as is commonly analyzed in the market microstructure literature, where studies of intra-daily

returns can involve sample sizes of nearly 100,000 observations (see, e.g., Anderson and Boller-

slev 1997). At relatively lower sample sizes, the results of Table 1 support the use of CUE and

OLS/TSLS/CUE over GMM and the fully linear OLS/TSLS/GMM estimator.

Table 3 summarizes the results from simulations of an ARCH(1) model. Two additional esti-

mators are considered: (1) the two-step estimator of σ̂2 by OLS and α̂ by IV (OLS/IV)8; (2) the

two-step estimator of σ̂2 by OLS and α̂ by OLS (OLS/OLS). This second estimator is studied by

Weis (1986). Of the moment-based estimators, OLS/CUE displays the smallest bias, but it does

not dominate in terms efficiency as measured by the decile range. Moreover, CUE displays the

largest bias of all the estimators of σ̂. OLS/IV is marginally better than OLS/OLS in terms of bias

and dispersion, but there is no noticeable efficiency gain moving from an IV estimator to a GMM

estimator of α̂. This result is odd since other simulations not reported here for the GARCH(1,1)

model showed significant improvements in terms of both bias and dispersion reduction from mov-

ing to a GMM estimator with a data dependent weighting matrix from a GMM estimator with the

identity matrix. Finally, for the ARCH(1) model, QMLE dominates in terms of bias and efficiency.

Tables 4 and 5 summarize the simulation results of an ARCH(1) and GARCH(1,1) model,

neither of which have a finite fourth moment according to the inequality restriction of Zadrozny

(2005).9 For the GARCH(1,1) model, only the QMLE and CUE are considered. For the ARCH(1)

model, OLS/OLS is also considered as a means of judging the finite sample effects of naively ap-

plying an inconsistent estimator. For the GARCH(1,1) model, QMLE once again fails to dominate.

While having a higher bias, σ̂ has a lower median absolute error and decile range when estimated

by the CUE. QMLE does dominate, however, and rather significantly, in estimating α̂ and β̂. For

the ARCH(1) model, the CUE dominates OLS/OLS, but QMLE dominates the CUE.

8IV estimation of α̂ is equivalent to (20) with Ω
T
= I .

9Parameter values are chosen such that this inequality restriction is just violated so as to maximize the likelihood

of a finite third moment.
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5. Conclusion

The main contribution of this paper is to provide simple, weakly consistent, GMM estimators

for the GARCH(1,1) model. These estimators rely on unconditional skewness but do not require

treatment of the third and fourth conditional moments. Moreover, these estimators require less

strict moment existence assumptions then ARCH estimators based upon the autocovariances of

squared residuals. Linear versions of these estimators facilitate GARCH(1,1) estimation on very

high frequency data and on moderately sized (in the time dimension) data sets where many such

models need to be estimated, as is common in portfolio optimization and Value at Risk (VaR)

problems faced by financial industry professionals. Nonlinear versions of these estimators can

outperform QMLE in finite samples. Finally, these estimators compliment conditional asset pric-

ing tests that rely on standard GMM procedures. A question for future research is whether these

simple estimators when applied to intra-day financial return data and aggregated to a lower sam-

pling frequency (say, daily or monthly) using the results of Drost and Nijman (1993) outperform

the QMLE applied at the lower frequency either in terms of bias and efficiency of the parameter

estimates or in terms of out-of-sample fit of the conditional volatility forecasts.
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Appendix

PROOF OF LEMMA 1: Given mean stationarity of {WtYt}, and the result from (8),

E
[
Ỹ 2t Yt−1

]
= E

[(
h̃t +Wt

)
Yt−1

]
(21)

= E
[(
α0Ỹ

2
t−1 + β0h̃t−1

)
Yt−1

]

= α0E [WtYt] .

Since

E
[
Ỹ 2t Yt−2

]
= E

[
h̃tYt−2

]

= α0E
[
Ỹ 2t−1Yt−2

]
+ β0E

[
h̃t−1Yt−2

]

= (α0 + β0)E
[
Ỹ 2t−1Yt−2

]
,

and

E
[
Ỹ 2t−1Yt−2

]
= α0E [WtYt]

given mean stationarity of {WtYt} again, then

E
[
Ỹ 2t Yt−2

]
= α0 (α0 + β0)E [WtYt] .

Repeated applications of recursive substitution into E
[
Ỹ 2t Yt−k

]
reveals that

E
[
Ỹ 2t Yt−k

]
= α0 (α0 + β0)

k−1E [WtYt] . (22)

Solving (22) for k = k + 1 and comparing the result to E
[
Ỹ 2t Yt−k

]
produces (11).�

PROOF OF LEMMA 2: From (5) follows that

E
[
Ỹ 4t

]
= E

[(
h̃t +Wt

)2]
= E

[
h̃2t

]
+ E

[
W 2
t

]
.
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Given (4),

E
[
h̃2t

]
= (α0 + β0)

2E
[
h̃2t−1

]
+ α20λ0. (23)

Recursive substitution into (23) produces

E
[
h̃2t

]
=
(
1 + (α0 + β0)

2 + · · ·+ (α0 + β0)2(τ−1)
)
α20λ0 + (α0 + β0)

2τE
[
h̃2t−τ

]

for τ ≥ 1. It is well known that (α0 + β0)
2τ → 0 as τ → ∞ if and only if α0 + β0 < 1.

Therefore, E
[
h̃2t

]
→
(

α2
0

1−(α
0
+β

0
)2

)
λ0 as τ →∞ if and only if A2 holds. Let E

[
h̃2t

]
= η0.

For k = 1,

E
[
Ỹ 2t Ỹ

2
t−1

]
= E

[
E
[
Ỹ 2t Ỹ

2
t−1 | Ψt−1

]]

= E
[(
α0Ỹ

2
t−1 + β0h̃t−1

)
Ỹ 2t−1

]

= α0λ0 + (α0 + β0)η0

For k ≥ 2,

E
[
h̃t | Ψt−k

]
= α0E

[
Ỹ 2t−1 | Ψt−k

]
+ β0E

[
h̃t−1 | Ψt−k

]

= (α0 + β0)E
[
h̃t−1 | Ψt−k

]

= (α0 + β0)
2E
[
h̃t−2 | Ψt−k

]

...

= (α0 + β0)
τ−1E

[
ht−(k−1) | Ψt−k

]

= (α0 + β0)
τ−1
[
α0Y

2
t−k + β0ht−k

]

and, therefore,

E
[
Ỹ 2t Ỹ

2
t−k

]
= E

[
E
[
Ỹ 2t Ỹ

2
t−k | Ψt−k

]]
(24)

= E
[
E
[
h̃t | Ψt−k

]
Ỹ 2t−k

]

= (α0 + β0)
k−1 [α0λ0 + (α0 + β0)η0] .
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Given (24), E
[
Ỹ 2t Ỹ

2
t−k

]
→ 0 as k → ∞. Solving (24) for k = k + 1 and comparing the

result to E
[
Ỹ 2t Ỹ

2
t−k

]
grants (12).�

LEMMA 3: Given Assumptions A1–A3, the following conditions hold:

CONDITION C1: T−1
T∑
t=1

Yt
p→ 0

CONDITION C2: T−1
T∑
t=1

Y 2t
p→ σ2

CONDITION C3: T−1
T∑
t=1

Wt

p→ 0

CONDITION C4: T−1
T∑
t=1

WtYt
p→ γ0

CONDITION C5: T−1
T∑
t=1

Wt−lYt−k
p→ 0 ∀ k 6= l

CONDITION C6: T−1
T∑
t=1

WtWt−k

p→ 0 ∀ k ≥ 1

CONDITION C7: T−1
T∑
t=1

W 2
t

p→ λ0

CONDITION C8: For a constant C where 0 < C < 1 and a martingale difference sequence

{Zt} that is uniformly integrable, T−1
T∑
t=1

CtZt
p→ 0.

PROOF. Given A1, Yt is covariance stationary. C1 then follows by (2) and the LLN. Given Lemma

2, Y 2t is covariance stationary with E
[
Ỹ 2t Ỹ

2
t−k

]
→ 0 as k → ∞ (see (24)). C2 then also follows

from the LLN. E
[
Wt | Ψt−1

]
= 0 by construction. As a consequence, E

[
WtWt−k

]
= 0 ∀ k ≥ 1.

Given A3(i), Wt is covariance stationary, and C3 follows from the LLN. Given A2(i)-(ii), C4

follows from Theorem 1 of Andrews (1988).
{
Wt−lYt−k

}
and

{
WtWt−k

}
are both martingale

difference sequences. Given A2(iii) and A3(ii), Theorem 1 of Andrews (1988) applies to each

to establish C5 and C6, respectively. A3(i) and A3(iii) allow C7 to follow from Theorem 1 of

Andrews (1988). Lastly, since {Zt} is uniformly integrable, ∃ a c > 0 for every ε > 0 such that

E [|Zt| × I (|Zt| ≥ c)] < ε,
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where I (|Zt| ≥ c) = 1 if |Zt| ≥ c and 0 otherwise. Let Xt = C
tZt. Then

|Xt| =
∣∣Ct
∣∣ |Zt| < |Zt| ,

and

|Xt| × I (|Xt| ≥ c) ≤ |Zt| × I (|Zt| ≥ c) .

As a consequence,

E [|Xt| × I (|Xt| ≥ c)] < ε,

and {Xt} is uniformly integrable. Theorem 1 of Andrews (1988) then establishes C8.

PROOF OF THE THEOREM: By C2,

p lim

(
T−1

T∑
t=1

g1 (·; θ)
)

= σ20 − σ2 (25)

= E [g1 (·; θ)]

Next,

p lim

(
T−1

T∑
t=1

g2 (·; θ)
)
= p lim

(
T−1

T∑
t=1

Y 2t Yt−1

)
− αp lim

(
T−1

T∑
t=1

Y 3t

)

by C1. Given (7),

T−1
T∑
t=1

Y 2t Yt−1 = T−1
T∑
t=1

(
Wt + α0

t−1∑
i=1

(α0 + β0)
i−1Wt−i + β0 (α0 + β0)

t−1 h̃0 + σ
2
0

)
Yt−1

= α0T
−1

T∑
t=1

t−1∑
i=1

(α0 + β0)
i−1Wt−iYt−1 + (3 additional terms)

where the probability limit for each of these additional terms is zero given C1, C5, and C8.
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The term T−1
T∑
t=1

t−1∑
i=1

(α0 + β0)
i−1Wt−iYt−1 =

T−1
T∑
t=1

(
Wt−1 + (α0 + β0)Wt−2 + (α0 + β0)

2Wt−3 + · · ·+ (α0 + β0)t−2W1

)
Yt−1

= T−1
T∑
t=1

Wt−1Yt−1 + (α0 + β0)T
−1

T∑
t=1

Wt−2Yt−1 + (α0 + β0)
2 T−1

T∑
t=1

Wt−3Yt−1 + · · ·

+W1T
−1

T∑
t=1

(α0 + β0)
t−2 Yt−1

By C4, C5, and C8, therefore, p lim

(
T−1

T∑
t=1

Y 2t Yt−1

)
= α0γ0. Furthermore, since T−1

T∑
t=1

Y 3t =

T−1
T∑
t=1

Y 2t Yt, it follows that

p lim

(
T−1

T∑
t=1

g2 (·; θ)
)

= (α0 − α) γ0 (26)

= E [g2 (·; θ)]

Define the kth element of the vector g3 (·; θ) as

g3,k (·; θ) =
(
Y 2t − σ2

) (
Yt−(k+1) − (α + β)Yt−k

)
.

Then,

p lim

(
T−1

T∑
t=1

g3 (·; θ)
)
= p lim

(
T−1

T∑
t=1

Y 2t Yt−(k+1)

)
−(α + β) p lim

(
T−1

T∑
t=1

Y 2t Yt−k

)

by C1. Given (7),

T−1
T∑
t=1

Y 2t Yt−(k+1) = α0T
−1

T∑
t=1

t−1∑
i=1

(α0 + β0)
i−1Wt−iYt−(k+1) + (3 additional terms)

= α0 (α0 + β0)
k T−1

T∑
t=1

Wt−(k+1)Yt−(k+1)

+α0T
−1

T∑
t=1

∑
i6=k+1

(α0 + β0)
i−1Wt−iYt−(k+1) + (3 additional terms)

The three additional terms each have probability limits equal to zero given C1, C5, and C8.
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Therefore, p lim

(
T−1

T∑
t=1

Y 2t Yt−(k+1)

)
= α0 (α0 + β0)

k γ0, and

p lim

(
T−1

T∑
t=1

g3,k (·; θ)
)

= α0 [(α0 + β0)− (α + β)] (α0 + β0)k−1 γ0 (27)

= E
[
g3,k (·; θ)

]

Next, define the kth element the vector g4 (·; θ) as

g4,k (·; θ) =
(
Y 2t − σ2

) (
Yt−(k+1) − σ2

)
− (α + β)

(
Y 2t − σ2

) (
Yt−k − σ2

)
,

and consider the p lim

(
T−1

T∑
t=1

g4,k (·; θ)
)

. Again relying on the interpretation of Y 2t as a

weighted sum of current and past innovations in (7),

T−1
T∑
t=1

Y 2t Y
2
t−k =

(
σ20
)2
+ α0T

−1
T∑
t=1

t−1∑
i=1

(α0 + β0)
i−1Wt−iWt−k

+α20T
−1

T∑
t=1

(
t−1∑
i=1

(α0 + β0)
i−1Wt−i

)(
t−(k+1)∑
j=1

(α0 + β0)
j−1Wt−k−j

)

+(6 additional terms)

=
(
σ20
)2
+ α0T

−1

[
(α0 + β0)

k−1
T∑
t=1

W 2
t−k +

T∑
t=1

∑
i6=k

(α0 + β0)
i−1Wt−iWt−k

]

+α20T
−1

[
T∑
t=1

∑
i6=j

(α0 + β0)
(i+j)−2Wt−iWt−k−j +

T∑
t=1

t−1∑
j=k

(α0 + β0)
2j−kW 2

t−j−1

]

+(6 additional terms)

C3, C6, and C8 are used to show that the probability limits of the 6 additional terms are each

zero. p lim

(
T−1

T∑
t=1

W 2
t−k

)
= λ0 given C7.

p lim

(
T−1

T∑
t=1

∑
i6=k

(α0 + β0)
i−1Wt−iWt−k

)
= p lim

(
T−1

T∑
t=1

∑
i6=j

(α0 + β0)
(i+j)−2Wt−iWt−k−j

)
= 0
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given C6. The term T−1
T∑
t=1

t−1∑
j=k

(α0 + β0)
2j−kW 2

t−j−1 =

T−1
T∑
t=1

(
(α0 + β0)

kW 2
t−k−1 + (α0 + β0)

k+2W 2
t−k−2 + · · ·+ (α0 + β0)2t−(k+2))W 2

1

)

= (α0 + β0)
k T−1

T∑
t=1

W 2
t−k−1 + (α0 + β0)

k+2 T−1
T∑
t=1

W 2
t−k−2 + · · ·+ (α0 + β0)2t−(k+2)W 2

1

By C7, p lim

(
T−1

T∑
t=1

t−1∑
j=k

(α0 + β0)
2j−kW 2

t−j−1

)
=

(α0 + β0)
k λ0

(
1 + (α0 + β0)

2 + (α0 + β0)
4 + · · ·

)

= (α0 + β0)
k λ0
1− (α0 + β0)2

and

p lim

(
T−1

T∑
t=1

Y 2t Y
2
t−k

)
=
(
σ20
)2
+ (α0 + β0)

k−1 (α0λ0 + (α0 + β0) η0) ,

where η0 = E
[
h̃2t

]
from Lemma 2. Therefore,

p lim

(
T−1

T∑
t=1

g4,k (·; θ)
)

=
(
σ20 − σ2

)2
(1− (α + β)) + (28)

((α0 + β0)− (α + β)) (α0 + β0)k−1 (α0λ0 + (α0 + β0) η0)

= E
[
g4,k (·; θ)

]

Given (25)–(28), T−1
T∑
t=1

g (·; θ) p→ E [g (·; θ)]. Let Q (·; θ) = E [g (·; θ)]′W0E [g (·; θ)],

and Q̂T (·; θ) = ĝT (·; θ)′WT ĝT (·; θ), where ĝT (·; θ) = T−1
T∑
t=1

g (·; θ). Then Q̂T (·; θ)
p→

Q (·; θ) by continuity of multiplication. From (25), E [g1 (·; θ)] = 0 if and only if σ2 = σ20.

From (26), E [g2 (·; θ)] = 0 if and only if α = α0 since γ0 6= 0. If σ2 = σ20 and

α = α0, then E [g3 (·; θ)] = 0 if and only if β = β0 given (27) and the fact that α0 + β0

is strictly positive. Similarly, E [g4 (·; θ)] = 0 if and only if β = β0 given (28) and the

fact that α0λ0 + (α0 + β0) η0 is strictly positive. Therefore, the only θ ∈ Θ that satisfies

E [g (·; θ)] = 0 is θ = θ0 and, as a consequence, Q (·; θ) is uniquely minimized at θ = θ0.�
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PROOF OF COROLLARY 1: Given (15),

̂̃
Y
2

t = α0
̂̃
Y
2

t−1 +Rt; Rt = (α0 − 1)
(
σ̂2 − σ20

)
+Rt. (29)

Substitution of (29) into (16) produces

α̂ = α0 +

(
T−1

T∑
t=1

̂̃
Y
2

t−1Yt−1

)−1(
(α0 − 1)

(
σ̂2 − σ20

)
T−1

T∑
t=1

Yt−1 + T
−1

T∑
t=1

RtYt−1

)
.

p lim

(
T−1

T∑
t=1

̂̃
Y
2

t−1Yt−1

)
= p lim

(
T−1

T∑
t=1

Y 3t−1

)
+ p lim

(
σ̂2
)
p lim

(
T−1

T∑
t=1

Yt−1

)

= γ0

given C1, C2, and (26) in the proof of the Theorem. As a result,

p lim α̂ = α0 + γ
−1
0 p lim

(
T−1

T∑
t=1

RtYt−1

)
.

Given the definition of Rt in (15),

T−1
T∑
t=1

RtYt−1 = T
−1

T∑
t=1

WtYt−1 + T
−1

T∑
t=1

t−1∑
i=1

βi0Ỹ
2
t−1−iYt−1 + h̃0T

−1
T∑
t=1

βt0Yt−1.

The first and third terms in this expression converge weakly towards zero given C5 and C8,

respectively. From (7),

T−1
T∑
t=1

t−1∑
i=1

βi0Ỹ
2
t−1−iYt−1 = h̃0T

−1
T∑
t=1

t−1∑
i=1

βi0 (α0 + β0)
t−2−i Yt−1 + T

−1
T∑
t=1

t−1∑
i=1

Wt−1−iYt−1

+α0T
−1

T∑
t=1

t−1∑
i=1

t−2−i∑
j=1

(α0 + β0)
j−1Wt−1−i−jYt−1

Applications of C5 and C8 again establishes p lim

(
T−1

T∑
t=1

RtYt−1

)
= 0, from which the

result α̂
p→ α0 then follows.
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Next, let

g3
(
·; σ̂2, α̂, β

)
=
(
Y 2t − σ̂2

) (
Xt−2 − (α̂ + β)Xt−2

)
,

where the kth element of this vector is defined as

g3,k
(
·; σ̂2, α̂, β

)
=
(
Y 2t − σ̂2

) (
Yt−(k+1) − (α̂ + β)Yt−k

)
.

Since α̂
p→ α0 and given C1 and C2,

p lim

(
T−1

T∑
t=1

g3,k
(
·; σ̂2, α̂, β

))
= p lim

(
T−1

T∑
t=1

Y 2t Yt−(k+1)

)
−(α0 + β) p lim

(
T−1

T∑
t=1

Y 2t Yt−k

)
.

Furthermore, since p lim

(
T−1

T∑
t=1

Y 2t Yt−(k+1)

)
= α0 (α0 + β0)

k γ0 as demonstrated in the proof

of the Theorem,

p lim

(
T−1

T∑
t=1

g3,k
(
·; σ̂2, α̂, β

))
= α0 (β0 − β) (α0 + β0)k−1 γ0 (30)

= E
[
g3,k

(
·; σ20, α0, β

)]

Let

g4
(
·; σ̂2, α̂, β

)
=
(
Y 2t − σ̂2

) (
Ẑt−2 − (α̂ + β) Ẑt−2

)
,

where the kth element of this vector is defined as

g4,k
(
·; σ̂2, α̂, β

)
=
(
Y 2t − σ̂2

) ((
Y 2t−(k+1) − σ̂2

)
− (α̂ + β)

(
Y 2t−k − σ̂2

))
.

Since α̂
p→ α0 and given C2,

p lim

(
T−1

T∑
t=1

g4,k
(
·; σ̂2, α̂, β

))
= p lim

(
T−1

T∑
t=1

Y 2t Y
2
t−(k+1)

)
− (31)

(α0 + β) p lim

(
T−1

T∑
t=1

Y 2t Y
2
t−k

)
−
(
σ20
)2
+ (α0 + β)

(
σ20
)2

= (β0 − β) (α0λ0 + (α0 + β0) η0) (α0 + β0)k−1

= E
[
g4,k

(
·; σ20, α0, β

)]
,
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where p lim

(
T−1

T∑
t=1

Y 2t Y
2
t−(k+1)

)
is established in the proof of the Theorem. (30) and

(31) grant that T−1
T∑
t=1

g
(
·; σ̂2, α̂, β

) p→ E [g (·; σ20, α0, β)] and that the only β ∈ Θ

that satisfies E [g (·; σ20, α0, β)] = 0 is β = β0. Consider the following definitions:

Q (·; σ20, α0, β) = E [g (·; σ20, α0, β)]
′

W 0E [g (·; σ20, α0, β)], Q̂T
(
·; σ̂2, α̂, β

)
= ĝT

(
·; σ̂2, α̂, β

)′
W

where ĝT
(
·; σ̂2, α̂, β

)
= T−1

T∑
t=1

g
(
·; σ̂2, α̂, β

)
. Then Q̂T

(
·; σ̂2, α̂, β

) p→Q (·; σ20, α0, β),

which is uniquely minimized at β = β0. Finally, ifW T = W T

(
β̃
)

, then (18) is the solution

to (17).�

PROOF OF COROLLARY 2: If β0 = 0, then

Ỹ 2t = α0Ỹ
2
t−1 +Wt,

and

̂̃
Y
2

t = α0
̂̃
Y
2

t−1 +W t; W t = (α0 − 1)
(
σ̂2 − σ20

)
+Wt.

For the sample moment conditions T−1
T∑
t=1

W tÛt−1 = T−1
T∑
t=1

W t


 Xt−2

Ẑt−2


, consider

T−1
T∑
t=1

W tYt−k and T−1
T∑
t=1

W t
̂̃
Y
2

t−k for k ≥ 1.

p lim

(
T−1

T∑
t=1

W tYt−k

)
= p lim

(
T−1

T∑
t=1

WtYt−k

)
= 0

by C1, C2, and C5.

p lim

(
T−1

T∑
t=1

W t
̂̃
Y
2

t−k

)
= p lim

(
T−1

T∑
t=1

WtỸ
2
t−k

)
= 0
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by C2, C3, and C6.

p lim

(
T−1

T∑
t=1

WtYt−k

)
= p lim

(
T−1

T∑
t=1

(
Ỹ 2t − α Ỹ 2t−1

)
Yt−k

)
(32)

= p lim

(
T−1

T∑
t=1

Ỹ 2t Yt−k

)
− αp lim

(
T−1

T∑
t=1

Ỹ 2t−1Yt−k

)

= αk−10 γ0 (α0 − α)

= E
[(
Ỹ 2t − α Ỹ 2t−1

)
Yt−k

]

where the third equality follows from (27).

p lim

(
T−1

T∑
t=1

WtỸ
2
t−k

)
= p lim

(
T−1

T∑
t=1

(
Ỹ 2t − α Ỹ 2t−1

)
Ỹ 2t−k

)
(33)

= p lim

(
T−1

T∑
t=1

Ỹ 2t Ỹ
2
t−k

)
− αp lim

(
T−1

T∑
t=1

Ỹ 2t−1Ỹ
2
t−k

)

= αk−10

(
1− α20

)−1
λ0 (α0 − α)

= E
[(
Ỹ 2t − α Ỹ 2t−1

)
Ỹ 2t−k

]

where the third equality follows from (28). The only α ∈ Θ that sets (32) and (33) to zero is

α = α0. Let ĝT
(
·; σ̂2, α

)
= T−1

T∑
t=1

(
̂̃
Y
2

t − α
̂̃
Y
2

t−1

)
Ût−1. Then,

ĝT
(
·; σ̂2, α

)′
ΩT ĝT

(
·; σ̂2, α

) p→ E
[(
Ỹ 2t − α Ỹ 2t−1

)
Ut−1

]′
Ω0E

[(
Ỹ 2t − α Ỹ 2t−1

)
Ut−1

]
,

which is uniquely minimized at α = α0. Finally, if ΩT = ΩT (α̃), then (20) is the solution

to (19).�
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TABLE 1

The GARCH(1,1) Model

True Med. Dec.

Parameter Value Estimator Bias MDAE Range SD

σ 1 QMLE -0.003 0.047 0.170 0.066

CUE 0.003 0.035 0.161 0.072

GMM 0.028 0.050 0.215 0.100

OLS/TSLS/CUE -0.005 0.044 0.170 0.067

OLS/TSLS/GMM -0.006 0.047 0.170 0.065

α 0.05 QMLE -0.001 0.007 0.029 0.011

CUE -0.001 0.004 0.021 0.013

GMM -0.001 0.015 0.061 0.026

OLS/TSLS/CUE -0.001 0.019 0.075 0.032

OLS/TSLS/GMM -0.002 0.020 0.077 0.031

β 0.90 QMLE -0.001 0.015 0.058 0.024

CUE -0.029 0.038 0.167 0.100

GMM -0.058 0.063 0.217 0.100

OLS/TSLS/CUE -0.029 0.047 0.250 0.147

OLS/TSLS/GMM -0.053 0.058 0.246 0.117

Notes: Simulations are conducted using 5,000 observations across 1,000 trials. QMLE is

the quasi-maximum likelihood estimator of ϑ0. CUE is the continous-updating estimator of

θ0. GMM is the traditional two-step GMM estimator of θ0. OLS/TSLS/CUE is the ordinary

least squares estimator of σ20, the two-step least squares estimator of α0, and the continuous-

updating estimator of β0. OLS/TSLS/GMM is the ordinary least squares estimator of σ20, the

two-step least squares estimator of α0, and the traditional two-step GMM estimator of β0.

For the continuous-updating and two-step GMM estimators, the number of lagged values is

K = 10. Med. Bias is the median bias with respect to the true parameter value. MDAE is the

median absolute error with respect to the true parameter value. Dec. Range is the decile range,

which is the difference between the 90th and the 10th percentiles of the parameter estimates.

SD is the standard deviation of the parameter estimates.
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TABLE 2

The GARCH(1,1) Model

True Med. Dec.

Parameter Value T Bias MDAE Range SD

σ 1 10K -0.002 0.031 0.114 0.046

20K 0.000 0.023 0.081 0.032

40K -0.001 0.016 0.061 0.024

α 0.05 10K -0.004 0.016 0.058 0.023

20K -0.002 0.011 0.042 0.017

40K -0.001 0.008 0.030 0.012

β 0.90 10K -0.021 0.034 0.145 0.064

20K -0.009 0.025 0.096 0.044

40K -0.004 0.019 0.071 0.036

Notes: Simulations are conducted across 1,000 trials. Results are reported for the OLS/TSLS/GMM

estimation approach, where σ̂2 is obtained via ordinary least squares, α̂ via two-stage least

squares, and β̂ via traditional two-step GMM. The number of lagged values used is K = 10.
T is the number of observations per simulation trial. Med. Bias is the median bias with respect

to the true parameter value. MDAE is the median absolute error with respect to the true pa-

rameter value. Dec. Range is the decile range, which is the difference between the 90th and

the 10th percentiles of the parameter estimates. SD is the standard deviation of the parameter

estimates.
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TABLE 3

The ARCH(1) Model

True Med. Dec.

Parameter Value Estimator Bias MDAE Range SD

σ 1 QMLE -0.002 0.029 0.104 0.041

CUE -0.020 0.043 0.154 0.064

GMM -0.011 0.044 0.159 0.064

OLS/CUE

OLS/GMM -0.005 0.029 0.110 0.044

OLS/IV -0.005 0.029 0.110 0.044

OLS/OLS -0.004 0.029 0.108 0.043

α 0.20 QMLE -0.005 0.023 0.087 0.034

CUE -0.020 0.036 0.124 0.058

GMM -0.027 0.040 0.131 0.061

OLS/CUE

OLS/GMM -0.030 0.041 0.115 0.054

OLS/IV -0.029 0.039 0.114 0.053

OLS/OLS -0.031 0.040 0.116 0.055

Notes: Simulations are conducted using 5,000 observations across 1,000 trials. QMLE

is the quasi-maximum likelihood estimator of ϑ0. CUE is the continous-updating estimator

of θ0. GMM is the traditional two-step GMM estimator of θ0. OLS/CUE is the ordinary

least squares estimator of σ20 and the continuous-updating estimator of α0. OLS/GMM is

the ordinary least squares estimator of σ20 and the traditional two-step GMM estimator of α0.

OLS/IV is the ordinary least squares estimator of σ20 and the instrumental variables estimator

of α0. OLS/OLS is the ordinary least squares estimator of σ20 and the ordinary least squares

estimator of α0.For the continuous-updating and two-step GMM estimators, the number of

lagged values is K = 10. Med. Bias is the median bias with respect to the true parameter

value. MDAE is the median absolute error with respect to the true parameter value. Dec.

Range is the decile range, which is the difference between the 90th and the 10th percentiles of

the parameter estimates. SD is the standard deviation of the parameter estimates.
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TABLE 4

The GARCH(1,1) Model

True Med. Dec.

Parameter Value Estimator Bias MDAE Range SD

σ 1 QMLE -0.013 0.108 0.422 0.175

CUE -0.052 0.104 0.361 0.176

α 0.15 QMLE -0.001 0.013 0.050 0.020

CUE -0.017 0.034 0.129 0.060

β 0.80 QMLE 0.000 0.014 0.059 0.023

CUE -0.045 0.063 0.301 0.156

Notes: Simulations are conducted using 5,000 observations across 1,000 trials. QMLE is

the quasi-maximum likelihood estimator of ϑ0. CUE is the continous-updating estimator of θ0

based on the sample moments T−1
T∑
t=1
g1 (·; θ)− T−1

T∑
t=1
g3 (·; θ) from (13). The number of

lagged values used for the continuous-updating estimator isK = 10. Med. Bias is the median

bias with respect to the true parameter value. MDAE is the median absolute error with respect

to the true parameter value. Dec. Range is the decile range, which is the difference between

the 90th and the 10th percentiles of the parameter estimates. SD is the standard deviation of

the parameter estimates.
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TABLE 5

The ARCH(1) Model

True Med. Dec.

Parameter Value Estimator Bias MDAE Range SD

σ 1 QMLE -0.007 0.044 0.159 0.064

CUE -0.020 0.048 0.176 0.075

OLS/OLS -0.016 0.048 0.181 0.109

α 0.41 QMLE -0.007 0.029 0.109 0.043

CUE -0.061 0.072 0.187 0.077

OLS/OLS -0.101 0.106 0.210 0.088

Notes: Simulations are conducted using 5,000 observations across 1,000 trials. QMLE is

the quasi-maximum likelihood estimator of ϑ0. CUE is the continous-updating estimator of θ0

based on the sample moments T−1
T∑
t=1
g1 (·; θ)− T−1

T∑
t=1
g3 (·; θ) from (13). The number of

lagged values used for the continuous-updating estimator isK = 10. Med. Bias is the median

bias with respect to the true parameter value. MDAE is the median absolute error with respect

to the true parameter value. Dec. Range is the decile range, which is the difference between

the 90th and the 10th percentiles of the parameter estimates. SD is the standard deviation of

the parameter estimates.
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