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The Role of Search Engine Optimization in Search
Rankings

Abstract

Web sites invest significant resources in trying to influence their visibility in online
search results. We study the economic incentives of Web sites to invest in this process
known as search engine optimization. We focus on methods that improve sites’ ranking
among the search results without affecting their quality. We find that the process is
equivalent to an all-pay auction with noise and headstarts. Our results show that in
equilibrium, under certain conditions, some positive level of search engine optimization
improves the search engine’s ranking and thus the satisfaction of its visitors. In partic-
ular, if the quality of sites coincides with their valuation for visitors then search engine
optimization serves as a mechanism that improves the ranking by correcting measure-
ment errors. While this benefits consumers and search engines, sites participating in
search engine optimization could be worse off unless their valuation for traffic is very
high. We also investigate how search engine optimization affects sites’ investment in
content and find that it can lead to underinvestment as a result of wasteful spending
on search engine optimization.



1 Introduction

Search engine marketing is becoming a dominant form of online advertising. By utiliz-

ing search marketing, Web sites that wish to advertise online can reach consumers at

the point when they search for a specific keyword. This makes such locations valuable

to advertisers who can compete for appearing on the search results page. Most of the

search engines allow web sites to submit bids for their so called sponsored links and

generally the highest bidders win the most visible links, usually on the top of the list.

In this “official” way of search advertising, sites get access to the right side1 of the

search results page.

Many advertisers, however, try to find their way to the top of the organic results list

instead of (or in addition to) competing for sponsored links. The collection of different

actions that a site can take to improve its position on the organic list is called search

engine optimization (SEO). This can be either done by making the site more relevant

for consumers, or by investing in different techniques that affect the search engine’s

quality ranking process. These two types of SEO techniques are sometimes referred to

as white hat SEO and black hat SEO respectively. The important difference is that the

latter type only improves the ranking of a site among search results without affecting

its quality, whereas the former type changes the site’s ranking by improving its content

and by increasing visitors satisfaction. In the rest of the paper we use SEO to refer

to the latter type of activities. These activities include techniques of creating external

links to the site or changing the html source of the site’s pages to influence the outcome

of the automatic process that the search engine uses to evaluate each site’s relevance.

Our goal is to investigate the economics of the SEO process and its effects on

consumers, advertisers and search engines. We introduce a model of the SEO process

as an all-pay auction of link slots by a search engine to websites. The search engine’s

goal is to improve consumer welfare by displaying the most relevant links to visitors,

who judge a site’s quality by the relevance of its content. The mechanism used is an

asymmetric all-pay auction in which sites can invest to improve their rankings without

improving their quality. Our model diverges from traditional rent seeking analysis

in two components. First, the existence of noise in the scoring mechanism of the

auctioneer results in suboptimal slot allocations when SEO is not allowed. Second,

1In some cases the search engine displays sponsored links on top of the organic results as well.
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asymmetries among the different sites yield scoring headstarts for each site during the

auction. These assymetries stem from the difference in intrinsic qualities among sites,

as well as from the different valuation each site places on visits by consumers.

We find that under certain conditions black hat SEO can be advantageous to the

search engine and increases consumer welfare in equilibrium. In particular, if sites’

valuation for traffic is aligned with their relevance for consumers then the search engine

is better off when allowing some positive level of SEO than when discouraging SEO.

If, on the other hand, there are sites with high valuation for visits, but low relevance

for visiting consumers, then SEO is generally detrimental to the search engine and

consumer welfare. An example of such a “bad” site, which we call a spam site, is a

site that advertises products for a very low price to lure visitors, but later on uses the

visitors’ credit card details for fraudulent activities2.

Search engines typically take a strong stance against black hat SEO and consider it

cheating (see Google’s remarks about SEO). In some cases they entirely remove sites

that are caught conducting such activities from the organic list3. Search engines can

also invest significant amounts in reducing the effectiveness of certain SEO activities4.

To justify their position, search engines typically claim that allowing for SEO lowers

the quality of ranked websites. To analyze this claim, we further investigate how SEO

affects investment in content. We find that high effectiveness of SEO might result in

underinvestment in content when creating content is relatively expensive.

Despite the apparent importance of the topic there has been very little research

done on search engine optimization. At the same time, search engine optimization

has grown to become a multi-billion dollar business5. Many papers have focused on

the sponsored side of the search page and some on the interaction between the two

lists. In all of these cases, however, the ranking of a website in the organic list is

given as exogenous, and the possibility of investing in SEO is ignored. One puzzling

message that search engines convey is that the auction mechanism for sponsored links

2Researchers estimate Benczur et al. (2008) that 10-20% of Web sites constitute spam.
3BBC News reported that Google has blacklisted BMW.de for breaching its guidelines. See

http://news.bbc.co.uk/2/hi/technology/4685750.stm
4In response to Google’s regular updates of its search algorithm, different sites shuffle up and down

wildly in its search rankings. This phenomenon, which happens two or three times a year is called
the “Google Dance” by search professionals who give names to these events as they do for hurricanes
(see “Dancing with Google’s spiders”, The Economist, March 9, 2006).

5See the survey conducted by seomoz.com at http://www.seomoz.org/dp/seo-industry-survey-
results.
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ensures that the best advertisers will obtain the links of highest quality, resulting in

higher social and consumer welfare. The comparison is done, however, with respect

to random search lists, while it is obvious that organic search results are not random.

Is not the case of SEO similar? If the most resourceful sites are the ones providing

the best links, why not let them invest in improving their rankings? To explore this

question we introduce the notion of an ordered search list. By comparing consumer

welfare resulting from searching on different lists, the efficiency of a ranking mechanism

can be measured, and different forms of displaying search results can be compared.

The rest of the paper is organized as follows. Section 3 describes a simplified model

of the search process when a search engine displays a single result in response to a

search query. We examine how the SEO game affects content investment in Section 5.

Finally, Section 6 generalizes our model in several ways to show that our main results

are robust, and introduces the notion of an ordered results list for comparison among

search ranking mechanisms.

2 Relevant Literature

The advent of online advertising technologies and the rapid growth of the industry led

to an increase in the volume of research dedicated to this phenomenon. Works such

as those by Rutz and Bucklin (2007) and Ghose and Yang (2009) focus on consumer

response to search advertising and the different characteristics that impact advertising

efficiency. Another major stream of research, including works by Edelman et al. (2007)

and Varian (2007) focus mostly on the auction mechanism used by the different search

engines to allocate their advertising slots. More recent examples, such as those by Chen

and He (2006), Athey and Ellison (2009) and Aggarwal et al. (2008) analyze models

that include both consumers and advertisers as active players. A number of recent

papers study the interplay between the organic list and the sponsored link. Katona

and Sarvary (2010) show that the top organic sites may not have an incentive to bid

for sponsored links. Xu et al. (2009) and White (2009) study how the search engine’s

advertising revenue from the sponsored links is affected trough the organic listings.

Little attention was given to search engine optimization, although the use of SEO

techniques is common practice among companies dealing with search marketing. The

work of Xing and Lin (2006) resembles ours the most by defining “algorithm quality”
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and “algorithm robustness” to describe the search engine’s ability to identify relevant

websites and eliminate non-relevant ones. Their paper shows that when advertisers’

valuation for organic links is high enough, providers of SEO services are profitable,

while search engines’ profits suffer. Considering our result that using SEO can improve

consumer welfare under noisy conditions, these results complement ours in explain-

ing why search engines invest efforts in fighting SEO. An earlier work by Sen (2005)

develops a theoretical model that examines the optimal strategy of mixing between

investing in SEO and buying ad placements. The model surprisingly shows that SEO

should not exist as part of an equilibrium strategy.

A primary feature of our model is the use of an all-pay auction to describe the

game websites are playing when competing for a location on a search engine’s organic

results list. A rent seeking process such as this is similar to the process of lobbying and

other processes described and analyzed in Hillman and Riley (1987) and other works.

An extension of the all-pay model to multiple players and multiple items is analyzed

in Barut and Kovenock (1998), Baye et al. (1996) and Clark and Riis (1998). For a

survey of the literature on contests under different information conditions and contest

success functions, see Konrad (2007).

Our use of all-pay auctions takes into account initial asymmetries among sites re-

sulting from measurement error and different website qualities. The different qualities,

measured as a relevance measure for consumers translate into a headstart in the initial

score calculated by the search engine to determine the auction winners. The existence

of such a headstart, which in many cases is analogous to differences in abilities of the

players, results in different equilibria as described in Kirkegaard (2009) and analyzed

under more general conditions in Siegel (2009). Our application is unique in that it

considers the cases where the initial headstart is biased by noise inherent in the quality

measurement process. Krishna (2007) is one of the few examples taking noise into

consideration in an auction setting. This noise is the main reason for the initially

inefficient allocation of organic link slots, which can be corrected by allowing for SEO.

3 Model

A search engine (SE) is a website that provides the following service to its visitors:

they enter queries (search phrases) into a search form and the SE returns a number of
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results for this query displaying them in an ordered list. This list contains a number of

links to other websites in the order of the relevance of their content for the given search

phrase. In our model, we focus on a single keyword and we assume that the relevance,

or quality, of a search result is essentially the probability that a consumer is satisfied

with the site once clicking on the link6. We further assume that, for the purpose of

ordering the search results, the SE’s objective is to maximize the expected consumer

satisfaction7 hence its goal is to present the most relevant results to its visitors, and

its utility is equal to the expected satisfaction level of consumers.

In order to rank websites, the search engine uses information gathered from crawling

algorithms and data mining methods on the Internet. Let qi denote the relevance of

site i in the context of a given keyword. It is reasonable to assume that the search

engine can only measure quality with an error, and cannot observe it directly. The

initial quality score that the SE assigns to a site i is thus sSi = qi + σεi, where εi are

assumed to be independent and are drawn from the same distribution. If the Web sites

do not take any action the results will be ordered according to the sSi ’s as assigned by

the search engine. If, however, Web sites can invest in SEO, they have the option to

influence their position after observing the initial scores. The effectiveness of SEO is

measured by the parameter α in the following way. If site i invests bi in SEO, its final

score becomes sFi = sSi + αbi. That is, depending on the effectiveness of SEO, sites

can influence their scores which determines their final location in the organic list of

search results. We assume that there are n websites providing information or products

to consumers and that those sites derive some utility from the visiting consumers. The

sites’ profits primarily depend on their traffic. We assume that site i derives utility

vi(t) of having t customers click its link in a given time period.

The behavior of the unit mass of consumers in our model is relatively simple. If

consumers are presented with one link, they click on it, and are satisfied with proba-

bility qi, receiving a utility normalized to 1 if satisfied. If there are k > 1 links, the

consumers traverse the list of links in a sequential order. When a consumer is satisfied

with the site visited, the searching ends. When a consumer is dissatisfied with a site

6Modeling consumer satisfaction as a 0-1 variable is relatively simple, but captures the essence. In
Section 5 we will discuss alternative formulations where qi is the average utility that a consumer gains
after clicking on link i.

7Since providing these results is typically the search engines core service to consumers its reputation
and long term profits strongly depend on the quality of this service.
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visited, he continues to the next link with probability ci. We provide full details of the

search sequence by consumers in Section 6.2 dealing with multiple search results.

The sequence of the game is as following. First the search engine measures the

relevance of each website and publishes sSi = qi+σεi. Next, the websites, after observing

sSi , simultaneously decide how much they want to invest in SEO, changing the scores

to sFi = sSi + α · bi. The search engine then recalculates the scores and displays an

ordered list of search results sorted in a decreasing order of the final site scores sFi .

Finally, visitors click on the results according to their order until being satisfied, and

payoffs are realized at the end. Our assumption on the timing of the above events is

somewhat simplistic, but it is the most plausible way of capturing Web sites’ reactions

to their ranking results and their subsequent investment in SEO.

We start our analysis by examining a simple case that illustrates the main forces

governing SEO. In this case, we assume that there is one organic link displayed on the

SE (k = 1) and that there are two bidders (n = 2) with q1 > q2. We then generalize to

the case of n > 2 sites, and multiple k > 1 links. To illustrate the effect of SEO we also

compare the equilibrium case to one in which sites can choose to invest in improving

their content, thus increasing their quality qi.

4 SEO Equilibrium - One link

We assume that there is one organic link, and that the utility sites derive from incoming

traffic is linear in traffic, such that vi(t) = vit and v1 > v2. Since there is a unit mass of

consumers that click on the link displayed in the search result, the valuation that sites

have for the appearing on the list is v1 and v2, respectively. We set the distribution of εi

to take the value of either 1 or −1 with equal probabilities. We assume σ > |q1− q2|/2
to ensure that the error can affect the ordering of sites 8.

First, as a benchmark, let us examine the case in which there is no search engine

optimization possible, i.e. when α = 0. In this case sites cannot influence their position

among the search results. The SE’s expected utility is then 3
4
q1 +

1
4
q2. The effect of

the error in the SE’s measurement process is clear. With a certain probability (1/4 in

this case), the order will be suboptimal leading to a drop in expected utility compared

to the first best case of q1.

8Otherwise the order remains the same and the setup is equivalent to one with no error
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When search engine optimization is effective, i.e., when α > 0, websites have a

tool to influence the order of results. The ability to influence, however, is typically

asymmetric, since sites have different starting scores sSi . A site that is in the first

position in the SE’s initial ranking has a headstart and hence can remain the first even

if it invests less in SEO than its competitor. Another characteristic of the game sites

play is that their SEO investment is sunk no matter what the outcome of the game is.

That is, sites essentially participate in an all-pay auction with headstarts (Kirkegaard

2009). These games are generalizations of basic all-pay auctions without a headstart.

In these auctions players submit bids for an object that they have different valuations

for. The player with the highest bid wins the object, but all players have to pay their

bid to the auctioneer (hence the “all-pay auction” term). If players have headstarts

then the winner is the player with the highest sum of bid plus headstart.

The level of headstarts depends in our model on the starting scores and hence on

the error. For example, if q1 > q2 and ε1 = ε2 = 1, the error does not affect the order

nor the difference between the starting scores and the headstart of site 1 is q1−q2
α

. As

the size of the headstart decreases with α, the more effective SEO is, the less the initial

difference in scores matters. Even if site 1 is more relevant than site 2, it is not always

the case that it has a headstart. If ε1 = −1 and ε2 = 1 then sS1 = q1 − σ < sS2 = q2 + σ

given our assumption on the lower bound on σ. Thus, player 2 has a headstart of
q2+2σ−q1

α
. By analyzing the outcome of the all-pay auction given the starting scores, we

can determine the expected utility of the SE and the websites.

All-pay auctions with complete information typically do not have pure-strategy

Nash-equilibria, but the unique mixed strategy equilibrium is very intuitive. In a

simple auction with two players (with valuations v1 > v2) both players mix between

0 and v2 with different distributions9. The player with the higher valuation (player

1) wins with the higher probability: v1/2v2 and the other player’s surplus is 0. Thus,

only the player with the highest valuation makes a positive profit in expectation, but

the chance of winning gives an incentive to the other player to submit positive bids. In

the case of an all-pay auction with headstarts the equilibrium is very similar and the

player with the highest sum of valuation plus headstart wins with higher probability

and the other player’s expected surplus is 0. The winner’s expected surplus is equal to

the sum of differences in valuations and headstarts.

9See the Appendix for detailed bidding distributions.
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4.1 The effect of SEO on efficiency and consumer welfare

To examine the outcomes of the SEO game, we use E(α) = E(α; σ, v1, v2, q1, q2) to

denote the efficiency of the auction. In this case it is simply the probability that the

player with the more relevant link wins the auction (that is, player 1). Note that the

efficiency coincides with the search engine’s objective function as it wants the more

relevant link to come up first. The payoff of the search engine is a linear function of

the efficiency:

πSE = q2 + (q1 − q2)E(α)

If there is no SEO, that is when α = 0 (and σ > |q1 − q2|/2), we have E(0) = 3/4.

Our goal is therefore to determine whether the efficiency exceeds this value for positive

α SEO effectiveness levels. It is useful, however, to begin with analyzing how the

efficiency depends on valuations and qualities for given α and σ values. The following

Lemma summarizes our initial results.

Lemma 1 For any fixed α and σ, E(α; σ, v1, v2, q1, q2) is increasing in v1 and q1 and

is decreasing in v2 and q2.

Thus, the efficiency of the ranking increases when the most relevant site becomes

even more relevant and also when its valuation for clicks increases. When there is not

SEO, that is α = 0, the Lemma holds because the efficiency simply does not change

with v1, v2, q1, q2, but when α > 0 the efficiency strictly increases and decreases in the

respective variables. In essence the Lemma tells us that no matter how effective SEO

is, the less sites valuations are aligned with their relevance levels, the less efficient the

rankings are.

The following proposition summarizes the main result of our paper, showing how

SEO affects the efficiency of the ranking.

Proposition 1

1. For any σ > |q1 − q2|/2, there exists a positive α̂ = α̂(σ, v1, v2, q1, q2) SEO effec-

tiveness level such that E(α̂) ≥ E(0).

2. If v1/v2 > 3/2 then for any σ > |q1−q2|/2, there exists a positive α̂ = α̂(σ, v1, v2, q1, q2)

such that E(α̂) > E(0).
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3. There always exist σ̃ and α̃ such that E(α̃; σ̃, v1, v2, q1, q2) > E(0; σ̃, v1, v2, q1, q2).

The first part of the proposition tells us that for any level of error there is a positive

level of SEO that does not reduce the efficiency of the ranking. Practically, if the level

of SEO is not too high then firms will not invest enough to alter the rankings.

The latter parts yield more interesting results. Essentially, they show that positive

levels of search engine optimization do improve the efficiency of the ranking in some

cases. When high quality sites value visitors relatively high compared to lower quality

sites, SEO is beneficial to both the search engine and consumers regardless of the level

of error. If valuations are closer to each other or if valuations are misaligned with

qualities, then this only holds for small levels of error.

The intuition is as follows. The SEO mechanism favors bidders with high valuations.

Since the SE cannot perfectly measure site qualities, this mechanism corrects some of

the error when valuations increase monotonically in quality. When lower quality sites

have high valuation for traffic, however, SEO creates incentives that are not compatible

with the utilities of consumers or the search engine. In this latter case, the high

valuation sites which are not relevant can get ahead by investing in SEO. Examples

are cases of “spammer” sites that mislead consumers. In these cases consumers do not

gain any utility from visiting such sites, but the sites may profit from consumer visits.

Arguably, such cases of misalignment are rare, since sites that make more money from

their visitors can afford to offer higher quality content.

The fact the SE is better off allowing some positive level of SEO does not clarify

what the optimal level of SEO is. In particular, how does it depend on the variance of

the measurement error? To answer this, let Â(σ) denote the set of α SEO effectiveness

levels that maximize the search engine’s utility function. For two sets A1 ⊆ R and

A2 ⊆ R, we say that A1 � A2 if and only if for any α1 ∈ A1 there is an α2 ∈ A2 such

that α2 ≤ α1 and for any α′
2 ∈ A2 there is an α′

1 ∈ A1 such that α′
1 ≥ α′

2.

Corollary 1 If v1/v2 > 3/2, then the optimal SEO effectiveness is increasing as the

variance of the measurement error increases. In particular, for any σ1 > σ2 > 0, we

have Â(σ1) � Â(σ2).

We have already shown that SEO can be beneficial because it can serve as a mech-

anism correcting the search engine’s error when measuring how relevant sites are. The
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above corollary tells us that if the error is higher more effective SEO is required to

correct the error.

4.2 The effect of SEO on advertiser profits

When there is a positive level of SEO effectiveness, sites have a natural incentive to

invest in SEO, which they do not have when α = 0. In the extreme case of α → ∞ the

difference in initial scores dissipates and the game becomes a regular all-pay auction.

If, for example, v1 > v2 then player 1’s expected payoff is v1 − v2, whereas player 2

makes nothing in expectation. Comparing this to the case in which there is no SEO

- player 2 making v2/4 and player 1 making 3v1/4 - reveals that player 2 is worse off

with SEO whereas player 1 is better off iff v1 > 4v2. This implies that high levels of

SEO only increase profits for sites with outstanding valuations. The following corollary

provides detailed results on the sites’ payoffs.

Corollary 2

1. If v1 > v2 then Player 2’s payoff is decreasing in α.

2. If v1 > v2 there always exists an α∗ > 0 such that Player 1 is better off with an

SEO effectiveness level of α = α∗ than with α = 0. If v1 > 4v2 or σ < v1
v2

q1−q2
2

then Player 1 is strictly better off.

The player with the lower valuation is therefore worse off with higher SEO. Player

1, on the other hand, is better off with a certain positive level of SEO, especially

if its valuation is much higher than its competitor’s and if the measurement error

is small. The intuition from the former follows from the fact that higher levels of

SEO emphasize the differences in valuations, and the higher the difference the more

likely that the higher valuation wins. For the latter condition, smaller measurement

errors make it easier for the player with the higher starting score to win and to take

advantage of SEO. The corollary shows that the player with the higher valuation is

generally happy with some positive level of SEO, but further analysis (see the proof)

suggests that it is not clear whether Player 1 or the search engine prefer a higher level

of SEO.
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5 Investing in Quality of Content and SEO

So far we have focused on the investment that sites can make to improve their ranking

without affecting their relevance. We now consider the possibility that before invest-

ing in SEO, sites can make an investment that improves their quality of content and

therefore the relevance of the link that the search engine is considering to display. We

extend the game and add a content investment stage before the SEO stage. In this

first round, sites can decide how much they want to spend on improving their quality

of content and given these quality levels they decide how much to invest in SEO as in

Section 4. All other assumptions are the same: two sites are competing for one organic

link. Let c denote the marginal cost of increasing quality10.

Before exploring the details of this setup let us discuss how we define quality of

content. In our basic setup qi was simply the probability of a visitor clicking on a link

being satisfied with the content she finds. Here, we treat quality in a more general way

by assuming that qi is the expected utility a consumer derives by clicking on site i’s

link. Note that if consumer satisfaction is a 0 − 1 variable then the expected utility

is equal to the probability of satisfaction. There are two ways how an investment in

content quality could affect sites in the SEO stage. First, it increases the chance of

the link being displayed on the top of the organic list by the search engine, with or

without SEO. Second, it can change sites valuation of visitors. In our basic setup v

denotes the valuation for the link, but given that the search engine has a unit mass

of visitors that all click on the first link, this is strictly proportional to the average

profit per individual visitor that the sites makes (including both satisfied and non-

satisfied visitors). It is reasonable to assume that an investment in the quality of

content increases this quantity by improving customer satisfaction levels. Therefore

the investment can also increase the valuation of the site getting the top link. We first

ignore this effect and focus on the case in which valuation is not affected by the quality

investment.

10We assume that content costs are linearly increasing, however, a convex cost function would yield
similar results
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5.1 Fixed Valuations

Here, we solve a game in which sites’ valuations for getting in the top position is fixed

and not affected by the quality investment. As a benchmark, let us consider the case

when there is no SEO, i.e. α = 0. For simplicity we also assume that σ = 0, that is,

there is no measurement error. Then the game becomes a one-shot game, essentially

an all-pay auction, where the winner gets all the benefits. As we mentioned before,

these games do not have pure-strategy equilibria, but the mixed strategy equilibria are

very intuitive. The site with the higher valuation (e.g. player 1) wins the auction with

a higher probability (1 − v2/2v1) and has an expected payoff of v1 − v2, whereas the

other player had an expected payoff 0. To make the analysis simple, we examine the

case when v1 = v2 = v. In this case the players win with equal probability, make 0

payoff and each invest v/2c in expectation.

Now let us examine the case in which sites first have the option of investing in con-

tent, then in SEO. The exhaustive description of the equilibria would be too complex,

therefore we focus on the symmetric sub-game perfect equilibria with pure strategies in

the first stage. This allows us to point out the differences that the content investment

stage makes without determining all the mixed strategy equilibria.

Proposition 2 The only possible equilibria with pure strategies in the first stage is

the one in which sites do not invest in content but will invest in SEO and earn an

expected payoff of min(σ/2α, v/4). The above mentioned is an equilibrium if and only

if (c > vα−5σ
2vα−4σ

1
α
and σ < vα/4) or (c > 3

4
1
α
and vα/4 ≤ σ < vα/2) or (c > 1

2
1
α
and

vα/2 ≤ σ)

Generally, if the cost of investing in content is high relative to the effectiveness

of SEO then sites will give up on their investments in quality and instead will focus

on search engine optimization. Note that this critical cost level is decreasing in SEO

effectiveness, therefore the more effective search engine optimization is the more likely

that sites will not improve their content. In all the cases if c > 1/α then we get the no

investment equilibrium. Since the inverse of SEO effectiveness is essentially its cost we

obtain the result that if content is more expensive than SEO then sites will not invest

in it11. If content costs are low then sites will naturally improve their content, but there

11Note that this is not a binding condition. The Proposition shows that in many cases even if
content is cheaper than SEO sites will not in it.
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are generally no equilibria with pure strategies in the first stage. The intuition behind

the results is straightforward. If the cost of content is high compared to SEO then sites

will not attempt to get a headstart for the SEO game, they will instead compete with

their SEO investments directly. If, on the other hand, content costs are low, they may

engage in investing in content to get a headstart for the SEO game, where they do not

have to invest heavily. We do not explore in detail what happens if c is low because of

the complexity of the game. There are certainly no equilibria with pure strategies in

the first case, but the game becomes similar to an all-pay auction where, presumably,

an equilibrium in mixed strategies exist with positive expected content investment.

5.2 Valuations Increasing with Quality

We proceed with analyzing the case when an investment in content also increases sites’

valuation for the top link. There are several possible functional forms to capture this

relationship. We employ the most parsimonious form by assuming that vi = v + qim,

where v and m are site-independent positive parameters. v can be interpreted as the

sites’ baseline valuation of customers, whereas m corresponds to the margin gained on

a satisfied customers.

Proposition 3 When vi = v+ qim, the only possible equilibria with pure strategies in

the first stage is the one in which sites do not invest in content The above mentioned

is an equilibrium if c > 1
α
+m).

These results are very similar to that of the case with fixed valuations in that if content

quality is expensive enough then sites will forfeit the opportunity of investing in it. An

important difference is that since the quality investment will also change valuations,

sites will take that into account when comparing its costs to SEO. It is useful to note

that the critical value for c above which this happens is generally decreasing and often

lower than 1
α
+m. Therefore the more effective SEO sites expect in the second stage

the more reluctant they will be to invest in content because of anticipating the wasteful

spending on SEO.

In summary, this sections results highlight that search engines should be careful

when allowing some level of SEO activity to take advantage of its forces that improve

the ranking, because at the same time it could discourage sites from investing in con-

tent, hurting consumer satisfaction in the long run.
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6 Model Generalizations

6.1 Single link, multiple sites and arbitrary error distribution

In this section we show that our main results are robust under more general assump-

tions. First, we relax the assumption on the distribution of the search engine’s mea-

surement error and allow more than two sites to compete for one organic link. We

assume that there are n websites that are considered by the search engine for inclusion

in the organic list (consisting of one link) with q1 > q2 > . . . > qn. All the other

assumptions are identical to those in Section 4. Regarding the error εi , we allow its

distribution to be arbitrary with a mean of zero and a finite variance normalized to

1. Similarly to Section 4, we assume that the error is large enough that it makes a

difference, that is, we assume that ε1 − ε2 can take a value of less than q2 − q1 with

positive probability. The following proposition shows that even in this case SEO can

improve the efficiency of the auction if the valuations of the most relevant sites are

high enough.

Proposition 4 For any σ there exist a v̂(σ) > v2 and an α̂(σ) > 0 such that if v1 > v̂

and v2 > vi for every i ≥ 3 then E(α̂) > E(0).

This result generalizes our results in Proposition 1. If the valuations of the two most

relevant sites are high enough then the rest of the sites are in double disadvantage due

to the low starting scores and their lower valuations. This will lead to only the first two

sites investing in SEO for high enough effectiveness levels. The competition of these

two sites is similar to that in Section 4: If the error does not reverse their starting

scores compared to their true relevance, then site 1 has a high chance to win keeping

the right order. If, however, the ranking is reversed due to the error then although site

2 might have a good chance to get into the first position, for high SEO effectiveness

levels the higher valuation of site 1 limits this probability.

6.2 Multiple links

The case of multiple links showing multiple sites on the search results page requires an

analysis of consumer behavior and welfare when presented with such a list. Suppose

the search engine assigns n websites with qualities q1 > q2 > . . . > qn to n links,

and presents an ordered list to consumers. If the bidding actions of sites were fully
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observable, an optimally designed assignment mechanism would allow the search engine

to sort the list according to the order statistics of site qualities. Previous research

by Athey and Ellison (2009) and Chen and He (2006) show that consumer surplus

increases when presented with a fully sorted list compared to a randomly ordered list,

while Aggarwal et al. (2008) show that under a Markovian consumer search model,

similar monotonic click probabilities arise in the optimal assignment.

The ranked list produced by the search engine in the SEO game is different in two

important manners. First, the fact that the search engine has errors in its calculation

of scores inhibits its ability to fully rank sites according to their qualities, and second,

when SEO is not effective (α = 0), the resulting list is not completely random.

Formally, we define a structure on ordered lists that allows a measurement of their

distance from being optimally sorted. Let q[k] denote the k’th order statistic of the

n site qualities12. An ordered list of n items is a collection of n random variables

Q = (f1, . . . , fn). The variable fj contains the distribution of quality order statistics

appearing in location j in the list. In a completely random list, for example, fj(q
[k]) =

1/n for every j and k, while in a fully sorted list, which we denote QS, fS
j (q

[k]) = 1 for

j = k and zero otherwise.

When SEO is not effective in our game, the distribution of scores for each site has

a different mean, where sites with higher qualities have higher score means, and thus

higher probability of appearing higher on the ranked list. The result is that the initial

ordered list displayed by the search engine in not completely random. When SEO is

effective, however, more relevant sites have an even higher probability of appearing

higher on the ranked list, as is shown below. The result is an ordered list that is, in

a sense, closer to the first best fully sorted list, but can never match it because of the

noisy process. A common claim in the literature is that sponsored link auctions improve

social and consumer welfare tremendously. We believe the benchmark case for such

auctions should not be randomly ordered lists, but rather lists resulting from organic

search rankings. Given these lists are not random, the change in welfare decreases. We

leave exploration of the magnitude of this welfare change for further research.

The structural representation of ordered lists allows for a comparison of two lists

according to their distance from the fully sorted list in terms of the expected consumer

surplus generated by a search on each list. The actual calculation and comparison

12We use the convention that q[1] is the highest order statistic
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of the surpluses, however, is complex for general distributions of errors, values and

qualities. A more natural measure of distance of ordered lists is to sum the sum-square

distances of each fj from the fully sorted fj for all j, yielding

δ =

j=n
∑

j=1

l=n
∑

l=1

[fj(q
[l])− fS

j (q
[l])]2.

We conjecture that lists with a smaller distance measure yield higher expected con-

sumer surplus. In what follows, we use several simplifications to show that consumer

surplus increases when SEO is effective.

We assume consumers traverse ordered lists in a sequential manner, starting with

the link at location 1. When encountering a link in position j, consumers click it and

visit the page it leads to, being satisfied with probability q̄j = E(fj). If the consumers

are not satisfied with the result, they move on to the next link with probability 0 <

cj < 1, or stop otherwise. The next link is then clicked, and the consumer is satisfied

with probability q̄j+1 and so forth. The consumer’s expected utility from traversing

the first k links is thus

Ek(Q) =
k

∑

j=1

[cj · E(fj) · Pr(z1 = . . . = zj−1 = 0)]

when zj is the probability that link j was searched and was found unsatisfying.

The ranking process, followed by the search process, is analogous to the search

engine performing a sequential all-pay auction of the links as described in Clark and

Riis (1998), where in each stage a single link is auctioned using the game described in

section 3, and is presented to the visitor. If the visitor is not satisfied with the result,

the winning website of the previous auction is removed from the list of competitors,

and the auction of another link commences again. We impose two simplifications to

analyze the game. First, we assume that the search engine picks a website to display

for link j from fj independently. This would mean that the case of a website being

displayed twice in a ranked search process might happen with some probability. This

probability decreases with the SEO effectiveness parameter. Second, we assume that

in the auction process for link j, only the weights on q[j] and q[j+1] are updated, both

for the distribution fj and the distributions of lower links on the list, fj+1 . . . fn.

Proposition 5 extends our previous results to the multiple links case, and shows that

when noise exists in the ranking mechanism, SEO can improve consumer’s welfare:
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Proposition 5 Let Q(α) = (f1(α), . . . , fn(α)) be the ranked list resulting from n se-

quential all-pay auctions with effectiveness level α, where in auction j the sites with

quality scores q[j] and q[j+1] are the sole competitors, then for any σ and for any

εi ∼ i.i.d(0, σ), 1 ≤ i ≤ n there exists a ∆v(σ) > 0 and a positive α̂(σ) such that

if vi > vi+1 +∆v(σ) for all 1 ≤ i ≤ n then Ek(Q(α̂)) > Ek(Q(0)) for every 1 ≤ k ≤ n.

An interesting result of our formulation is that consumer welfare increases no matter

how many links are searched before stopping. In a fully sorted list, however, assuming

that a consumer would always search through the first k links means that any order

of the first k links will yield the same consumer welfare, as these are k independent

Bernoulli trials. There is significant evidence, however, that a consumer’s probability

of visiting a site (also called a click-through-rate, or CTR) is dependent on the site’s

location on the ranked list, as well as on other results displayed on the list. Several

theoretical models explain this phenomenon, but typically show that the probability

of visiting any site is monotonically decreasing in its distance from the top of the

list. Using empirical data, Ghose and Yang (2009), Jeziorski and Segal (2009) and

others have shown that this dependence is not straightforward, and that CTRs do not

necessarily decrease in a monotonic way across a ranked list. Our assumption that

consumers flip a coin after unsuccessful searches to decide whether to continue or not

consolidates the majority of the evidence with our improved efficiency result.

7 Conclusion

We model search engine optimization as an all-pay auction where sites can invest in

improving their search ranking without changing their link’s relevance. We find that

some level of SEO can be useful to the search engine, because it acts as a mechanism

that improves the rankings by placing sites with high valuations for the links high.

In general, if sites’ valuations for consumers are aligned with how consumers value

them then SEO is beneficial to both the search engine and consumers. However,

sites might be worse off as they carry the extra burden of having to invest in SEO,

whereas if search engine optimization does not exist they do not have to make additional

effort. We further investigate how the presence of SEO affects sites incentives to invest

in quality improvement. We find that if the marginal cost of content is high then

sites may underinvest as a consequence of the presence of SEO. This phenomenon of
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underinvestment is more likely with higher SEO effectiveness levels.

Our paper has interesting practical implications. Contrary to the popular belief,

allowing sites to invest in improving their ranking without improving their relevance

can be beneficial to the search engine and the consumers, but can hurt the top sites

even if they end up high eventually. Nevertheless, search engines seem to work very

hard to reduce the possibility and effectiveness of these investments to zero and to

discourage sites from these activities. Our results suggest this is not always necessary

and that these activities do not necessarily compromise the results. However, search

engines should be careful not to make SEO too effective, so that sites do not invest

in SEO instead of content. In this case consumer welfare is hurt in the long run as

the funds sites spend on SEO are not transferred to consumers in matters of content

improvement.
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Appendix

We introduce several notations used in the following proofs. We decompose the final

scores of both sites into a headstart h and a bid as follows: s̃F1 = h + b1 and s̃F2 = b2

where h =
sS
1
−sS

2

α
. The decomposed scores have the property that for every b1, b2

s̃F1 ≥ s̃F2 ⇐⇒ sF1 ≥ sF2 and thus preserve the outcome of the SEO game.

The generic two player all-pay auction with headstarts has a unique mixed strategy

equilibrium where player 1 wins the auction with the following probabilities:

W1(h) = Pr(1 wins|h ≥ 0) =

{

1 h > v2
1− v2

2v1
+ h2

2v1v2
h ≤ v2

W1(h) = Pr(1 wins|h < 0) =











1− v2
2v1

h ≥ v2 − v1
v2
1
−h2

2v1v2
−v1 ≤ h < v2 − v1

0 otherwise

For completeness,we specify the players’ cumulative bidding distributions. When h

is positive,

F1(b) =







0 b ≤ 0
h+b
v2

b ∈ (0, v2 − h]

1 b > v2 − h
F2(b) =















0 b ≤ 0
1− v2−h

v1
b ∈ (0, h]

1− v2−b
v1

b ∈ (h, v2]

1 b > v2

(1)

When h is negative,

F1(b) =







0 b ≤ h
b−h
v2

b ∈ (h, v2 + h]

1 b > v2 + h
F2(b) =







0 b ≤ 0
1− v2−b

v1
b ∈ (0, v2]

1 b > v2

(2)

The value of the headstart is determined by the different realizations of the errors

ε1, ε2. There are four possible realizations with equal probability: h1 = h2 =
q1−q2

α
, h3 =

q1−q2+2σ
α

and h4 =
q1−q2−2σ

α
.

Recall, that we use E(α; σ) = E[Pr(1 wins)] to denote the efficiency of the ranking,

which matches the search engine’s utility function, with E(α) = 3/4 in the benchmark

case.

Proof of Lemma 1: Since E(α) = 1
2
W1(h1)+

1
4
W1(h3)+

1
4
W1(h4) and the headstart

does not depend on v1 and v2, it is enough to show that W1(·) is increasing in v1 and

decreasing in v2. These easily follow from the definition of W1(·). The results on q1
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and q2 follow from the fact that h1, h3, h4 are all increasing in q1 and decreasing in q2,

and W1(·) depend on them only through h in which it is increasing.

Proof of Proposition 1: We use the notation Pi = Pr(1 wins|hi). Given the

above described equilibrium of the two-player all-pay auctions we have Pi = W1(hi).

We further define α1 = q1−q2
v2

, α3 = q1−q2+2σ
v2

, α4 = q2−q1+2σ
v1

, α′
4 = q2−q1+2σ

v1−v2
. Note

that P1 = P2, since the headstarts in the first two case are equal. Thus E(α) =
1
2
P1 +

1
4
P3 +

1
4
P4, and P1 = 1 iff α ≤ α1, P3 = 1 iff α ≤ α3, P4 = 1 − v2

2v1
iff α ≥ α′

4.

Furthermore, it is easy to check that α1 ≤ α3, α4 ≤ α3, and α4 ≤ α′
4.

We proceed by separating the three parts of the proposition:

• Part 1: By setting α = α1, we have P1 = P3 = 1, and thus E(α) ≥ 3/4 ∀σ.

• Part 3: Similarly to Part 1, we set α̃ = α1 and we get P1 = P3 = 1. Then, if
q1−q2

2
< σ̃ < q1−q2

2
+ δ with a small enough δ > 0 then P4 > 0 as h4 > −v1,

therefore E(α̃, σ̃) > 3/4.

• Part 2:

In order to prove this part, we determine the α value that yields the highest

efficiency level for a given σ if v1/v2 > 3/2. As noted above E(α) is a linear

combination of W1(h1), W1(h3), W1(h4). Since W1(·) is continuous and h1, h3, h4

are all continuous in α, it follows that E(α) is continuous in α. However, E(α) is

not differentiable everywhere, but there are only a finite number of points where

it is not. Therefore it suffices to examine the sign of E ′(α) to determine whether

it is increasing or not. This requires tedious analysis, since depending on the

value of σ the formula describing E(α) is different in up to five intervals. We

identify five different formulas that E(α) can take in different intervals and take
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their derivatives:

E ′(α) = E ′
1(α) =

(q1 − q2 − 2σ)2

4α3v1v2
if α4 ≤ α ≤ α1&α′

4,

E ′(α) = E ′
2(α) = −(q1 − q2)

2

2α3v1v2
if α1 ≤ α ≤ α4,

E ′(α) = E ′
3(α) = −2(q1 − q2)

2 + (q1 − q2 + 2σ)2

4α3v1v2
if α3&α′

4 ≤ α,

E ′(α) = E ′
4(α) =

4σ2 − (q1 − q2)(4σ + q1 − q2)

4α3v1v2
if α1&α4 ≤ α ≤ α′

4,

E ′(α) = E ′
5(α) = −(q1 − q2)(4σ + q1 − q2)

2α3v1v2
if α3&α′

4 ≤ α.

In any other range the derivative of E(α) is 0. It is clear from the above formu-

las that E ′
1(α) is always positive and that E ′

2(α), E
′
3(α), and E ′

5(α) are always

negative. Furthermore, one can show that

E ′
4(α) > 0 iff σ >

1 +
√
2

2
(q1 − q2).

This allows us to determine the maximal E(α) for different values of σ in four

different cases.

1. If q1−q2
2

≤ σ ≤ v1
v2

q1−q2
2

then α4 ≤ α′
4 ≤ α1 ≤ α3 and the derivative of E(α)

takes the following values in the five intervals respectively: 0, E ′
1(α), 0, E

′
2(α), E

′
3(α).

Therefore E(α) is first constant, then increasing, then constant again and

then strictly decreasing. Thus, any value between α′
4 and α1 maximizes

E(α). Using the notation of Corollary 1, Â(σ) = [α′
4, α1].

2. If v1
v2

q1−q2
2

≤ σ ≤ v1+v2
v2

q1−q2
2

then α4 ≤ α1 ≤ α′
4 ≤ α3 and the deriva-

tive of E(α) takes the following values in the five intervals respectively:

0, E ′
1(α), E

′
4(α), E

′
2(α), E

′
3(α). Therefore E(α) is first constant, then de-

creasing, then strictly increasing, then depending on the sign of E ′
4(α) in-

creasing or decreasing, and finally strictly decreasing. Therefore if σ <
1+

√
2

2
(q1−q2) then α1 maximizes E(α), that is Â(σ) = {α1}. If σ = 1+

√
2

2
(q1−

q2) then E(α) is constant between α1 and α′
4, that is Â(σ) = [α1, α

′
4]. Fi-

nally, if σ = 1+
√
2

2
(q1 − q2) then Â(σ) = {α′

4}.
3. If v1+v2

v2

q1−q2
2

≤ σ ≤ v1
2v2−v1

q1−q2
2

then α1 ≤ α4 ≤ α′
4 ≤ α3 and the deriva-

tive of E(α) takes the following values in the five intervals respectively:
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0, E ′
2(α), E

′
4(α), E

′
2(α), E

′
3(α). In this case E ′

4(α) > 0 since σ ≥ v1+v2
v2

q1−q2
2

≥
(1+ 3

2
) q1−q2

2
> (1+

√
2) q1−q2

2
. Therefore E(α) is first constant, then decreas-

ing, then strictly increasing again and finally strictly decreasing. Thus,

there are two candidates for the argmax: α1 and α′
4. One can show that

E4(α
′
4) > E2(α1) iff v1 >

√
2v2, therefore α′

4 maximizes E(α) in this case.

4. If v1
2v2−v1

q1−q2
2

≤ σ then α1 ≤ α4 ≤ α3 ≤ α′
4 and the derivative of E(α) takes

the following values in the five intervals respectively: 0, E ′
2(α), E

′
4(α), E

′
5(α), E

′
3(α).

Similarly to the previous case E ′
4(α) > 0, therefore E(α) is first constant,

then decreasing, then strictly increasing again and finally strictly decreasing.

Comparing the two candidates for the argmax yields that E4(α3) > E2(α1)

iff v1 > (3/2)v2, that is α3 maximizes E(α) in this case.

In each of the cases above, it is clear that the maximum is higher than E(0) = 3/4.

In cases 1 and 2 E(α) is strictly increasing after a constant value of 3/4 and in

cases 3 and 4 we directly compared to E2(α1) = 3/4. This completes the proof

of Part 2 and the entire proposition.

Proof of Corollary 1: In the proof of Proposition 1, we determined the values

of α that maximizes E(α) for different σ’s. In summary:

Â(σ) =



































[α′
4, α1] if q1−q2

2
≤ σ ≤ v1

v2

q1−q2
2

α1 if v1
v2

q1−q2
2

≤ σ ≤ (1 +
√
2) q1−q2

2

[α1, α
′
4] if σ = (1 +

√
2) q1−q2

2

α′
4 if (1 +

√
2) q1−q2

2
≤ σ ≤ v1+v2

v2

q1−q2
2

α′
4 if v1+v2

v2

q1−q2
2

≤ σ ≤ v1
2v2−v1

q1−q2
2

α3 if v1
2v2−v1

q1−q2
2

≤ σ

It is straightforward to check that all of α1, α3, and α′
4 are increasing in σ and that

the Â(σ) is increasing over the entire range.

Proof of Corollary 2: First, we describe the payoffs of the two players in an

all-pay auction with headstarts. When players follow the mixed strategies described in

(1) and (2), player 1’s payoff is:

π1(h) =







0 h ≤ v2 − v1
v1 − v2 + h v2 − v1 < h < v2

1 h ≥ v2
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where h is the headstart of player 1. The payoff of player 2 can be obtained from the

same formula by changing the roles. Then, we get player i’s total payoff by mixing the

above quantities:

π1 =
1

2
π1(h1) +

1

4
π1(h3) +

1

4
π1(h4)

Then following the same steps as in the proof of Proposition 1, we can determine the

values of α that maximizes Player 1’s payoff for different σ’s. We get the following

results. If v1 ≤ 3v2 then

argmax
α

π1 =

{

α1 if σ ≤ v1
v2

q1−q2
2

[0, α1] if v1
v2

q1−q2
2

< σ

In case of 3v2 < v1 ≤ 4v2

argmax
α

π1 =







α1 if σ ≤ v1
v2

q1−q2
2

α3 if v1
v2

q1−q2
2

< σ ≤ v1
4v2−v1

q1−q2
2

[0, α1] if v1
4v2−v1

q1−q2
2

< σ

Finally, when v1 ≤ 4v2 we have

argmax
α

π1 =

{

α1 if σ ≤ v1
v2

q1−q2
2

s3 if v1
v2

q1−q2
2

< σ

It is easy to see that with exception of the two cases when the optimal α is anywhere

between 0 and α1, Player 1 is strictly better off with a particular positive level of SEO

than without it.

Proof of Proposition 2: Recall that we can determine Player 1’s payoff as

π1 =
1

2
π1(h1) +

1

4
π1(h3) +

1

4
π1(h4),

whereas Player 2’s payoff is given by reversing the roles. Examining the above formula

shows that each players payoff only depends on q1− q2 and not the individual qualities

and is a continuous function which is linear with different slopes in different intervals.

The function takes 3 different forms in the cases of vα/2 ≥ σ, vα/4 ≥ σ < vα/2,

σ < vα/4. In all cases the slope is less than or equal to 1
4
1
s
for q1 − q2 < 0. In the first

two cases the slope is decreasing for q1 − q2 > 0 with a slope of 1
2
1
s
and 3

4
1
s
above zero,

respectively in the two cases. In the third case the slope above zero is first 3
4
1
s
then

1
s
. First we show that only (0, 0) can be a pure strategy equilibrium in the first stage.
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Since the slope below zero is quiet shallow, if the marginal cost of content c > 1
4
1
s
then

sites have an incentive to decrease the investment. If, on the other hand c ≤ 1
4
1
s
then

sites have an incentive to invest more since the slope above zero is always higher than

this. To show when (0, 0) is an equilibrium fix q2 = 0 and consider when Player 1 has

an incentive invest more than 0. In the first two cases the critical value of c will just

be the slope of Player 1’s payoff function above zero: 1
2
1
s
and 3

4
1
s
, respectively. Player

1 does not have an incentive to deviate from zero iff c is higher than the respective

slope. In the third case determining the critical value requires more detailed analysis

since the slope increases. The analysis reveals that the best player 1 can do is achieve

a payoff of v − 2σ/s− σ/(2s) with an investment of vs− 2σ yielding the critical value

for c and completing the proof.

Proof of Proposition 3: Following the same steps as in the proof of Proposition

2 we can determine the payoffs as a function of each players quality investment. The

same logic shows that the only possible pure strategy equilibrium is the one in which

players do not invest in content. One can then separate three cases in which the payoff

functions take different forms and show that the slope is always at most 1
α
+m.

Proof of Proposition 4: First, we derive the efficiency of the ranking process

given the error term. Let f∆(.) be the density function of the distribution of ε1 − ε2.

If α is high enough then the headstarts diminish and the sum of the valuation and the

headstart for sites 3 and below will be lower than for 1 and 2. In an all-pay auction this

leads to only the first two site’s participation. Then using the notation of the proof of

Proposition 1 we have

Pr(1 wins) = E(s) = EW1

(

q1 − q2 + σε1 − σε2
α

)

=

∫ +∞

−∞
W1(h)f∆

((

h− q1 + q2
σ

)

α

)

dh.

Note that for positive h the value of W1(h) is strictly higher than 1 − v1/2v2 and for

h > v2 − v1 it is exactly 1 − v2/2v1. Furthermore if α is high enough then for an

arbitrary small δ we have

∫ v2−v1

−∞
f∆

((

h− q1 + q2
σ

)

α

)

dh < δ.

Let α̂ denote such a high α and let δ be smaller than 1 − E(0) > 0. Then E(α̂) >

(1− v2/2v1)(1− δ). Finally, let v̂ = v2
2(1−E(0))/(1−δ)

. Then v1 > v̂ yields E(α̂) > E(0).
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Proof of Proposition 5: Our proof uses an induction on k, the number of links

searched by the consumer. When k = 1, proposition 4 gives the necessary conditions

and result. Given the independence assumption on choice of links to display in each

auction the expected utility of the consumer from searching k links is

Ek = Ek−1 + (1− Ek−1)ckq̄k > Ek−1.

By the induction hypothesis, there exists an α̂(σ) and a ∆v(σ) such that if vi >

vi+1 +∆v(σ) for 1 ≤ i ≤ k − 1 then ∆Ek−1 = Ek−1(Q(α̂))− Ek−1(Q(0)) > 0.

Suppose vk > vk+1 +∆v(σ). Since Ek > Ek−1 for every k and every α, it must be

that ∆Ek ≥ ∆Ek−1 > 0 which concludes the proof.
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