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1. Introduction 

The relationship between the growth rate of a quantifiable phenomenon and its 

initial size is a question with a long history in statistics: do larger entities grow more 

quickly, or more slowly? On the other hand, perhaps no relationship exists and the rate 

is independent of size. A fundamental contribution to this debate is that of Gibrat 

(1931), who observed that the distribution of size (measured by sales or the number of 

employees) of firms could be approximated well with a lognormal, and that the 

explanation lay in the growth process of firms tending to be multiplicative and 

independent of their size. This proposition became known as Gibrat’s Law and 

prompted a deluge of work exploring the validity of this Law for the distribution of 

firms (see the surveys of Sutton (1997) and Santarelli et al. (2006)). Gibrat’s Law 

establishes that no regular behaviour of any kind can be deduced between growth rate 

and initial size.  

The fulfilment of this empirical proposition also has consequences for the 

distribution which follows the variable; in the words of Gibrat (1931) himself “the Law 

of proportionate effect will therefore imply that the logarithms of the variable will be 

distributed following the (normal distribution)”. Some years later Kalecki (1945), in a 

classic article, tested this statistical relationship between lognormality and proportionate 

growth under certain conditions, consolidating the conceptual binomial Gibrat’s Law – 

lognormal distribution.  

In the field of urban economics, Gibrat’s Law, especially since the 1990s, has 

given rise to numerous empirical studies contrasting its validity for city size 

distributions, arriving at a majority consensus, though not absolute, that it holds in the 

long term. Gibrat’s Law presents the added advantage that, as well as explaining 

relatively well the growth of cities, it can be related to another empirical regularity well 
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known in urban economics, Zipf’s Law, which appears when the so-called Pareto 

distribution exponent is equal to the unit1. The term was coined after a work by Zipf 

(1949), which observed that the frequency of the words of any language is clearly 

defined in statistical terms by constant values. This has given rise to theoretical works 

explaining the fulfilment of Gibrat’s Law in the context of external urban local effects 

and productive shocks, relating them with Zipf’s Law and associating them directly to 

an equilibrium situation. These theoretical works include Gabaix (1999), Duranton 

(2006, 2007), and Córdoba (2008).  

Returning to the empirical side, there is an apparent contradiction in these 

studies, as they normally accept the fulfilment of Gibrat’s Law but at the same time 

affirm that the distribution followed by city size is a Pareto distribution, very different 

to the lognormal. Recently, Eeckhout (2004) was able to reconcile both results, by 

demonstrating (as Parr and Suzuki (1973) affirm in a pioneering work) that, if size 

restrictions are imposed on the cities, taking only the upper tail, this skews the analysis. 

Thus, if all cities are taken, it can be found that the true distribution is lognormal, and 

that the growth of these cities is independent of size. However, to date, Eeckhout (2004) 

is the only study to consider the entire city size distribution. But this is a short term 

analysis2, when the phenomenon under study (Gibrat’s Law) is, by definition, a long 

term result. 

The aim of this work is to test empirically the validity of Gibrat’s Law in the 

growth of cities, using data for all the twentieth century of the complete distribution of 

                                                 
1 If city size distribution follows a Pareto distribution the following expression can be deduced: 

SbaR lnln ⋅−= , where R  is rank (1 for the biggest city, 2 for the second biggest and so on), S  is 

the size or population and a  and b  are parameters, this latter being known as the Pareto exponent. 
Zipf’s Law is fulfilled when b equals the unit. 
2 Eeckhout (2004) takes data from the United States census of 1990 and 2000, possibly because they are 
the only ones to be available online. Levy (2009), in a comment to Eeckhout (2004), and Eeckhout (2009) 
in the reply, also consider no truncation point, but only for the 2000 US Census data. 
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cities (without any size restrictions or with no truncation point) in three countries: the 

US, Spain and Italy. The following section offers a brief overview of the literature on 

Gibrat’s Law and cities and the results obtained. Section 3 presents the databases, with 

special attention to the US census.  

From the results we deduce that, when we consider the complete distribution of 

cities in the short term (Section 4), a tendency to divergence is seen. However, the 

empirical evidence (Section 5) shows that this does not impede city size distribution 

being adequately approximated as a lognormal distribution. Finally, in Section 6 a long 

term viewpoint is taken. Panel data unit root tests confirm the validity of Gibrat’s Law 

in the upper tail distribution (Section 6.1), and we find evidence in favour of a weak 

Gibrat's Law (size affects the variance of the growth process but not its mean) when 

using non-parametric methods which relate growth rate with city size (section 6.2). The 

work ends with our conclusions.  

 

2. Gibrat’s Law for cities. An overview of the literature 

In the 1990s numerous studies began to appear which empirically tested the 

validity of Gibrat’s Law. Table 1 shows the classification of all the studies on urban 

economics that we know of. While the countries considered, statistical and econometric 

techniques used and sample sizes are heterogeneous, the predominating result is the 

acceptance of Gibrat’s Law.  

Thus, both Eaton and Eckstein (1997) and Davis and Weinstein (2002) accept its 

fulfilment for Japanese cities, although they use different sample sections (40 and 303 

cities, respectively), and time horizons. Davis and Weinstein (2002) affirm that long-run 

city size is robust even to large temporary shocks and, in studying the effect of Allied 
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bombing in the Second World War, deduce that the effect of these temporary shocks 

disappears completely in less than 20 years.  

Brakman et al. (2004) come to the same conclusion when analysing the impact 

of bombardment on Germany during the Second World War, concluding that, for the 

sample of 103 cities examined, bombing had a significant but temporary impact on 

post-war city growth. Nevertheless, nearly the same authors in Bosker et al. (2008) 

obtain a mixed result with a sample of 62 cities in West Germany: correcting for the 

impact of WWII, Gibrat's Law is found to hold only for about 25% of the sample.  

Meanwhile, both Clark and Stabler (1991) and Resende (2004) also accept the 

hypothesis of proportionate urban growth for Canada and Brazil respectively. The 

sample size used by Clark and Stabler (1991) is tiny (the 7 most populous Canadian 

cities), although the main contribution of their work is to propose the use of data panel 

methodology and unit root tests in the analysis of urban growth. This is also the 

methodology which Resende (2004) applies to his sample of 497 Brazilian cities. 

However, Henderson and Wang (2007) strongly reject Gibrat's Law and a unit root 

process in their worldwide data set on all metro areas over 100,000 from 1960 to 2000. 

For the case of the US, there are also several works accepting statistically the 

fulfilment of Gibrat’s Law, whether at the level of cities (Eeckhout (2004) is the first to 

use the entire sample without size restrictions), or with MSAs (Ioannides and Overman 

(2003), whose results reproduce Gabaix and Ioannides, 2004). Also for the US, 

however, Black and Henderson (2003) reject Gibrat’s Law for any sample section, 

although their database of MSAs is different3 to that used by Ioannides and Overman 

(2003). 

                                                 
3 The standard definitions of metropolitan areas were first published in 1949 by what was then called the 
Bureau of the Budget, predecessor of the current Office of Management and Budget (OMB), with the 



 6

Other works exist rejecting the fulfilment of Gibrat’s Law. Thus, Guérin-Pace 

(1995) finds that in France for a wide sample of cities with over 2,000 inhabitants 

during the period 1836-1990 there appears to be a fairly strong correlation between city 

size and growth rate, a correlation which is accentuated when the logarithm of the 

population is considered. This result goes against that obtained by Eaton and Eckstein 

(1997) when considering only the 39 most populated French cities. Soo (2007) and 

Petrakos et al. (2000) also reject the fulfilment of Gibrat’s Law in Malaysia and Greece, 

respectively.  

For the case of China, Anderson and Ge (2005) obtain a mixed result with a 

sample of 149 cities of more than 100,000 inhabitants: Gibrat’s Law appears to describe 

the situation well prior to the Economic Reform and One Child Policy period, but later 

Kalecki’s reformulation seems to be more appropriate. 

What we wish to emphasize is that, with the exception of Eeckhout (2004), none 

of these studies considers the entire distribution of cities, as all of them impose a 

truncation point, whether explicitly, by taking cities above a minimum population 

threshold or implicitly, by working with MSAs4. This is usually due to a practical 

reason of data availability. For this reason most studies focus on analysing the most 

populous cities, the upper tail distribution. There are two very reasonable justifications 

for this approach. First, the largest cities represent most of the population of a country.  

And second, the growth rate of the biggest cities has less variance than the smallest ones 

(scale effect).  

                                                                                                                                               
designation Standard Metropolitan Area. This means that if the objective is making a long term analysis it 
will be necessary to reconstruct the areas for earlier periods, in the absence of a single criterion. 
4 In the US, to qualify as a MSA a city needs to have 50,000 or more inhabitants, or the presence of an 
urbanised area of at least 50,000 inhabitants, and a total metropolitan population of at least 100,000 
(75,000 in New England), according to the OMB definition. In other countries similar criteria are 
followed, although the minimum population threshold needed to be considered a metropolitan area may 
change. 
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However, it should be pointed out that any test done on this type of sample will 

be local in character, and the behaviour of large cities cannot be extrapolated to the 

entire distribution. This type of deduction can lead to erroneous conclusions, as it must 

not be forgotten that what is being analysed is the behaviour of a few cities, which as 

well as being of a similar size, can present common patterns of growth. Therefore, we 

might conclude that Gibrat’s Law is fulfilled when in fact we have focused our analysis 

on a club of cities which cannot be representative of all urban centres. 

 

3. The databases 

We use city population data from three countries: the US, Spain and Italy. The 

US is an extremely interesting country in which to analyse the evolution of urban 

structure, as it is a relatively young country whose inhabitants are characterised by high 

mobility.  On the other hand we have the European countries, with a much older urban 

structure and inhabitants who present greater resistance to movement; specifically, 

Cheshire and Magrini (2006) estimate mobility in the US is fifteen times higher than in 

Europe.  

Considering these two types of country gives us information about different 

urban behaviours, as while Spain and Italy have an already consolidated urban tissue 

and new cities are rarely created (urban growth is produced by population increase in 

existing cities), in the US urban growth has a double dimension: as well as increases in 

city size, the number of cities also increases, with potentially different effects on city 

size distribution. Thus, the population of cities (incorporated places) goes from 

representing less than half the total population of the US in 1900 (46.99%) to 61.49% in 
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2000; at the same time the number of cities increases by 82.11%, from 10,596 in 1900 

to 19,296 in 2000. 

The data for the US we are using are the same as those used by González-Val 

(2009). Our base, created from the original documents of the annual census published 

by the US Census Bureau, www.census.gov, consists of the available data of all 

incorporated places without any size restriction, for each decade of the twentieth 

century. The US Census Bureau uses the generic term incorporated place to refer to the 

governmental unit incorporated under state Law as a city, town (except in the states of 

New England, New York and Wisconsin), borough (except in Alaska and New York), 

or village, and which has legally established limits, powers and functions.  

The number of cities (in brackets) corresponding to each period is: 1900 (10,596 

cities), 1910 (14,135), 1920 (15,481), 1930 (16,475), 1940 (16,729), 1950 (17,113), 

1960 (18,051), 1970 (18,488), 1980 (18,923), 1990 (19,120), and 2000 (19,296).  

Two details should be noted. First, that all the cities corresponding to Alaska, 

Hawaii, and Puerto Rico for each decade are excluded, as these states were annexed 

during the 20th century (Alaska and Hawaii in 1959, and the special case of Puerto 

Rico, which was annexed in 1952 as an associated free state), and data do not exist for 

all periods. Their inclusion would produce geographical inconsistency in the samples, 

which would not be homogenous in geographical terms and thus could not be 

compared. And second, for the same reason we also exclude all the unincorporated 

places (concentrations of population which do not form part of any incorporated place, 

but which are locally identified with a name), which began to be accounted after 1950. 

However, these settlements did exist earlier, so that their inclusion would again present 

a problem of inconsistency in the sample. Also, their elimination is not quantitatively 
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important; in fact there were 1,430 unincorporated places in 1950, representing 2.36% 

of the total population of the US, which by 2000 would be 5,366 places and 11.27%. 

For Spain and Italy the geographical unit of reference is the municipality and the 

data comes from the official statistical information services. In Italy this is the Servizio 

Biblioteca e Servizi all'utenza, of the Direzione Centrale per la Diffusione della Cultura 

e dell'informazione Statistica, part of the Istituto Nazionale di Statistica, www.istat.it, 

and for Spain we have taken the census of the Instituto Nacional de Estadística5, INE, 

www.ine.es. The de facto resident population has been taken for each city.   

We have taken the data corresponding to the census of each decade of the 20th 

century. For Italy data for the following years have been considered (in brackets, the 

number of cities for each year): 1901 (7,711), 1911 (7,711), 1921 (8,100), 1931 (8,100), 

1936 (8,100), 1951 (8,100), 1961 (8,100), 1971 (8,100), 1981 (8,100), 1991 (8,100), 

and 2001 (8,100). No census exists in Italy for 1941, due to its participation in the 

Second World War, so we have taken the data for 1936. For Spain the following years 

are considered: 1900 (7,800), 1910 (7,806), 1920 (7,812), 1930 (7,875), 1940 (7,896), 

1950 (7,901), 1960 (7,910), 1970 (7,956), 1981 (8,034), 1991 (8,077), and 2001 

(8,077).  

 

4. Gibrat’s Law in the short term: convergent, parallel, vs. divergent city growth 

processes 

In this section we offer a first approach to the behaviour of city growth from a 

short term perspective, i.e., considering each decade individually. Following Gabaix and 

                                                 
5  The official INE census have been improved in an alternative database, created by Azagra et al. (2006), 
reconstructing the population census for the twentieth century using territorially homogeneous criteria. 
We have repeated the analysis using this database and the results are not significantly different, so we 
have presented the results deduced from the official data. 
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Ioannides (2004), Gibrat’s Law states that the growth rate of an economic entity (firm, 

mutual fund, city) of size S  has a distribution function with mean and variance that are 

independent of S . Therefore, if itS  is the size of city i  at the time t  and g  is its 

growth rate, then ( )gSS itit += − 11 . Taking logarithms and adding that the rate depends 

on the initial size, we can obtain the following general expression of the growth 

equation6,7: 

itititit uSSS ++=− −− 11 lnlnln βμ ,  (1) 

where ( )g+= 1lnμ  and itu  is a random variable representing the random shocks which 

the growth rate may suffer, which we shall suppose to be identically and independently 

distributed for all cities, with ( ) 0=ituE  and ( ) 2σ=ituVar ti,∀ . If 0=β  Gibrat’s Law 

holds and we obtain that growth is independent of the initial size. 

 In this case, ( 0=β ), it is easy to prove that the expected value of the size of city 

i  at the time t  depends only on the number of periods which have passed and on size in 

the first period: 

( ) 0lnln iit StSE +⋅= μ ,    (2) 

while the variance would be given by:  

( ) 2ln σ⋅= tSVar it .     (3) 

                                                 
6 The size of a city can be defined, according to the literature, in three ways: in levels ( itS ), in relative 

values (
t

it

S

S
, tS  is the mean size) or in shares ( ∑

i

it

it

S

S
). The crucial parameter in (1) is β , which 

determines whether Gibrat’s Law holds. The specification (1) in logs makes the estimation of β  robust 

to the three different definitions of city size. 
7 Taking logarithms we reduce the distortions that may occur in the mean and variance of the growth rate 
due to changes in the scale of the variable.  



 11

Consequently, the mean grows over time, and variance does too. The increased 

variance over time is consistent with the prediction of a Brownian motion: proportionate 

growth leads to a lognormal distribution with standard deviation that is increasing in 

time t .  

We adopt the Eaton-Eckstein terminology of convergent, parallel, vs. divergent 

city growth processes. Remember that if 0=β  city growth is parallel, as it does not 

depend on initial size. Thus, if the estimation of β  is significantly different to zero we 

will reject the fulfilment of Gibrat’s Law. In the case of being greater than zero, we will 

have divergent growth, because city growth would depend directly and positively on 

initial size. A sustained process of divergent growth of this kind would result in an 

increasingly asymmetrical distribution, with small cities getting further and further 

away from large ones. And if β  is negative urban growth would be convergent, as the 

growth-size ratio would be negative; a larger initial population would mean less growth 

and vice versa, so that in the long term distribution would tend to be concentrated 

around a median value. It is simple to prove that when 0≠β expressions (2) and (3) 

change, becoming 

( ) ( ) ( ) 0ln1
11

ln i

t
t

it SSE ++
−+

⋅= β
β

βμ ,   (4) 

( ) ( )
ββ

βσ
2

11
ln

2

2
2

+
−+

⋅=
t

itSVar ,    (5) 

and it can be demonstrated (see Appendix) that when 1>t  and growth is divergent 

( )0>β  variance (5) grows even faster than in (3), while if city growth were convergent 

( )0<β  variance (5) would be less than in (3). 
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The first result we wish to present is the estimation of equation (1). We will 

focus on the analysis of the estimation of parameterβ , as whether Gibrat’s Law is 

fulfilled or not depends on its significance and its sign. Table 2 shows the results of the 

OLS estimation of β  for each decade in the three countries considering all the cities, 

without size restrictions. The results of these regressions are usually heteroskedastic, so 

we have calculated the t-ratios using White’s (1980) Heteroskedasticity-Consistent 

Standard Errors.  

The first conclusion we obtain is that when the entire sample of cities is 

considered, β  is always significantly different to zero, for any period and in the three 

countries. This result is robust as, while the literature usually admits the possibility of 

occasional deviations from Gibrat’s Law in the short term (with some periods in which 

urban growth may be convergent or divergent), we are rejecting the fulfilment of 

Gibrat’s Law for each decade of the 20th century and for three nations. But the really 

surprising finding is that despite these three countries having such different urban 

structures and histories, the estimated parameter is always positive (except in the period 

1970-1980 in the US), so that the three exhibit divergent behaviour throughout the 20th 

century.  

The exception to this process of divergence is the estimation obtained for the US 

in the decade 1970-1980. The fact that this parameter is negative shows that during this 

decade the most populous cities grew more slowly. However, this result is atypical, and 

reflects two demographical circumstances in the United States during this period. First, 

between 1960 and 1990 there was a decline in the growth of the total population of the 

US, going from a growth rate of 18.5% in 1950-1960 to 9.8% in 1980-19908. Then, that 

the total population grew by only 11.4% in 1970-1980, the third lowest growth rate in 

                                                 
8 Source: http://www.census.gov/population/censusdata/table-4.pdf.  
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the history of the US since the first census was published in the late 18th century. And 

in this context of low growth of the total population, the percentage of urban population 

also fell (understood now as the percentage of the population associated with 

incorporated places), going from 64.51% of the total population in 1970 to 61.78% in 

1980, which is by far the biggest fall in the 20th century. The fact that our estimation of 

β  is negative would reflect the cities in the upper half of the distribution being where 

growth slowed most.  

We have obtained that, in the short term, the city growth process was divergent 

in the three countries. However, this conclusion can change in the long term. But first 

we will analyse in section 5 the consequences on city size distribution of the divergent 

tendency we have observed. 

 

5. What about city size distribution? Lognormality is maintained 

In the section above, it has been shown that the overall result in the short term 

when the whole distribution is used is divergence. Also, as 0>β  the variance will 

grow more than linearly (equation (5)), so that the growth process could be explosive 

and it would be expected that city size distribution would be increasingly asymmetrical. 

But our results show that the growth process lead to a lognormal distribution with 

standard deviation that is increasing in time t  (as a Brownian motion would predict) in 

the three countries. 

We carried out Wilcoxon’s lognormality test (rank-sum test), which is a non-

parametric test for assessing whether two samples of observations come from the same 

distribution. The null hypothesis is that the two samples are drawn from a single 

population, and therefore that their probability distributions are equal, in our case, the 
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lognormal distribution. Wilcoxon’s test has the advantage of being appropriate for any 

sample size. The more frequent normality tests –Kolmogorov-Smirnov, Shapiro-Wilks, 

D’Agostino-Pearson– are designed for small samples, and so tend to reject the null 

hypothesis of normality for such large sample sizes, although the deviations from 

lognormality are arbitrarily small. 

Table 3 shows the results of the test. The conclusion is that the null hypothesis 

of lognormality is accepted at 5% for all periods of the 20th century in Spain and Italy. 

In the US a temporal evolution can be seen; in the first decades lognormality is rejected 

and the p-value decreases over time, but from 1930 the p-value begins to grow until 

lognormal distribution is accepted at 5% from 1960 onwards (the same conclusion is 

reached by González-Val (2010) through a graphic examination of the adaptive kernels 

corresponding to the estimated distribution of different decades). In fact, if instead of 

5% we take a significance level of 1%, the null hypothesis would only be rejected in 

1920 and 1930. 

However, the shape of the distribution in the US for the period 1900-1950 is not 

far from lognormality, either. Figure 1 shows the empirical density functions estimated 

by adaptive Gaussian kernels for 1900 and for 1950 (the last in which lognormality is 

rejected). The motive for this systematic rejection appears to be an excessive 

concentration of density in the central values, higher than would correspond to the 

theoretical lognormal distribution (in black).  Starting in 1900 with a very leptokurtic 

distribution, with a great deal of density concentrated in the mean value, from 1930 (not 

shown), when the growth of urban population slows, the distribution loses kurtosis and 

concentration decreases, accepting lognormality statistically at 5% from 1960. 

To sum up, both the test carried out and the visualisation of the estimated 

empirical density functions seem to corroborate that city size distribution can be 
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approximated correctly as a lognormal (in Spain and Italy during the entire 20th 

century, and in the US for most decades, depending on the significance level), despite 

urban growth having been divergent every decade during the entire 20th century for the 

three countries (with the single exception of the period 1970-1980 in the US). 

 

6. Gibrat’s Law in the long term 

In this section, we change our temporal perspective to the long term (the entire 

twentieth century). In order to carry out this analysis, we transform city population ( )itS  

to city relative size ( )its , defined as 

∑
=

==
N

i

it

it

t

it

it

S
N

S

S

S
s

1

1
, as in a long term temporal 

perspective of steady state distributions it is necessary to use a relative measure of size. 

This approach is more interesting, as the phenomenon under study (Gibrat’s 

Law) is, by definition, a long term result. For this we combine parametric methods (the 

panel dimension of our data has been exploited in order to test for a unit root) with non-

parametric ones, enabling us to study the relationship of growth and the variance of 

growth with city size.  

 

6.1. Parametric analysis: panel unit root testing 

Clark and Stabler (1991) suggested that testing for Gibrat’s Law is equivalent to 

testing for the presence of a unit root. This idea has also been emphasized by Gabaix 

and Ioannides (2004) who expect “that the next generation of city evolution empirics 

could draw from the sophisticated econometric literature on unit roots”. In line with 

this suggestion most studies now apply unit root tests (see Table 1). 
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Some authors (Black and Henderson, 2003; Henderson and Wang, 2007; Soo, 

2007) test the presence of a unit root by proposing a growth equation similar to our 

equation (1), which they estimate using panel data. Nevertheless, as pointed out by 

Gabaix and Ioannides (2004) and Bosker et al. (2008), this methodology presents some 

drawbacks. First, the periodicity of our data is by decades, and we have only 11 

temporal observations (decade-by-decade city sizes over a total period of 100 years), 

when the ideal would be to have at least annual data. And second, the presence of cross-

sectional dependence across the cities in the panel can give rise to estimations which are 

not very robust. It has been well established in the literature that panel unit root and 

stationarity tests that do not explicitly allow for this feature among individuals.  

(Banerjee et al. 2005). 

For this, we use one of the tests especially created to deal with this question: 

Pesaran’s (2007) test for unit roots in heterogeneous panels with cross-section 

dependence is calculated on the basis of the CADF statistic (cross-sectional augmented 

ADF statistic). 

To eliminate the cross dependence, the standard Dickey-Fuller (or Augmented 

Dickey-Fuller, ADF) regressions are augmented with the cross section averages of 

lagged levels and first-differences of the individual series, such that the influence of the 

unobservable common factor is asymptotically filtered.  

The test of the unit root hypothesis is based on the t-ratio of the OLS estimate of 

ib in the following cross-sectional augmented DF (CADF) regression: 

ittititiiiit eydycybay +Δ+++=Δ −− 11, .  (6) 

We will test for the presence of a unit root in the natural logarithm of city relative 

size ( )itit sy ln=  taking this into account. Null hypothesis assumes that all series are 
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non-stationary, and Pesaran's CADF is consistent under the alternative that only a 

fraction of the series is stationary. 

However, the problem with Pesaran’s test is that it is not designed to deal with 

such large panels (22,078 cities in the US, 8,077 in Spain and 8,100 in Italy), especially 

when so few temporal observations are available ( )11, =∞→ TN . For this reason, we 

must limit our analysis to the largest cities (although the next section does offer a long 

term analysis of the entire sample). 

Table 4 shows the results of Pesaran’s (2007) test, both the value of the test 

statistic and the corresponding p-value, applied to the upper tail distribution until the 

500 largest cities in the initial period have been considered. All statistics are based on 

univariate AR(1) specifications including constant and trend. 

The null hypothesis of a unit root is not rejected in the US or Italy for any of the 

sample sizes considered, providing evidence in favour of the long term validity of 

Gibrat’s Law. Spain’s case is different, as when the sample size is more than the 200 

largest cities, the unit root is rejected, indicating a relationship between relative size and 

growth rate even for the largest cities. 

 

6.2. Non-parametric analysis: kernel regression conditional on city size 

This section on the nonparametric analysis follows closely the analysis in 

Ioannides and Overman (2003), and Eeckhout (2004). It consists of taking the following 

specification: 

( ) iii smg ε+= ,   (7) 
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where ig  is the growth rate ( )1lnln −− itit ss  normalised (subtracting the mean and 

dividing by the standard deviation) and is  is the logarithm of the ith city relative size. 

Instead of making suppositions about the functional relationship m , ( )sm̂  is estimated 

as a local mean around the point s  and is smoothed using a kernel, which is a 

symmetrical, weighted and continuous function in s .  

To analyse all the 20th century we build a pool with all the growth rates between 

two consecutive periods. This enables us to carry out long term analysis. And the 

Nadaraya-Watson method is used, exactly as it appears in Härdle (1990), based on the 

following expression9: 

( )
( )
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=

−

−
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ˆ ,  (8) 

where hK  denotes the dependence of the kernel K  (in this case an Epanechnikov) on 

the bandwidth h . We use the same bandwidth (0.5) in all estimations in order to permit 

comparisons between countries. 

Starting from this calculated mean ( )sm̂  , the variance of the growth rate ig  is 

also estimated, again applying the Nadaraya-Watson estimator: 
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2

ˆ

σ̂ . (8) 

                                                 
9 The calculation was done with the KERNREG2 Stata module, developed by Nicholas J. Cox, Isaias H. 
Salgado-Ugarte, Makoto Shimizu and Toru Taniuchi, and available online at: 
 http://ideas.repec.org/c/boc/bocode/s372601.html.  
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The estimator is very sensitive, both in mean and in variance, to atypical values. 

For this reason we decide to eliminate from the sample the 5% smallest cities, as they 

usually have much higher growth rates in mean and in variance. This is logical; we are 

discussing cities of under 200 inhabitants, where the smallest increase in population is 

very large in percentage terms.  

Gibrat’s Law implies that growth is independent of size in mean and in variance. 

As growth rates are normalised, if Gibrat’s Law in mean were strictly fulfilled, the 

nonparametric estimate would be a straight line on the zero value. Values different to 

zero involve deviations from the mean. And the estimated variance of the growth rate 

would also be a straight line in the value one, which would mean that the variance does 

not depend on the size of the variable analysed. To be able to test these hypotheses, we 

have constructed bootstrapped 95-percent confidence bands (calculated from 500 

random samples with replacement). 

Figure 2 shows the nonparametric estimates of the growth rate of a pool for the 

entire 20th century for the US (1900-2000, 152,475 observations), Spain (1900-2001, 

74,100 observations) and Italy (1901-2001, 73,260 observations). For the US the value 

zero is always in the confidence bands, so that it cannot be rejected that the growth rates 

are significantly different for any city size. For Spain and Italy the estimated mean 

grows with the sample size, although it is significantly different to zero only for the 

largest cities10. One possible explanation is historical: both Spain and Italy suffered 

wars on their territories during the 20th century, so that for several decades, the largest 

cities attracted most of the population11. Therefore, we find evidence in favour of 

                                                 
10 In the case of Spain, this divergent behaviour could be the explanation for the rejection obtained in the 
previous section of the unit root null hypothesis. 
11 This result can be related with the “safe harbour effect” of Glaeser and Shapiro (2002), which is a 
centripetal force which tends to agglomerate the population in large cities when there is an armed conflict. 



 20

Gibrat’s Law for the US throughout the 20th century. Also for Spain and Italy, although 

the largest cities would present some divergent behaviour.  

Figure 2 also shows the nonparametric estimates of the variance of growth rate 

of a pool for the entire 20th century for the US, Spain and Italy. As expected, while for 

most of the distribution the value one falls within the confidence bands, indicating that 

there are no significant differences in variance, the tails of the distribution show 

differentiated behaviours. In the US the variance clearly decreases with the size of the 

city, while in Spain and Italy the behaviour is more erratic and the biggest cities also 

have high variance.  

Our results, obtained with our sample of all incorporated places without any size 

restriction, are similar to those obtained by Ioannides and Overman (2003), with their 

database of the most populous MSAs. To sum up, the nonparametric estimates show 

that while the mean of growth (Gibrat’s Law for means) seems to be independent of size 

in the three countries (although in Spain and Italy the largest cities would present some 

divergent behaviour), the variance of growth (Gibrat’s Law for variances) does depend 

negatively on size: the smallest cities present clearly higher variance in all three 

countries (although in Spain and Italy the behaviour is more erratic and the biggest 

cities also have high variance).  

This points to Gibrat’s Law holding weakly (growth is proportional in means but 

not in variance). Gabaix (1999) contemplates this possibility, that Gibrat’s Law might 

not hold exactly, and examines the case in which cities grow randomly with expected 

growth rates and standard deviations that depend on their sizes. Therefore, the size of 

city i  at time t  varies according to:  

( ) ( ) ttt

t

t dBSdtS
S

dS
σμ += ,  
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where ( )Sμ  and ( )S
2σ  denote, respectively, the instantaneous mean and variance of 

the growth rate of a size S  city, and tB  is a standard Brownian motion. Córdoba (2008) 

also introduces a parsimonious generalization of Gibrat’s Law that allows size to affect 

the variance of the growth process but not its mean. 

Nevertheless, we must distinguish between the American and European cases, as 

Gibrat's Law assumes a fixed and invariant number of locations. The number of cities 

remains almost constant in Spain and Italy, but the same is not true of the US; between 

the start of the sample and the end, the number of cities doubles. And while a Brownian 

motion can be adjusted to include new entrants, the distribution from which the entrants 

are drawn and the magnitude of entrants will affect the distribution. In particular, in the 

presence of a drift (as in this case where there is average city growth), the distribution 

from which new entrants are drawn is unlikely to be stationary if one wants to obtain 

the result that growth is proportionate. 

So, Figure 3 shows the nonparametric estimates of the growth rate and of the 

variance of growth rate of a pool for the entire 20th century for the US (1910-2000, 

59,865 observations) considering only the new entrant cities since 1910. Bootstrapped 

95-percent confidence bands are also presented. The estimations show how the cities 

entering the sample from 1910 usually had growth rates which were higher on average 

and in variance than the average of the entire sample (dotted blue line), although the 

bands do not permit us to reject their being significantly different. The differences in 

variance indicate that part of the increased variance at the bottom of the size distribution 

can be explained by the cities which entered the distribution throughout the twentieth 

century.   
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Also, Figure 4, representing the empirical estimated distributions of entrant 

cities in 1910 and 2000 (normalized by the average size of the cohort of the entire 

distribution), shows the change in distribution of entrant cities. Starting from a very 

leptokurtic distribution in 1910 (more leptokurtic than the distribution of the whole 

sample) concentration decreases until the 2000 distribution is very similar to lognormal.   

 

7. Conclusions 

The aim of this work is very simple: to provide additional information on the 

fulfilment of Gibrat’s Law, an empirical regularity which is well known in the literature 

on Urban Economics. In a nutshell, this Law states that the population growth rate of 

cities is a process deriving from independent multiplicative shocks, so that two 

conclusions can be statistically deduced. First, if we take logarithms city size 

distribution can be well fitted by a lognormal; second, the growth rate is on average 

independent of the initial size of the urban centers and its evolution is fundamentally 

stochastic, without any fixed pattern of behaviour. Moreover, although this problem is 

not dealt with here, if the urban growth process does follow Gibrat’s Law this has some 

implications for the theory, as demonstrated in the excellent survey by Gabaix and 

Ioannides (2004). 

This article contributes in two ways. On the one hand, it uses a database 

covering three countries (the US, Spain and Italy), with different urban histories, for the 

entire 20th century. As far as we know, this is the widest-ranging attempt to test the 

geographical and temporal validity of this Law, focusing on robust results. On the other, 

it does not use a unique statistical or econometric technique, but looking to find greater 

robustness in alternative specifications, employs different methods (parametric and non-

parametric) and complementary approaches. 
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There are three basic conclusions, the first two being more important. 

First, as shown in Section 2, until now evidence for the fulfilment of Gibrat’s 

Law for cities has been mixed, with a slight predominance of papers defending its 

fulfilment. This article argues that the time horizon considered is a key issue. In the 

short term, using decade by decade census data individually, growth in the three 

countries during the century is divergent: there is a positive correlation between the 

growth rate and the initial size of the cities. This result, somewhat unexpectedly found 

consistently in three nations over a hundred years, does not impede that the 

corresponding contrasts, Wilcoxon’s rank sum tests, show that, except for the US in the 

first half of the century, the lognormal distribution is systematically never rejected. How 

can these apparently contradictory findings be reconciled? Simply, because as the 

definition of Gibrat’s Law makes clear, this is a long term phenomenon, and the 

empirical evidence accumulated in these pages shows this to be so, although with some 

nuances. This fact defines the second conclusion. 

Second, therefore, the panel data unit root tests carried out confirm that, in the 

long term, Gibrat’s Law always holds for the upper tail of the distribution for the US 

and Italy, and only for the two hundred largest cities for Spain. In any case, the use of 

panel techniques for three countries and eleven census periods is innovative and 

generates, we believe, important conclusions. Moreover, from the use of non-parametric 

techniques, also over the long term, such as kernel regressions conditional on city size, 

we deduce that Gibrat’s Law for means is completely fulfilled for the three countries, 

while for variances the predominant behaviour is, in turn, consonant with the Law, 

except for the largest and smallest cities, depending on the country. 

Finally, the case of the US differs in that the number of cities doubles over the 

twentieth century. The new entrant cities present higher growth rates in means and in 
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variance than the average for the whole sample, although we cannot reject their being 

significantly different. The differences are greater in variance, indicating that part of the 

increased variance at the bottom of the size distribution can be explained by the cities 

which entered the distribution throughout the twentieth century.   

 

Appendix: Variance and convergent, parallel, vs. divergent city growth processes 

We have two expressions: 

 ( ) 2ln σ⋅= tSVar it     (3) 
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If Gibrat’s Law is fulfilled ( 0=β ), and applying L'Hôpital’s rule we obtain that (5) 
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Considering time t as a continuum beginning with zero, the expression between brackets 

( )βf  is only defined if β<−1 . Also, if 0>β  then ( ) 0
2

2

>
+ββ

σ
, while if 01 <<− β  

then ( ) 0
2

2

<
+ββ

σ
. 

Therefore, to find out the total sign of the difference )5()3( −  we must study the 

behaviour of the function ( ) ( ) ( ) 112 22 ++−+= t
tf ββββ . The maximum or minimum 
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of this function is obtained by defining the corresponding optimisation problem, whose 

first order condition is given by:  

( ) ( ) ( )( ) 0112 12 =+−+=′= −t
tf

d

df βββ
β
β

, 

from which we deduce that at the extreme ( ) 2211 −+= tβ , which means that ( )βf  is 

maximum or minimum in 0=β . In order to know if the optimum 0=β  is maximum or 

minimum we obtain the second order condition: 

( ) ( ) ( )( )( )22

2

2

11212 −+−−=′′= t
ttf

d

fd ββ
β
β

, 

and evaluate the sign in 0=β : ( ) ( ) 0140 <−==′′ ttf β  as long as 1>t .  

Thus, we already know that the function ( )βf  is concave and reaches its maximum in 

0=β  as long as 1>t . Considering that ( )0f =0, this function always takes negative 

values except in the maximum.  

The final sign of the difference )5()3( −  will be (maintaining the conditions β<−1  

and 1>t ): 

1. When 0>β  we have seen that ( ) 0
2

2

>
+ββ

σ
 is fulfilled and city growth is 

divergent. The variance of the cities will be bigger than if Gibrat’s Law were 

fulfilled: )5()3( < . 

2. When 0<β  city growth is convergent. The variance of the cities will be less than 

if Gibrat’s Law were fulfilled: )5()3( > . 

3. When 0=β  (3)=(5). 
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Tables 

 

Table 1. - Empirical studies on city growth 

 

Study Country Period Truncation point Sample size GL EcIss 

Eaton and Eckstein (1997) France and Japan
1876-1990 (F) 
1925-1985 (J)

Cities > 50,000 inhabitants (F) 
Cities > 250,000 inhabitants (J) 

39 (F), 40 (J) A non par (tr mat, lz) 

Davis and Weinstein (2002) Japan 1925-1965 Cities > 30,000 inhabitants 303 A par (purt) 
Brakman et al. (2004) Germany 1946-1963 Cities > 50,000 inhabitants 103 A par (purt) 

Clark and Stabler (1991) Canada 1975-1984 7 most populous cities 7 A par (purt) 
Resende (2004) Brazil 1980-2000 Cities > 1,000 inhabitants 497 A par (purt) 
Eeckhout (2004) US 1990-2000 All cities 19361 A par (gr reg); non par (ker) 

Ioannides and Overman (2003) US 1900-1990 All MSAs 112 (1900) to 334 (1990) A non par (ker) 
Gabaix and Ioannides (2004) US 1900-1990 All MSAs 112 (1900) to 334 (1990) A non par (ker) 
Black and Henderson (2003) US 1900-1990 All MSAs 194 (1900) to 282 (1990) R par (purt) 

Guérin-Pace (1995) France 1836-1990 Cities > 2,000 inhabitants 675 (1836) to 1782 (1990) R par (corr) 
Soo (2007) Malaysia 1957-2000 Urban areas > 10,000 inhabitants 44 (1957) to 171 (2000) R par (purt) 

Petrakos et al. (2000) Greece 1981-1991 Urban centres > 5,000 inhabitants 150 R par (gr reg) 
Henderson and Wang (2007) World 1960-2000 Metro areas > 100,000 inhabitants 1220 (1960) to 1644 (2000) R par (purt) 

Bosker et al. (2008) West Germany 1925-1999 Cities > 50,000 inhabitants 62 M par (purt); non par (ker) 
Anderson and Ge (2005) China 1961-1999 Cities > 100,000 inhabitants 149 M par (rank reg); non par (tr mat) 

Gibrat's Law: GL EcIss: Econometric Issues       gr reg: growth regressions    corr: coefficient of correlation (Pearson) 
A: Accepted par: parametric methods       ker: kernels    lz: Lorenz curves   
R: Rejected non par: non parametric methods       rank reg: rank regressions    
M: Mixed Results purt: panel unit root tests       tr mat: transition matrices     
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Table 2. - Estimated beta coefficients for the entire sample size 

 

US                   
Period 1900-1910 1910-1920 1920-1930 1930-1940 1940-1950 1950-1960 1960-1970 1970-1980 1980-1990 1990-2000 
β estimated 0.008 0.022 0.042 0.009 0.048 0.051 0.027 -0.005 0.042 0.015 
t-ratio 2.875 10.543 21.568 7.958 30.998 28.674 18.029 -3.934 35.152 12.352 

SPAIN                     
Period 1900-1910 1910-1920 1920-1930 1930-1940 1940-1950 1950-1960 1960-1970 1970-1981 1981-1991 1991-2001 
β estimated 0.010 0.020 0.023 0.028 0.012 0.048 0.115 0.115 0.047 0.013 
t-ratio 7.424 14.282 15.512 18.641 6.647 31.734 44.743 49.699 24.524 7.259 

ITALY                     
Period 1901-1911 1911-1921 1921-1931 1931-1936 1936-1951 1951-1961 1961-1971 1971-1981 1981-1991 1991-2001 
β estimated 0.010 0.022 0.019 0.014 0.033 0.042 0.066 0.046 0.025 0.017 
t-ratio 5.907 18.507 7.757 10.787 24.031 25.329 33.739 32.319 16.858 16.541 
t-ratios calculated using White Heteroskedasticity-Consistent Standard Errors         
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Table 3. - Wilcoxon rank-sum test of lognormality 

 

US                     
Year 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

p-value 0.0252 0.017 0.0078 0.0088 0.0208 0.0464 0.1281 0.1836 0.2538 0.323 0.4168 
SPAIN                       

Year 1900 1910 1920 1930 1940 1950 1960 1970 1981 1991 2001 
p-value 0.5953 0.6144 0.6233 0.6525 0.4909 0.5792 0.6049 0.522 0.5176 0.622 0.7212 

ITALY                      
Year 1901 1911 1921 1931 1936 1951 1961 1971 1981 1991 2001 

p-value 0.2081 0.2205 0.2352 0.291 0.2864 0.3118 0.2589 0.272 0.382 0.4671 0.5287 
Ho: The distribution of cities follows a lognormal                
 

Table 4. –Panel unit root tests, Pesaran's CADF statistic 

 

Cities (N) US Spain Italy 

50 -0.488 (0.313) -0.915 (0.180) 4.995 (0.999) 
100 0.753 (0.774) 0.050 (0.520) 5.983 (0.999) 
200 1.618 (0.947) -2.866 (0.002) -1.097 (0.136) 

500 1.034 (0.849) -12.132 (0.000) 5.832 (0.999) 
 

test-statistic (p-value)  
Pesaran's CADF test: standarized Ztbar statistic, [ ]tZ  
Variable: Relative size (in natural logarithms) 
Sample size: (N, 11) 
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Figures 

 

Figure 1.- Comparison of the Estimated Density Function (ln scale) and the Theoretical Lognormal in black (US) 
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Figure 2.- Nonparametric Estimates (bandwidth 0.5) 
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Figure 3.- New Entrants Nonparametric Estimates (bandwidth 0.5), (US, 1910-2000), 59,865 observations 
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Figure 4.- Empirical Density Functions of the New Entrants 
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