MPRA

Munich Personal RePEc Archive

Criteria for Monotonicity of Demand
Functions

Polterovich, Victor and Mityushin, Leonid

1978

Online at https://mpra.ub.uni-muenchen.de/20097/
MPRA Paper No. 20097, posted 26 Jan 2010 01:16 UTC



Criteria for Monotonicity of Demand Functions®

L. G. Mityushin V. M. Polterovich

In consumer’s choice theory (see, for example, [1, p. 313]), it is often
postulated that the consumer’s behavior is described by the extremal prob-
lem

u(c) »max, pc< B, c=0, (1)

where u(c) is the utility function (goal function), ¢ is a consumption goods
vector, p is a price vector, (3 is the consumer’s income (in the sequel, 3 is
assumed to be a constant).

Denote by R} the set of nonnegative column-vectors of dimension n; T
stands for the transpose operation. We consider ¢ to be a column-vector
and p to be a row-vector (thus, p7 € R"?). Let C(p) be the set of solutions
of (1) for fixed p and let G be a subset of R%". The correspondence C(p) is
called a demand function. We say that C(p) is monotone on G if

(P —q)(ep—cg) <0 (2)

for any ¢, € C(p), ¢; € C(q), T, ¢p) € G, and (¢7,¢,) € G.

For a number of economic equilibrium models (see, for example, [2, 3, 4]),
the requirement of the monotonicity of the demand function (or some mod-
ification of such a requirement) is necessary to ensure the uniqueness of
equilibrium, turnpike theorems validity, and the convergence of the compu-
tational algorithms [3, 5, 6].

Our goal is the following: To describe the class of preference indica-
tors u(c) such that the problem (1) generates a monotone demand function.
Moreover, a generalization of the condition (2) is considered.

Assume that G = P x S, where S C R} and

P={p|[p=0,C(p)NS #0}. (3)

Suppose that

*Translated from Economics and Mathematical Methods 1978, XIV, #1, p. 122.



1. S is a convex set and its interior Sy is not empty;

2. the function u(c) is defined on R, is concave, and has continuous
second derivatives on S;*

3. the gradient v(c) of the function u(c) is nonnegative and satisfies the
inequality v(c)c > 0 for any ¢ € S;

4. the income (3 is positive.

In the problem (1), a maximum is reached at the point ¢ for a given
prices vector vector p if and only if

v(e)=Ap—w,  Alpc—p)=0, wc=0, (4)
where A € R_li_, wl € RY.
Our assumptions imply that pc = . Hence, using (4), we get

A= =v(o)e (5)

Let us denote ﬁv(c) by f(c). From 1-3, we see that the vector func-

tion f(c) is defined and has continuous derivatives on S. Let ¢, and ¢, be

the solutions of the problem (1) for the prices p and ¢ respectively. From
(4) and (5), we obtain

(r — @)(cp — cq) < B(fcp) — fleg))ep — ¢cg)- (6)

Lemma 1. The function C(p) is monotone on G if and only if the
Jacobian matriz F(c) of the function f(c) satisfies the condition

2T F(c)z <0 (7

for any c€ S and z € R™.
P r oo f From [7, p. 262], we see that the inequality (7) holds on Sy

if and only if f(c) is a monotone function. The continuity argument shows
that (7) is equivalent to the condition

(flep) — fleg))ep —cq) <0 for any ¢;,¢q € S. (8)

!The last requirement implies that there exists a smooth extension of u(c) onto some
open set containing S (this set is not required to be a subset of R7).




The inequalities (8) and (6) imply (2). If (8) is false, then there exist
Cp, g € S such that

(f(ep) = Fleg))(ep — ¢) > 0. 9)

Let p = B8f(cp), ¢ = Bf(cy). Taking into account (4) and (9), we conclude
that C'(p) is nonmonotone. Thus, Lemma 1 is proved.
Differentiating f(c), we get instead of (7) an equivalent relation

(0e)z Uz — (v2)2  Uc — (v2)? <0, (10)

where v = v(c); U = U(c) is the Hessian matrix of u(c).

Let us fix ¢. Note that if vz = 0, then the inequality (10) holds (since
the matrix U is negative semidefinite). To make sure that this inequality is
valid on the whole space, it is sufficiently to check it only for the vectors z
that comply with the condition

vz = vC. (11)

We now may rewrite the inequality (10) as follows:

Uz —2"Uc < we, (12)
or
1\" 1 1
(z — §c> U (z — §c> — ZCTUC < vc, (13)

where z is an arbitrary vector satisfying equation (11). Using a substitution
1
z=—(22—c¢),
—(2:—0),

we finally get the following condition that is equivalent to (13):

1 1
“afve)? — 2 Uc < e, (14)
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where
_ T

a=supz Ut. (15)

vr=1
If U is negative definite, then it is easy to see that o = ﬁ Thus,

we have proved the following statement.



Theorem 1. Suppose that the conditions 1-4 are valid. Then the de-
mand function C(p) is monotone on G if and only if for any ¢ € S the
relations (14), (15) hold. If, moreover, the Hessian matriz U(c) is negative
definite, then C(p) is monotone if and only if the inequality

ve dUc
vU 1ot ve =4 (16)
holds for any c € S.
Remark 1. One can show that any of the relations (7), (14), and (16)
also implies the monotonicity of C'(p) even if S has no interior points.
The first summand in (14) is nonpositive. If we delete it, then we obtain
the sufficient condition of monotonicity of C(p). We can check this condition

without inverting of the matrix U:
—cTUc < 4we. (17)

The following sufficient (but weaker) condition is even more convenient
to verify:

~Ue < 4T (18)

(after multiplying (18) by ¢!, we obtain (17)).
Let ¢ = (c1,--,¢n), v = (U1, -~ ,up), U = (ug5). If v > 0, then the

3 3

inequality (18) may be rewriteen as follows:

f=—— Y uye; <4, i=1,n (19)

It is obvious that & = Ej &, where &; = —%(lnui)/%(ln ¢i) is the
elasticity of the marginal utility of the product 7 with respect to 5. Thus,
it is naturally to say that &; is the total elasticity of the marginal utility of
the product 3.

The criterion (17) (as well as (18)) is additive: if it holds for each function
u®)(c), then it is also valid for u(c) = 3", u®(c). This property is often
useful.

Corollary 1. Suppose conditions 1-4 hold and, moreover, u(c) =
Yok u®)(¢), each function u(® is nonnegative and positive homogeneous of
degree ay > 0. Then the map C(p) is monotone.

Indeed, from Euler’s formula we have

apu® (¢) = v® (¢)e, (20)



where v(*) is the gradient of u(¥)(c). Differentiating (20), then multiplying
the result by the vector ¢ and summing over k, we get the inequality (17).
Suppose now that the preference indicator has the form

u(c) = % TUc+ ale, (21)

where a € R, a # 0, and the matrix U is negative semidefinite and inde-
pendent of ¢. In this case, we can rewrite the inequality (18) as follows:

—Uc< %a. (22)

It is interesting to compare (22) with the natural condition of nonde-
crease of the function u(c):

—Uc<a. (23)

Thus, for the case (21), the function C(p) is monotone if S is a polyhe-
dron defined by the inequality (22) and the additional requirement a”¢c > 0
(this requirement ensures that v(c)c is positive). One can easily find exam-
ples showing that after an extension of S to the set (23), monotonicity may
be violated.

Remark 2. If U is a negative definite matrix and the inequality (16) is
strict, then the inequality (2) becomes also strict whenever ¢, # ¢,. If S be-
longs to the interior of R}, then different prices lead to different demand.
In this case, C(p) is a strictly monotone map.

Remark 3. The results stated above remain valid, if we

e replace the non-negativity requirement in (1) by a more general one:
¢ € K, where K is a convex cone in R} with interior points, and

e let S be a subset of K.

If there exist only one consumer of the form (1) in an equilibrium model,
then this model reduces to an extremal problem and is rather easy to study.
Monotonicity criteria are useful in those cases, where there are many con-
sumers and their total demand isn’t generated by a single goal function.
The following example shows that exactly this is a quite typical situation.

Let the number of products be equal to 3 and each of the three partici-
pants has unit income. The utility functions are as follows:

2v2
u(l)(cl, co,03) = ci/2 + \/§cé/2 + T\/_cg/4,

U(Q) (cla C2, Cg) = u(l) (627 3, C]_)

2

U(3) (cla C2, C3) = u(l) (635 C1, 62)-



By corollary 1, these functions generate monotone demand. Let us show
that the total demand C(p) couldn’t be described by the problem of the
form (1), since there exists a point p such that, at this point, C'(p) doesn’t
satisfy well known Slutsky’s conditions [8, p. 258]

gz: + Cped = %Zf + Cycy. (24)
Here, C(p) = C = (C1,C2,C3) and ¢ are some constants.

Let p = (1,1,1). Then it is easy to check that the demand of the first
consumer is equal to (1/4,1/2,1/4)T and the demands of others may be
got by a cyclic permutation. Thus, C = (1,1,1)T. Using formulas from [8,
p. 262], one can find the Jacobian matrix of the total demand

3

~1.95 05  0.45
oC;

(a ’) =1 045 —-195 05
Pk 0.5 045 —1.95

It is easy to see that for such gT?Z and Cj, the system of linear equa-

tions (24) in variables ¢ is unsolvable.

Note that if the utility functions are positive homogeneous, then the
total demand is generated by a single goal function [3].

To conclude, let us consider a natural generalization of the monotonicity
concept. We say that the function C(p) is quasimonotone on G if

min{p(c, — ¢¢),q(cg — )} <0 (25)

for any (pT,c,) € G, (¢F,¢;) € G, ¢, € C(p), and ¢; € C(g). It is ob-
vious that (25) follows from (2). If u(c) is concave and doesn’t reach its
supremum, then the demand function generated by u(c) satisfies the in-
equality (25). Contrary to (2), the inequality (25) is nonadditive, so the
criterion of quasimonotonicity of the total demand must include some char-
acteristcs of the utility functions of different participants. We don’t know
any satisfactory formulation of such a criterion. Below, we point out a nec-
essary condition that the Jacobian matrix of C'(p) must meet in the case,
where (25) holds. That condition is also close to sufficient.

We use the concept of the single-valued function C(p) monotonicity on
the set P of the independent variable values, meaning that G is the graph
of C(p) on the set P. Let us introduce the concept of strict quasimonotonic-

1ty:

min{p(C(p) — C(q)),a(C(g) — C(p))} <0 (26)



for all p,q € P, p # q. For the equilibrium models from [2, 3], the inequal-
ity (26) ensures the uniqueness of the equilibrium prices and the inequal-
ity (25) together with the strict convexity of the technology set entails the
uniqueness of the equilibrium outputs?.

In the sequel, we assume that C(p) is defined on an open convex set P C
R, its values belong to R7, it is differentiable on P, and satisfies the budget
identity

pC(p) = 5, (27)

where 3 is a constant.

Lemma 2. The function C(p) is strictly quasimonotone if and only if
for any py € P there exists a neighborhood Py 3 pg such that for p = po and
any q € Py \ {po}, the inequality (26) holds.

P r o o f. The necessity is obvious. To check the sufficiency, let us
suppose that (26) is false for some p,q € P, p # ¢. By (27), this means that

max{pC(q),qC(p)} < B. (28)
Let 7 = 2(p+ ¢). From (28) and (27), we get the following inequality:
max{gC(r),pC(r)} < . (29)

Using the identity (27) for the point 7, we see that
min{gC(r),pC(r)} < B. (30)

By the inequalities (29) and (30), we conclude that at least one of the
pairs (p,r) and (r, ¢) satisfies the inequality of the form (28), so we can carry
out a similar construction. Thus, we obtain a sequence of nested intervals
that converge to their common point r9. It is obvious that no neighbor-
hood of the point pg satisfies the condition of Lemma 2. This contradiction
concludes the proof.

Note that for quasimonotone functions, quite analogous statement is
valid.

Let us denote

Z(p) = {z| 2z € R*,2C(p) = 0,2 # 0} (31)

’In [4], the inequality (26) is identified with the weak axiom of revealed preference.
This identification isn’t quite correct. Following the general treatment; one can see that
this axiom requires that (26) holds not for p # ¢, but just for C(p) # C(q) (see, for
example, [1, p. 317)).



and let H(p) be the Jacobian matrix of the function C(p).

Theorem 2. If for any p € P and z € Z(p) the inequality zH (p)z < 0
holds, then the function C(p) is strictly quasimonotone. If C(p) is quasi-
monotone and C(p) # 0 for any p € P, then zH(p)zT <0 for any p € P,
z € Z(p).

P r o o f. Using (27), we can rewrite (26) as follows:

min{(p — ¢)C(p), (¢ —p)C(g)} < 0. (32)

Let ¢ = p + z. By the inequality (32) and Lemma 2, for proving the
strict quasimonotonicity of C(p), it is sufficiently to check that for any p,
the inequality

min{—zC(p), 2C(p + )} < 0 (33)

holds for small values of z.

Let us fix p and suppose that zH(p)z! < 0 for z € Z(p). Then there
exist constants o, § > 0 such that |2(C(p)| < o||z|| implies that zH (p)zT <
—4||z||%. Here, || || stands for the Euclidian norm. Thus, in the case, where
—al|z|| € zC(p) <0, we obtain

2C(p +2) = 2C(p) + zH(p)z" + o(|[2]1*) < —0lll* + o(||2]*);

so the inequality (33) holds for small values of z. If zC(p) < —«¢/|#||, then
2C(p + z) < —allz]| + o(]|z]|]) and hence (33) is valid for all values of z
from some neighborhood of zero. Finally, in the case, where zC(p) > 0, the
inequality (33) is obviously valid. The first statement is proved.

Suppose now that C(p) is quasimonotone, but zH(p)z? > 0 for some
p € P and z € Z(p). Then there exists ¢ > 0 such that

2C(p+tz) = tzH(p)zT + o(t) > 0,

hence there exists a vector zp (close to ¢z) such that zoC(p) < 0 and zC(p+
z9) > 0. Assume that ¢ = p + 2o, then

min{(p — ¢)C(p), (¢ —p)C(g)} > 0.

By (27), the last inequality contradicts the quasimonotonicity of C(p). This
concludes the proof of Theorem 2.
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