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Abstract

We study the interplay among imperfect memory, limited commitment,
and theft, in an environment that can support monetary exchange and
credit. Imperfect memory makes money useful, but it also permits theft to
go undetected, and therefore provides lucrative opportunities for thieves.
Limited commitment constrains credit arrangements, and the constraints
tend to tighten with imperfect memory, as this mitigates punishment for
bad behavior in the credit market. Theft matters for optimal monetary
policy, but at the optimum theft will not be observed in the model. The
Friedman rule is in general not optimal with theft, and the optimal money
growth rate tends to rise as the cost of theft falls.
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1 Introduction

It is hard to find examples of economies in which we do not observe the use
of both money and credit in transactions. Thus, we should think of money
and credit as robust, in the sense that we will observe transactions involving
both money and credit under a wide array of technologies and monetary policy
rules. One goal of this paper is to help us understand what is required to obtain
robustness of money and credit in an economic model. Then, given robustness,
we want to explore the implications for monetary policy. As well, this paper
will serve to tie together some key ideas in monetary economics.
As is now well-known, barriers to the flow of information across locations

and over time appear to be critical to the role that money plays in exchange.
If there were no such barriers, in particular if there were perfect “memory”
(Kocherlakota 1998) i.e. recordkeeping, then it would be possible to support ef-
ficient allocations in the absence of valued money. One can think of the models
of Green (1987), or Atkeson and Lucas (1992), as determining efficient alloca-
tions with credit arrangements under private information, where the memory of
past transactions by economic agents supports incentive compatible intertem-
poral exchange. As Kocherlakota (1998) points out, spatial separation of the
type encountered in turnpike models (Townsend 1980) or random matching
models (Trejos and Wright 1995) also yields efficient credit arrangements under
perfect memory. Aiyagari and Williamson (1999) study an environment with
private information and random matching where credit arrangements are effi-
cient. Thus, neither private information nor spatial separation is a sufficient
friction to provide a socially useful role for monetary exchange. Both frictions
mitigate credit arrangements, but not to the point where monetary exchange
necessarily improves matters.
The work of Kocherlakota (1996, 1998) seems to suggest that limited com-

mitment works much like private-information and spatial frictions, in that it
in general implies less intertemporal exchange than would occur in its absence,
but does not imply a welfare-improving role for money. However, in the case
of limited commitment, this is not obvious. For example, suppose that two
economic agents, A and B meet. Agent A can supply B with something that
B wants, but all that B can offer in exchange is a promise to supply A with
some object in the future. Agent B is unable to commit, and what A is willing
to give to B will depend on A0s ability to punish B, or to have other economic
agents punish B, if he or she fails to fulfil his or her promises in the future. The
amount of credit that A is willing to extend to B will in general be limited.
However, suppose that B has money to offer A in exchange. Possibly A and B
can trade more efficiently using money, or by using money and credit, because
monetary exchange is not subject to limited commitment.
First, we wish to construct a framework which can potentially permit mon-

etary exchange, trade using credit under limited commitment, and the coexis-
tence of valued money and credit. We build on the model of Rocheteau and
Wright (2005) and Lagos and Wright (2005), which has quasilinear utility and
alternating decentralized and centralized trading among economic agents. This
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lends tractability to our analysis, but we think that the basic ideas are quite
general.
The first result is that, consistent with Kocherlakota (1998), limited com-

mitment is in fact not sufficient to provide a social role for money in our model.
The result hinges on the fact that lack of commitment applies to tax liabilities
as well as private liabilities. If there is perfect memory and limited commitment
matters, then limited commitment also may make the Friedman rule infeasible
for the government. This is because agents may want to default on the tax lia-
bilities that are required to support deflation at the Friedman rule rate. While
it is possible in special cases for money to be valued in equilibrium with limited
commitment and perfect memory, there is no welfare-improving role for money.
This is similar to the flavor of some results in the monetary model without credit
considered by Andolfatto (2007).
As mentioned above, one of our aims in this paper is to determine a set of

frictions under which money and credit are both robust as means of payment.
Clearly, perfect memory does not provide conditions under which monetary ex-
change is robust, so we need to add imperfect memory to provide a role for
money. However, we do not want to shut down memory entirely, as is typical in
some monetary models (e.g. Lagos and Wright 2005), as this will also shut down
credit. We use a hybrid approach, whereby decentralized meetings between buy-
ers and sellers are either monitored, or are not. A monitored trade is subject
to perfect memory, while there is no access to memory in non-monitored trans-
actions (see also Deviatov and Wallace 2008, where the monitoring structure is
quite different from ours).
In this context, our results depend critically on the punishments that are

triggered by default in the credit market. For tractability, we consider global
punishments, whereby default by a borrower will imply that all would-be lenders
refuse to extend credit. At the extreme, this can result in global autarky. With
global autarky as an off-equilibrium path supporting valued money and credit in
equilibrium, higher money growth lowers the rate of return on money, and there
is substitution of credit for money. Efficient monetary policy is either a Friedman
rule, if incentive constraints do not bind at the optimum, or else optimal money
growth is greater than at the Friedman rule and incentive constraints bind at
the optimum. In either case, efficient monetary policy drives out credit. Money
works so well that if the government gives money a sufficiently high rate of
return there will be no lending in equilibrium.
We also consider off-equilibrium punishments that are less severe than au-

tarky. Much as in Aiyagari and Williamson (2000) or Antinolfi, Azariadis, and
Bullard (2007), we allow punishment equilibria to include monetary exchange.
That is, if a borrower defaults, this triggers a global punishment where there
is no credit, but agents can trade money for goods. Here, the only equilibrium
that can be supported is one with no credit, and with a fixed stock of money
(also implying a constant price level in our model). This is quite different from
results obtained in Aiyagari and Williamson (2000) or Antinolfi, Azariadis, and
Bullard (2007). A key difference in our setup is that we take account of the fact
that the government cannot commit to punishing private agents through mon-
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etary policy. When a default occurs, the government adjusts monetary policy
so that it is a best response to the decision rules that private agents adopt as
punishment behavior.
Imperfect memory provides a role for money, but in the context of imperfect

memory alone, money in some sense works too well in our model, relative to
what we see in reality. That is, optimal monetary policy always drives credit
out of the system. This is a typical result, which is obtained for example in
Ireland’s cash-in-advance model of money and credit (Ireland 1994). Ireland’s
model has the property that a Friedman rule is optimal and, at the Friedman
rule, all transactions are conducted with cash, which eliminates the costs of using
credit. The intuition for this is quite clear. All alternatives to using currency in
transactions come at a cost, for example there are costs of operating a debit-card
or credit-card system, there are costs to clearing checks, etc. If it is costless to
produce currency and to carry it around, then if the government generates a
deflation that induces a rate of return on money equivalent to that on the best
safe asset, then this should be efficient, and it should also eliminate the use of
all cash substitutes in transactions.
Of course, in practice it is costly for the government to operate a currency

system. For example, maintaining the currency stock by printing new currency
to replace worn-out notes and coins is costly, as is counterfeiting and the pre-
vention of counterfeiting. As well, a key cost of holding currency is the risk of
theft, which has been studied, for example, in He, Huang, and Wright (2006).
We model theft differently here, and do this in the context of monitored credit
transactions. That is, we assume that it is possible for sellers, at a cost, to
steal currency in non-monitored transactions, but theft is not possible if the
transaction is monitored. This changes our results dramatically. Now, mone-
tary policy will affect the amount of theft in existence, and theft will matter
for how borrowers are punished in the event of default. For example, if the
off-equilibrium punishment path involves no credit market activity and only
monetary exchange, then the risk of theft is higher on the off-equilibrium path,
and this reduces welfare in the punishment equilibrium.
At the optimum it will always be optimal for the government to eliminate

theft. Theft will matter for policy, but in the model theft will not be observed
in equilibrium. Because theft is potentially more prevalent with off-equilibrium
punishment, however, money and credit will in general coexist at the optimum.
When theft matters, the Friedman rule is not optimal, and the optimal money
growth rate tends to increase as the cost of theft falls.
In Section 2 we set up the environment, then in Section 3 we study a plan-

ner’s problem in order to determine optimal allocations. In Sections 3-5 we
then analyze the predictions of the model under, respectively, perfect mem-
ory, imperfect memory with autarkic punishment, and imperfect memory with
non-autarkic punishment. In Section 6 we study theft, and Section 7 concludes.
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2 The Environment

Time is discrete and each period is divided into two subperiods: day and night.
There are two types of agents in the economy, buyers and sellers, and there
is a continuum of each type with unit measure. There is a unique perishable
consumption good which is produced and consumed within each subperiod.
During the day, a seller can produce one unit of the consumption good with one
unit of labor. At night, a buyer is able to produce one unit of the consumption
good with one unit of labor.
A buyer has preferences given by

∞X

t=0

βt[u (qt)− nt] (1)

where qt is consumption during the day, and nt is labor supply at night, with
β ∈ (0, 1) the discount factor between night and day. Assume u(·) is strictly
concave, strictly increasing, and twice continuously differentiable with u(0) = 0,
u0(0) =∞, and define q∗ to be the solution to u0(q∗) = 1. A seller has preferences
given by

∞X

t=0

βt(−lt + xt) (2)

where lt is labor supply during the day and xt is consumption at night. Sellers
and buyers discount at the same rate.
Agents are bilaterally and randomly matched during the day and at night

trade is centralized.

3 Planner’s Problem

3.1 Full Commitment

First, consider what a social planner could achieve in this economy in the ab-
sence of money. Ultimately, money will consist of perfectly divisible and durable
objects that are portable at zero cost, and can be produced only by the govern-
ment. In this section assume there is complete memory and that each agent can
commit to the plan proposed by the social planner at t = 0. If the planner treats
all sellers identically and all buyers identically, then an allocation {(qt, xt)}

∞
t=0

satisfies the participation constraints

∞X

t=0

βt[u (qt)− xt] ≥ 0, (3)

and ∞X

t=0

βt(−lt + xt) ≥ 0, (4)
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which state that a buyer and a seller, respectively, each prefer to participate in
the plan at t = 0. Then, if we confine attention to stationary allocations with
qt = q and xt = x for all t, we must have

u (q)− x ≥ 0 (5)

and
−q + x ≥ 0 (6)

The set of feasible stationary allocations is given by (5) and (6), and this set
is non-empty given our assumptions. Further, the set of efficient allocations is
also non-empty, satisfying (5), (6) and q = q∗.

3.2 Limited Commitment

Now, continue to assume complete memory, but now suppose that any agent
can at any time opt out of the plan. The worst punishment that the planner can
impose is zero consumption forever for an agent who deviates. Let vt denote the
utility of a buyer at the beginning of t, with wt similarly denoting the utility of
a seller. Then an allocation must satisfy the participation constraints (3) and
(4) as before, as well as the incentive constraints

−xt + βvt+1 ≥ 0, (7)

and
−qt + xt + βwt+1 ≥ 0 (8)

for t = 0, 1, 2, ...,∞. Constraints (7) and (8) state that the buyer and seller,
respectively, prefer to produce at each date rather than defecting from the plan.
Again, if we confine attention to stationary allocations, then the feasible set

is defined by
x ≤ βu(q)

and (6). Now, let q∗∗ denote the solution to βu(q∗∗) = q∗∗. If q∗∗ ≥ q∗ then the
efficient allocations are (q∗, x) with x ∈ [q∗, βu(q∗)], as depicted in Figure 1. In
the figure, the set of efficient allocations with limited commitment is AB, while
the set of efficient allocations with full commitment is AD. Clearly, in this case
limited commitment reduces the efficient set, but the efficient allocations with
limited commitment are also efficient allocations under full commitment. The
perhaps more interesting case is when q∗∗ < q∗, in which case the set of efficient
allocations is {(q, x) : x = βu(q), q ∈ [q̂, q∗∗], βu0(q̂) = 1}. This case is depicted
in Figure 2, where the set of efficient allocations is AB. That is, in this case
the incentive constraint for the buyer always binds for the efficient stationary
allocation, and an efficient allocation with limited commitment is not efficient
under full commitment.
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4 Equilibrium Allocations with Perfect Memory

To establish a benchmark, we first assume that there is perfect memory. As
we would expect from the work of Kocherlakota (1998), this will severely limit
the role of money in this economy. An important element of the model will be
the bargaining protocol carried out when a buyer and seller meet during the
daytime. We assume that the seller first announces whether or not he or she
is willing to trade with the buyer. If the seller is not willing to trade, then
no exchange takes place. Otherwise, the buyer then makes a take-it-or-leave-
it offer to the seller. This protocol in part allows us to focus on the limited
commitment friction, as take-it-or-leave-it offers imply that there will be no
bargaining inefficiencies.
When a buyer and seller are matched during the day, they continue to be

matched at the beginning of the following night, after which all agents enter the
nighttime Walrasian market.

4.1 Credit Equilibrium

Ultimately we will want to determine the role for valued money in this perfect-
memory economy, but our first step will be to look at equilibria where money
is not valued. Here, the daytime take-it-or-leave-it offers of buyers consist of
credit contracts, with a loan made during the day and repayment at night. We
will confine attention to stationary equilibria where sellers always choose to
trade when they meet a buyer during the day. Let l denote the loan quantity
offered by the buyer to the seller in the day. Then, letting v denote the lifetime
continuation utility of the buyer after repaying the loan during the night, we
have

v = βmax
l
[u(l)− l + v] (9)

subject to the incentive constraint

l ≤ v − v̂.

and
l ≥ 0.

Here, v̂ is the buyer’s continuation utility if he or she defaults on the loan,
which triggers a punishment. In the equilibrium we consider here, v̂ = 0, so
that the punishment for default is autarky for the defaulting buyer. On the
off-equilibrium path, it is an equilibrium for no one to trade with an agent who
has defaulted as, if agent A trades with agent B who has defaulted in the past,
this triggers autarky for agent A. Here, note that the individual punishment
for a buyer who defaults is identical to a global punishment whereby default by
any buyer triggers global autarky. Letting ψc(v) denote the right-hand side of
(9), we get

ψc(v) = βu(v), for 0 ≤ v ≤ q∗,
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and
ψc(v) = β [u(q∗)− q∗ + v] , for v ≥ q∗.

An equilibrium is then a solution to v = ψc(v). If q
∗∗ < q∗ then there are two

equilibria. In the first, v = 0, and in the second v > 0, which are both solutions
to v = βu(v). Note that v is also the consumption of the buyer during the
day, and of the seller during the night, with v < q∗. In this case, the incentive
constraint for the buyer binds in either equilibrium. If q∗∗ ≥ q∗ then the v = 0
equilibrium still exists, and the equilibrium with v > 0 has

v =
β

1− β
[u(q∗)− q∗] ,

in which case consumption is q∗ for any agent consuming at any date and the
incentive constraint does not bind.
Note that, in equilibrium, a seller meeting a buyer during the daytime is

always indifferent to trading or not. If he or she announces a willingness to
trade, then the buyer makes an offer that leaves the seller with zero surplus,
and utility is identical to what the seller would have achieved without trade. In
the equilibrium we study, the seller always chooses to trade.
In Figure 3, panel (a) shows the case where the incentive constraint binds

in equilibrium, and panel (b) the case where the incentive constraint does not
bind. The nonmonetary credit equilibrium, by virtue of the bargaining solution
we use, just picks out the efficient stationary allocation that gives all of the
surplus to the buyer.

4.2 Monetary Equilibrium

Assume that money is uniformly distributed across buyers at the beginning of
the first day. Subsequently the government makes equal lump-sum transfers
at the beginning of the night to buyers, so that the money stock grows at the
gross rate μ. Confine attention to stationary monetary equilibria, and consider
only cases where μ ≥ β, as otherwise a monetary equilibrium does not exist.
Let m denote the real money balances acquired by a buyer in the night, and γ
the real value of a lump-sum transfer received by a buyer from the government
during the night. Suppose that the buyer receives the lump-sum transfer before
acquiring money balances during the night, and continue to let v denote the
continuation utility for the buyer after receiving the lump sum transfer. As
in Andolfatto (2007), we treat the government symmetrically with the private
sector, in that there is limited commitment with respect to tax liabilities as well
as private liabilities.
Continue to assume complete memory and, as in the previous subsection,

default by a buyer triggers autarky for that buyer. Since a seller will always be
indifferent to trading with a buyer, sellers not only refuse to engage in credit
contracts with a buyer who has defaulted; they also refuse to take his or her
money. Note that the trigger to individual autarky is identical to a global
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punishment where, if an agent defaults, no seller will trade with any buyer.
With global punishment, the value of money is zero on the off-equilibrium path.
In this case, we determine the continuation value v for the buyer by

v = max
l,m

½
−m+ β

∙
u

µ
1

μ
m+ l

¶
− l + γ + v

¸¾
(10)

subject to
l ≤ γ + v − v̂.

l ≥ 0
Again, we have v̂ = 0. Here, note that we need to be careful about the lump-sum
transfer the buyer receives. Should the buyer default on his or her debt, he or
she will also not receive the transfer, or will default on current and future tax
liabilities if γ < 0. In equilibrium, we have

γ = m

µ
1− 1

μ

¶
.

For μ > β, the right-hand side of equation (10) is given by

ψm(v) = −v1 + βu(v1) + v, for max

∙
0,m∗

µ
1

μ
− 1
¶¸
≤ v ≤ v1,

ψm(v) = βu(v), for v1 ≤ v ≤ q∗,

ψm(v) = β [u(q∗)− q∗ + v] , for v ≥ q∗.

Here, m∗ solves

u0
µ
m∗

μ

¶
=

μ

β
,

and v1 satisfies

u0 (v1) =
μ

β
,

For μ = β, we have

ψm(v) = β[u(q∗)− q∗]−m(1− β) + βv, for v ≥ m∗
µ
1

β
− 1
¶
,

where
m ∈ [q∗ −min(q∗, v), βq∗]

Proposition 1 If q∗∗ ≥ q∗, then a monetary equilibrium does not exist if μ 6= β.

Proof. If μ < β, a monetary equilibrium does not exist, for standard rea-
sons. Suppose μ > β. Define the function Γ (v) = Ψm (v) − v. Notice that
Γ (·) is continuous and limv→∞ Γ (v) = −∞. Moreover, Γ (v) > 0 for all
v ∈ [max {0, (1− μ) v1} , q

∗) and Γ (·) is strictly decreasing on (q∗,∞).Hence,
there exists a unique value v ≥ q∗ such that Γ (v) = 0. However, money is not
valued in this equilibrium.
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Proposition 2 If q∗∗ ≥ q∗ and μ = β, then a continuum of monetary equilibria

exists with v ∈ [β[u(q
∗)−q∗]
1−β − min

n
βq∗, βu(q

∗)−q∗
1−β

o
, β[u(q

∗)−q∗]
1−β ). All of these

equilibria yield expected utility for the buyer of u(q∗)−q∗
1−β .

Proof. Suppose μ = β. It follows that Γ (·) is continuous everywhere except
possibly at v = q∗ and limv→∞ Γ (v) = −∞. We have Γ (v) = βu (q∗)− q∗ > 0
for all v ∈ [(1− β) q∗, q∗). At v = q∗ we have Γ (q∗) = βu (q∗)− q∗− (1− β)m.
A necessary condition for the existence of a monetary equilibrium is Γ (q∗) ≥ 0,
which requires

m ≤ βu (q∗)− q∗

1− β
.

Hence, a necessary and sufficient condition for the existence of a monetary
equilibrium is

m ≤ min
½
βq∗,

βu (q∗)− q∗

1− β

¾
.

Given a positive value of m satisfying the inequality above, there exists a unique
value v ≥ q∗ such that Γ (v) = 0, in which case money is valued in equilibrium.
Therefore, there exists a continuum of monetary equilibria with

v ∈ [β[u(q
∗)− q∗]
1− β

−min
½
βq∗,

βu (q∗)− q∗

1− β

¾
,
β[u(q∗)− q∗]

1− β
).

All of these equilibria support the allocation (q, x) = (q∗, q∗).

Proposition 3 If q∗∗ < q∗, then a monetary equilibrium does not exist if μ 6=
βu0(q∗∗).

Proof. Suppose μ > βu0 (q∗∗). Notice that Γ (v) = βu (v1) − v1 > 0 for all
v ∈ [max {0, (1− μ) v1} , v1), Γ (v) > 0 for all v ∈ [v1, q∗∗), and Γ (q∗) < 0.
Since Γ (·) is continuous and strictly decreasing on (q∗∗,∞), it follows that
v = q∗∗ is the unique value satisfying Γ (v) = 0. Since v1 < q∗∗, it follows that
money is not valued in equilibrium. Suppose μ ∈ (β, βu0 (q∗∗)). In this case,
Γ (v) < 0 for all v ≥ (1− μ) v1, so that a monetary equilibrium does not exist.
Finally, assume μ = β. Again, we find that Γ (v) < 0 for all v ≥ (1− β) q∗, so
that a monetary equilibrium does not exist.

Proposition 4 If q∗∗ < q∗ and μ = βu0(q∗∗), then a continuum of monetary
equilibria exists with v ∈ [0, q∗∗). All of these equilibria yield expected utility for
the buyer of u(q∗∗)−q∗∗

1−β .

Proof. Take μ = βu0(q∗∗). Then, Γ (v) = 0 for all v ∈ [q∗∗ [1− βu0 (q∗∗)] , q∗∗]
and Γ (v) < 0 for all v > q∗∗. Hence, a continuum of monetary equilibria exists
with v ∈ [q∗∗ [1− βu0 (q∗∗)] , q∗∗). All of these equilibria yield the allocation
(q, x) = (q∗∗, q∗∗).
If the money growth rate is sufficiently high, that is if μ > βmax[1, u0(q∗∗)],

then the rate of return on money is sufficiently low that money is not held in
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equilibrium. If q∗ ≤ q∗∗, it certainly seems clear why a monetary equilibrium
will not exist when the money growth rate is sufficiently high. In this case, when
money is not valued a credit equilibrium exists which is efficient and incentive
constraints do not bind. Thus, there is clearly no role for money in equilibrium in
relaxing incentive constraints in decentralized trade. Why money is not valued
even when q∗ > q∗∗ and μ > βu0(q∗∗) is perhaps less clear. In this case, the only
stationary equilibria that exist are the two credit equilibria: one where v = 0
and one with v > 0 and binding incentive constraints, as in Figure 3. Money
cannot relax the binding incentive constraints, as in order to support a money
growth rate sufficiently low as to induce agents to hold money, the government
would have to impose sufficiently high taxes that buyers would choose to default
on their tax liabilities. Thus, there is no role for money in improving efficiency.
If μ = βmax[1, u0(q∗∗)], then in equilibrium buyers are essentially indifferent

between using money and credit in decentralized transactions with sellers, and
there exist a continuum of equilibria with valued money. Each of these equilibria
supports the same allocation as does the credit equilibrium with v > 0. The
continuum of equilibria is indexed by the quantity of real money balances held
by buyers. Across these equilibria, as the quantity of real balances rises, the
quantity of lending falls.
Our results are consistent with the ideas in Kocherlakota (1998), as they

should be. With perfect memory, money is not socially useful. At best, money
can be held in equilibrium. This equilibrium is either one where incentive con-
straints do not bind and the monetary authority follows a Friedman rule, or
incentive constraints bind and the money growth rule is similar to what Andol-
fatto (2007) finds. In either case, money provides no efficiency improvement.

5 Imperfect Memory and Autarkic Punishment

As we have seen, with perfect memory there is essentially no social role for
money, and it will only be held under special circumstances. As is well-known,
particularly given the work of Kocherlakota, we need some imperfections in
record-keeping in order for money to be useful and to help it survive as a valued
object. We will start by assuming that, during the day, there is no memory in
some bilateral meetings, and perfect memory in other meetings. In particular, a
fraction ρ of sellers has no monitoring potential, while a fraction 1− ρ does. In
any day, a given buyer has probability ρ of meeting a seller with no monitoring
potential, in which case there is no memory in the interaction between the buyer
and seller. That is, each agent in such a meeting has no knowledge of his or
her trading partner’s history, and nothing about the meeting will be recorded.
With probability 1 − ρ a buyer meets a seller with monitoring potential. In
this case, the buyer has the opportunity to choose to have his or her interaction
with the seller monitored. Here, 0 < ρ ≤ 1. If the buyer chooses a monitored
interaction in the day, then his or her history is observable to the seller, and the
interaction between that buyer and seller will be publicly observed during the
day and through the beginning of the following night. Otherwise, the buyer’s
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and seller’s actions are unobserved during the day and the following night.
Trade is carried out anonymously in the Walrasian market that opens in

the latter part of each night, in the sense that all that can be observed in
the Walrasian market is the market price. Individual actions are unobservable.
Here, the case where ρ = 1 is the standard one in monetary models with random
matching such as Lagos-Wright (2005). However, even in the case with ρ = 1,
we deviate from the usual assumptions, in that there is lack of commitment with
respect to tax liabilities. We assume that each agent can observe the interaction
between the government and all other agents. That is, default on tax liabilities
is publicly observable.
We change the bargaining protocol between a buyer and seller during the

day as follows. The buyer first declares whether interactions with the seller
during the period will be monitored or not. If monitoring is chosen, then the
seller learns the buyer’s history of publicly-recorded transactions. Then, the
seller decides whether or not to transact with the buyer. If the seller is willing
to transact, the buyer then makes a take-it-or-leave-it offer.
Given our setup, if a buyer defaults on a loan made in a monitored trade,

this will be public information. As well, default by a buyer on tax liabilities
is public information. However, suppose that a seller were to make a loan to
a buyer during the day in a non-monitored trade, and then defaulted on the
loan during the night. In this case, it is impossible for that seller to signal to
anyone else that default has occurred. The interaction between the buyer and
seller is private information, and the individual seller cannot affect prices in any
subsequent nighttime Walrasian market. Further, in the equilibria we study, a
seller in a non-monitored trade during the day will never have the opportunity
to engage in a monitored trade during any subsequent day and so will be unable
to signal that a default has occurred.

5.1 Credit Equilibrium

First consider stationary equilibria where money is not valued, so that all ex-
changes in the day market involve credit. Here, in the case where a buyer does
not have the opportunity to engage in a monitored transaction, there will be no
exchange between the buyer and the seller, as the buyer will be able to default
and this will be private information. Thus if money is not valued, then trade
takes place during the day only in monitored transactions, and the buyer will
always weakly prefer to have the interaction with a seller monitored. Here, v is
determined by

v = β

½
(1− ρ)max

l
[u(l)− l] + v

¾
(11)

subject to the incentive constraint

l ≤ v − v̂,

and
l ≥ 0.
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As in the previous section, v̂ is the continuation value when punishment occurs,
and the punishment is autarky so v̂ = 0. Now, letting φc(v) denote the right-
hand side of (11), we can rewrite (11) as

v = φc(v),

with
φc(v) = β [(1− ρ)u(v) + ρv] , for 0 ≤ v ≤ q∗

and
φc(v) = β {(1− ρ)[u(q∗)− q∗] + v} , for v ≥ q∗.

Let q∗∗∗ denote the solution to

β(1− ρ)

1− ρβ
u(q∗∗∗) = q∗∗∗

Proposition 5 If q∗∗∗ < q∗ then there are two credit equilibria, one where
v = 0, and one where the incentive constraint binds, l < q∗ and v = q∗∗∗.

Proof. Define Γc (v) = φc (v)−v. Note that Γc (·) is continuous and limv→∞ Γc (v) =
−∞. Since q∗∗∗ < q∗, it follows that Γc (v) > 0 for all v ∈ (0, q∗∗∗), Γc (q∗∗∗) = 0,
and Γc (v) < 0 for all v ∈ (q∗∗∗,∞). This implies that v = q∗∗∗ is the unique
positive value satisfying Γc (v) = 0. Since the incentive constraint binds, it
follows that l = q∗∗∗ in such equilibrium.

Proposition 6 If q∗∗∗ ≥ q∗ then there are two credit equilibria, one where
v = 0 and one where the incentive constraint does not bind, l = q∗, and

v =
β(1− ρ)[u(q∗)− q∗]

1− β
.

Proof. In this case, Γc (v) > 0 for all v ∈ (0, q∗) and Γc (q∗) ≥ 0. Note that
Γc (·) is strictly decreasing on (q

∗,∞), with limv→∞ Γc (v) = −∞. Hence, there
exists a unique positive value v ≥ q∗ satisfying Γc (v) = 0. This means that

β {(1− ρ) [u (q∗)− q∗] + v}− v = 0,

so that

v =
β (1− ρ)

1− β
[u (q∗)− q∗] ,

and l = q∗ is the amount consumed by the buyer in a monitored meeting during
the day.
Now, since q∗∗∗ < q∗∗ for ρ > 0, imperfect memory limits credit market

activity, just as one might expect. Relative to the credit equilibrium with perfect
memory there is in general less trade in a credit equilibrium with imperfect
memory, and the quantity traded decreases as ρ increases. Of course, there is
no credit market activity when ρ = 1.

13



5.2 Monetary Equilibrium

As in the previous section, publicly observable default triggers autarky for the
agent who defaults. However, in this case autarkic punishment is carried out
through a global punishment whereby, if a single buyer defaults, this triggers
an equilibrium where no seller will trade during the day and therefore money is
not valued.
Here, we solve for the equilibrium continuation value in a similar fashion to

the previous section. That is,

v = max
m,l

µ
−m+ β

½
ρu

µ
m

μ

¶
+ (1− ρ)

∙
u

µ
m

μ
+ l

¶
− l

¸
+ γ + v

¾¶
(12)

subject to
l ≤ γ + v − v̂,

l ≥ 0.
Given autarkic punishment, v̂ = 0. In equilibrium, the real value of the govern-
ment transfer is

γ = m

µ
1− 1

μ

¶
. (13)

Here, and in the rest of the paper, it will prove to be more straightforward
to define an equilibrium and solve for it in terms of the consumption quantities
for the buyer in non-monitored and monitored trades, rather than solving for
the continuation value v. Therefore, let x be the daytime consumption of a
buyer in the non-monitored state, and y the buyer’s daytime consumption in the
monitored state. Then in the problem (12) above, we havem = μx, γ = x(μ−1),
and l = y − x. Thus from (12), we can solve for v in terms of x and y to get

v = −μx+ β {ρ [u(x)− x] + (1− ρ) [u(y)− y]}

1− β
.

We can then define an equilibrium in terms of x and y as follows.

Definition 7 A stationary monetary equilibrium is a pair (x, y), where x and
y are chosen optimally by the buyer,

ρu0 (x) + (1− ρ)u0 (y) =
μ

β
, (14)

x and y have the property that consumptions and the loan quantity are nonneg-
ative, and consumptions do not exceed the surplus-maximizing quantity,

0 ≤ x ≤ y ≤ q∗, (15)

and (x, y) is incentive compatible,

β [ρu (x) + (1− ρ)u (y)]− ρβx− (1− ρβ) y ≥ (1− β)v̂, (16)

where y = q∗ if (16) does not bind.
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Proposition 8 If q∗∗ ≥ q∗ then a unique stationary monetary equilibrium ex-
ists for μ ≥ β.

Proof. Suppose q∗ ≤ q∗∗∗ ≤ q∗∗. In this case, we cannot have an equilibrium
with a binding incentive constraint. Now, if the incentive constraint does not
bind, then y = q∗ and

ρu0 (x) + 1− ρ =
μ

β
. (17)

Note that (1− ρ)βu (q∗) − (1− ρβ) q∗ ≥ 0, so that the incentive constraint is
always slack when y = q∗. Therefore, a unique stationary monetary equilibrium
with a non-binding incentive constraint exists for any μ ≥ β, with x defined by
(17) and y = q∗.
Suppose q∗∗∗ < q∗ ≤ q∗∗. First, assume the incentive constraint does not

bind. Then, there exists μ̃ > β such that

ρβ [u (x)− x] ≥ − (1− ρ)βu (q∗) + (1− ρβ) q∗

if and only if μ ∈ [β, μ̃]. Again, a unique stationary monetary equilibrium with
a non-binding incentive constraint exists for μ ∈ [β, μ̃]. Let x̃ be the value of x
satisfying (17) when μ = μ̃. For μ > μ̃, the incentive constraint binds, and a
unique stationary monetary equilibrium exists with (x, y) satisfying

ρβ [u (x)− x] = − (1− ρ)βu (y) + (1− ρβ) y (18)

and
ρu0 (x) + (1− ρ)u0 (y) =

μ

β
, (19)

where x < x̃ and q∗∗∗ < y < q∗.

Proposition 9 If q∗∗ < q∗ then a unique stationary monetary equilibrium ex-
ists for μ ≥ βu0(q∗∗).

Proof. Note that we cannot have an equilibrium with a non-binding incentive
constraint because

ρβ [u (x)− x] < − (1− ρ)βu (q∗) + (1− ρβ) q∗

when q∗∗ < q∗. Then, (x, y) satisfy (18) and (19), with 0 ≤ x ≤ y < q∗. Note
that (18) requires that y ≤ q∗∗. Then, a unique stationary monetary equilibrium
exists for any μ ≥ βu0 (q∗∗).
If q∗∗∗ ≥ q∗, which guarantees that q∗∗ > q∗, as q∗∗∗ < q∗∗, then the incentive

constraint does not bind for all μ ≥ β. In this case, the buyer consumes q∗ in
all monitored trades where credit is used during the day, and consumes x in
nonmonitored trades, where x ≤ q∗ and x is decreasing in μ. Therefore, the
welfare of the buyer is decreasing in μ, while the seller receives zero utility in
each period for all μ. Further, when μ = β, then x = y = q∗, in which case the
loan quantity is l = y − x = 0, and no credit is used. As μ increases, then, the
quantity of credit rises, that is credit is substituted for money in transactions.
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If q∗∗ ≥ q∗ > q∗∗∗, then the incentive constraint binds for μ > μ̃, where

ρβ [u (x̃)− x̃] = −β(1− ρ)u(q∗) + (1− ρβ)q∗

with x̃ the solution to

ρu0 (x̃) + 1− ρ =
μ̃

β
.

The incentive constraint does not bind for β ≤ μ ≤ μ̃. Here, μ = β implies that
x = y = q∗ and there is no credit, just as in the previous case. However, if the
money growth rate is sufficiently high, then the incentive constraint binds. If
the incentive constraint does not bind, then just as in the previous case y = q∗

and x falls as μ rises, so that the welfare of buyers falls with an increase in μ
and credit is substituted for money in transactions. If the incentive constraint
binds, then it is straightforward to show that an increase in μ causes both x
and y to fall, with the loan quantity l = y− x increasing. Thus, as in the other
cases, the welfare of buyers must fall as μ rises, and the use of credit rises with
an increase in the money growth rate.
Finally, if q∗∗ < q∗, then the incentive constraint will always bind in a

stationary monetary equilibrium. Here, when μ = βu0(q∗∗), then x = y = q∗∗

and there is no credit. Again, it is straightforward to show that x, y, and the
welfare of buyers decrease with an increase in μ, and the quantity of lending
rises.
Which case we get (the incentive constraint never binds; the incentive con-

straint binds only for large money growth rates; the incentive constraint always
binds) depends on q∗−q∗∗∗.While q∗ is independent of β and ρ, q∗∗∗ is increas-
ing in β and decreasing in ρ. Thus, the incentive constraint will tend to bind
the lower is β and the higher is ρ. Higher β tends to relax incentive constraints
for typical reasons. That is, as buyers care more about the future, potential
punishment is more effective in enforcing good behavior. Higher ρ implies that
the imperfect memory friction becomes more severe, and credit can be used with
lower frequency. In general, monetary exchange will be less efficient than credit,
and so a reduction in the frequency with which credit can be used will tend to
reduce the utility of a buyer in equilibrium. This will therefore reduce the rel-
ative punishment to a buyer if he or she defaults and thus tighten incentive
constraints.

Proposition 10 If q∗∗ ≥ q∗, then μ = β is optimal, and this implies that l = 0,
the incentive constraint does not bind, and the buyer consumes q∗ in all trades
during the day.

Proof. Suppose the government treats buyers and sellers equally. Then, the
government chooses a money growth rate μ ≥ β to maximize ρ [u (x)− x] +
(1− ρ) [u (y)− y] subject to (14), (15), and (16). It follows that μ = β implies
x = y = q∗, and the efficient allocation under full commitment is implemented.
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Proposition 11 If q∗∗ < q∗, then μ = βu0(q∗∗) is optimal, and this implies
that l = 0, the incentive constraint binds, and the buyer consumes q∗∗ in all
trades during the day.

Proof. If q∗∗ < q∗, the incentive constraint requires that y ≤ q∗∗. It follows
from (18) and (19) that setting μ = βu0(q∗∗) implements the efficient allocation
(q∗∗, q∗∗).
Here, we have essentially generalized the results of Andolfatto (1997) to

the case where credit is permitted in some types of bilateral trades. If the
discount factor is sufficiently small, then the Friedman rule is not feasible and the
incentive constraint binds at the optimum. In terms of our goal of constructing
a model with robust money and credit, an undesirable feature of this setup
is that optimal monetary policy drives credit out of the economy. Here, the
only inefficiency in monetary exchange is due to the fact that buyers in general
hold too little real money balances in equilibrium, and this inefficiency can be
corrected in the usual way, with the caveat that too much deflation can cause
agents to default on their tax liabilities. Ultimately, at the optimum money
is equivalent to memory, in that an appropriate monetary policy achieves the
same allocation that could be achieved by a social planner with perfect record
keeping.

6 Imperfect Memory and Non-Autarkic Punish-

ment

In the previous section, given the limited commitment friction, optimal mone-
tary policy will yield an equilibrium allocation where credit is not used. Credit
seems to be more robust than this in practice, so we would like to study fric-
tions that potentially imply that money and credit coexist, even when monetary
policy is efficient.
Here, we will assume the same information technology and bargaining proto-

col as in the previous section. However, we will consider a different equilibrium,
where default does not trigger autarky, but instead triggers an equilibrium where
money is valued. That is, a default results in reversion to an equilibrium where
sellers will not trade if a buyer announces that he or she wishes the interaction
to be monitored, but will exchange goods for money if the buyer announces that
the interaction will not be monitored. The government is not able to commit to
a monetary policy, so the money growth rate that is chosen by the government
when punishment occurs is chosen optimally at that date given the behavior of
private sector agents.
We restrict attention to punishment equilibria that are stationary. Further,

a punishment equilibrium must be sustainable, in that no agent would choose
to default on his or her tax liabilities in such an equilibrium. Letting v̂ denote
the continuation value in the punishment equilibrium, after agents receive their
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lump-sum transfers from the government, we have

v̂ = −m(μ) + β

∙
u

µ
m(μ)

μ

¶
+m(μ)

µ
1− 1

μ

¶
+ v̂

¸

where m(μ) is the quantity of real balances acquired by the buyer during the
night, which solves the first-order condition

u0
µ
m(μ)

μ

¶
=

μ

β
. (20)

Now, for the punishment equilibrium to be sustainable, we require that

m(μ)

µ
1− 1

μ

¶
+ v̂ ≥ v̂, (21)

i.e. the equilibrium is sustained in the sense that, if an agent chooses not to
accept the transfer from the government, then the punishment is reversion to
the punishment equilibrium. Clearly, condition (21) implies that punishment
equilibria are sustainable if and only if μ ≥ 1. That is, private agents need to be
bribed to enforce the punishment with positive transfers, otherwise they would
default on the tax liabilities.
The government will choose μ optimally in the punishment equilibrium, and

it must choose a sustainable money growth factor, i.e. μ ≥ 1. Assume that the
government weights the utility of buyers and sellers equally, though since sellers
receive zero utility in any punishment equilibrium, it is only the buyers that
matter. Therefore, the government solves

max
μ

∙
u

µ
m(μ)

μ

¶
− m(μ)

μ

¸

subject to (20) and μ ≥ 1. Clearly, the solution is μ = 1, so we have

v̂ =
−m̂+ βu(m̂)

1− β
, (22)

where m̂ solves

u0(m̂) =
1

β
(23)

When punishment occurs, the government would like to have been able to com-
mit to an infinite growth rate of the money supply so as to make the punishment
as severe as possible. However, given the government’s inability to commit, once
punishment is triggered the government chooses the sustainable money growth
rate that maximizes welfare, consistent with the optimal punishment behavior
of sellers in the credit market. Thus, the money growth rate is set as low as
possible without inducing default on tax liabilities.
Now that we have determined the continuation value in a punishment equi-

librium, we can work backward to determine what the equilibrium can be. For
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this purpose, we again define the stationary equilibrium in terms of (x, y), where
x denotes the daytime consumption of a buyer in the non-monitored state, and
y the buyer’s daytime consumption in the monitored state. The definition of a
stationary monetary equilibrium is the same as in the previous section, except
now v̂ is defined by (22) and (23).

Proposition 12 The only monetary equilibrium is the punishment equilibrium.

Proof. First, suppose that y > x in equilibrium. Then, using Jensen’s inequal-
ity,

β[ρu(x)+(1−ρ)u(y)]−ρβx−(1−ρβ)y < βu [ρx+ (1− ρ)y]−ρx−(1−ρ)y ≤ −m̂+βu(m̂),
by virtue of (23). Thus, given that an equilibrium must satisfy (16), we have a
contradiction. Therefore, if an equilibrium exists, it must have y = x, in which
case inequality (16) can be written, using (22),

−x+ βu(x) ≥ −m̂+ βu(m̂),

but then by virtue of (23), (22) can only be satisfied, with equality, when x =
y = m̂, and this can be supported, from (14) only if the money growth factor is
μ = 1.
Therefore, the only monetary equilibrium with non-autarkic punishment is

one where no credit is supported. The incentive constraint is satisfied with
equality and no seller is willing to lend to a borrower, even if the interaction is
monitored. The optimal money growth factor, indeed the only feasible money
growth factor, is μ = 1.
Intuition might tell us that, in line with some of the ideas in Aiyagari and

Williamson (2000) and Antinolfi, Azariadis, and Bullard (2007), that the pos-
sibility of being banned from credit markets but with punishment mitigated by
the ability to trade money for goods, would tend to promote credit. That is,
because the degree of punishment depends on money growth, the government
might tend to produce inflation so as to increase the punishment for bad behav-
ior in the credit market, thus reducing the payoff to holding money and causing
buyers to substitute credit for money. In the context of this model, this intu-
ition is wrong, in part because we take account here of the government’s role as
a strategic player, and its inability to commit to inflicting punishment.
Thus far, we have not arrived at a set of assumptions concerning the infor-

mation structure under which credit is robust. Either efficient monetary policy
will drive credit out of the system, or the only equilibrium that exists is one
without credit. Thus, it appears that there must be another friction or frictions
that are necessary to the coexistence of robust money and credit that we observe
in reality.

7 Theft

One aspect of monetary exchange is that, due to anonymity, theft is easier in
most respects than it is with exchange using credit. It seems useful to consider a
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framework where limited commitment makes credit arrangements difficult, and
theft makes monetary exchange difficult. However, the fact that theft makes
monetary exchange difficult may lessen the limited commitment friction in the
credit market, as this will make default less enticing.
We will assume the same imperfect memory structure as in the previous

section, but allow for a technology that permits the theft of cash. Suppose the
following bargaining protocol. On meeting a seller in the daytime, the buyer first
announces whether his or her interaction with the seller will be monitored or
not. Recall that it is necessary that the seller have the potential for monitoring
(occurring with probability 1 − ρ from the buyer’s point of view) in order for
the interaction to be monitored. Then, the seller announces whether or not he
or she is willing to trade. Following this, if the interaction is not monitored, the
seller can pay a fixed cost τ to acquire a technology (a “gun”), which permits
him or her to confiscate the buyer’s money, if the buyer has any. Clearly, if the
buyer’s money is stolen in a non-monitored trade, the interaction with the seller
ends there. Otherwise, the buyer makes a take-it-or-leave-it offer to the seller if
the seller has agreed to trade.
With theft, an equilibrium can be characterized by (x, y, α) where, as before,

x is consumption by the buyer in a non-monitored trade when theft does not
occur, y is consumption when monitored, and α is the fraction of non-monitored
daytime meetings where theft occurs, so that α ∈ [0, 1]. In general, given the
continuation value v̂ in the punishment equilibrium, we can define a monetary
equilibrium as follows.

Definition 13 A monetary equilibrium is a triple (x, y, α), where x and y are
chosen optimally by the buyer,

ρ(1− α)u0(x) + (1− ρ)u0(y) =
μ

β
, (24)

x and y have the property that consumptions and the loan quantity are nonneg-
ative, and consumptions do not exceed the surplus-maximizing quantity,

0 ≤ x ≤ y ≤ q∗, (25)

(x, y, α) is incentive compatible,

β[ρ(1− α)u(x) + (1− ρ)u(y)]− ρβx− (1− ρβ)y ≥ v̂(1− β), (26)

where y = q∗ if (26) does not bind. Further, x and α must be consistent with
optimal theft by sellers in non-monitored trades, that is

if α = 0, then x ≤ τ , (27)

if 0 < α < 1, then x = τ , (28)

if α = 1, then x ≥ τ . (29)
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Conditions (27)-(29) state that in equilibrium there is either no theft, so
sellers must weakly prefer not to steal in non-monitored trades, or sellers some-
times steal, so they must be indifferent to being honest, or sellers always steal,
so they must weakly prefer theft.
Now, the government will choose μ so as to maximize welfare in equilibrium,

where the utilities of sellers and buyers are weighted equally. Thus, in the
stationary equilibria we study, the government wishes to maximize

W = ρ(1− α) [u(x)− x] + (1− ρ) [u(y)− y]− αρτ

Lemma 14 When the government chooses μ optimally, α = 0.

Proof. First, suppose that there exists an equilibrium with α = 1, y = ȳ < q∗

and x > τ , supported by μ = μ̄. Then from the definition of equilibrium, we
can construct another equilibrium with α < 1, y > ȳ and x = τ , supported by
some μ > μ̄. In this other equilibrium, W must be larger. If there exists an
equilibrium with α = 1, y < q∗ and x = τ in equilibrium, we can accomplish
the same thing except by holding x constant at τ . Similarly if α = 1 and y = q∗

the same argument applies except that we do not increase y. Next, if 0 < α < 1
in equilibrium, we can construct another equilibrium with lower α, larger μ, and
larger y if y < q∗ which achieves higher welfare.
A smaller amount of theft necessarily increases the continuation value for the

buyer and relaxes the incentive constraint, while increasing welfare. A smaller
amount of theft can be achieved in this fashion as an equilibrium outcome with
a higher money growth rate. The higher money growth rate discourages the
holding of currency, and therefore reduces the payoff from theft. Note that this
is true no matter what v̂ is. Irrespective of the punishment that is imposed
when a buyer defaults, efficient monetary policy must always drive out theft.

7.1 Autarkic Punishment

First, consider the case where default triggers autarky. In determining what is
optimal for the government in this context, we know from the above arguments
that we can restrict attention to equilibria where α = 0, and search among
these equilibria for the one that yields the highest welfare. The government
then solves the following problem:

max
x,y,μ

{ρ [u(x)− x] + (1− ρ) [u(y)− y]} (30)

subject to

ρu0(x) + (1− ρ)u0(y) =
μ

β
, (31)

x ≤ τ (32)

0 ≤ x ≤ y ≤ q∗ (33)

β[ρu(x) + (1− ρ)u(y)]− ρβx− (1− ρβ)y ≥ 0, (34)

where y = q∗ if the last constraint does not bind. We first have the following
results.

21



Proposition 15 If q∗ ≤ q∗∗ and τ ≥ q∗, then a Friedman rule is optimal, and
this supports an efficient allocation in equilibrium.

Proof. Suppose that we ignore the constraint (32) in the government’s opti-
mization problem. If q∗ ≤ q∗∗, then the solution to the problem is x = y = q∗

and μ = β, i.e. the solution is what we obtained when we studied non-autarkic
punishment with the same setup and no theft technology. However, for the
constraint (32) not to bind at the optimum then requires τ ≥ q∗.

Proposition 16 If q∗ > q∗∗ and τ ≥ q∗∗, then μ = βu0(q∗∗) at the optimum,
and this supports an efficient allocation in equilibrium.

Proof. Again, suppose that we ignore the constraint (32) and solve the gov-
ernment’s optimization problem in the case where q∗ > q∗∗. Then the solution
to the problem is x = y = q∗∗ and μ = βu0(q∗∗), i.e. the solution is what we
obtained when we studied non-autarkic punishment with the same setup and
no theft technology. Now, for the constraint (32) not to bind at the optimum
requires τ ≥ q∗∗.
Thus, as should be obvious, if the cost of theft is sufficiently large that theft

does not take place in equilibrium given the efficient monetary policy rules we
derived in the absence of theft, then theft is irrelevant for policy. Of course, our
interest is in what happens when theft is sufficiently lucrative, i.e. when τ is
sufficiently small that (32) binds at the optimum.
Now, since x = τ at the optimum when theft matters, this makes solving the

government’s optimization problem easy. First, suppose that q∗ ≤ q∗∗∗ ≤ q∗∗

in which case theft matters if and only if τ ≤ q∗. Then (x, y) = (τ , q∗) must
be optimal, as this satisfies (34) as a strict inequality, (33) is satisfied, and we
can recover the money growth factor that supports this as an equilibrium from
(31), i.e.

μ = β [ρu0(τ) + 1− ρ] . (35)

Note that the optimal money growth rate rises as the cost of theft falls, as a
lower cost of theft requires a higher money growth rate to drive out theft. An
interesting feature of the efficient equilibrium is that money and credit now
coexist. Indeed, the loan quantity is l = q∗ − τ , which increases as the cost of
theft decreases. Essentially, money and credit act as substitutes. As the theft
friction gets more severe, money becomes more costly to hold at the optimum
(the optimal money growth rate rises), and buyers use credit more intensively.
Now, suppose that q∗∗∗ < q∗ ≤ q∗∗ in which case theft matters if and only

if τ ≤ q∗. Let τ̄ < q∗ be the unique value of τ satisfying

ρβ [u (τ̄)− τ̄ ] + β(1− ρ)u(q∗)− (1− ρβ)q∗ = 0.

Then, for τ ∈ (0, τ̄ ] the incentive constraint binds, and the optimal equilibrium
allocation is (x, y) = (τ , ȳ), where ȳ is the solution to

ρβ [u (τ)− τ ] + β(1− ρ)u(ȳ)− (1− ρβ)ȳ = 0. (36)
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The optimal money growth factor in this case is

μ = β [ρu0(τ) + (1− ρ)u0(ȳ)] . (37)

For τ ∈ [τ̄ , q∗], the incentive constraint does not bind, and the optimal equilib-
rium allocation is (x, y) = (τ , q∗) with the optimal money growth factor given
by

μ = β [ρu0(τ) + 1− ρ] .

Clearly, given q∗∗∗ < q∗ ≤ q∗∗, x and y both decrease as τ decreases, at the
optimum, so that the welfare of buyers falls. Further, it is straightforward to
show that the quantity of lending, y − x increases as τ falls, at the optimum,
so that less costly theft promotes credit. As well, the optimal money growth
factor decreases as the cost of theft rises.
Finally, consider the case where q∗ > q∗∗, in which case theft matters if and

only if τ ≤ q∗∗. Here, the incentive constraint always binds, and (x, y) = (τ , ȳ),
where ȳ is the solution to (36), and the optimal money growth factor is given
by (37). Just as in the other cases, x and y fall as τ falls, at the optimum,
and welfare decreases. As well, the quantity of lending rises as τ falls at the
optimum.

7.2 Non-Autarkic Punishment

Recall that, with non-autarkic punishment we are looking for a sustainable
punishment equilibrium in which, if a buyer meets a seller and announces that
the interaction will be monitored, the seller will not trade. Money will be valued
in the punishment equilibrium, but all transactions between buyers and sellers
will be non-monitored ones. The government cannot commit to a monetary
policy rule, so when default occurs the government will choose the money growth
factor that maximizes welfare in the punishment equilibrium.
Through arguments identical to what we used previously when theft was not

an issue, any sustainable punishment equilibrium must have μ ≥ 1, as buyers
need to be bribed with a transfer to sustain the punishment. Note that we
cannot have α = 1 in the punishment equilibrium since, if all sellers steal, no
buyer would accumulate money balances, but if no buyer accumulates money
balances there will be no theft. Let x denote the buyer’s daytime consumption in
the punishment equilibrium. Then, the punishment equilibrium is the solution
to the following problem.

max
x,α,μ

(1− α) [u(x)− x]− αρτ

subject to

(1− α)u0(x) =
μ

β

0 ≤ x ≤ q∗

α ∈ [0, 1)
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μ ≥ 1
if α = 0, then x ≤ τ

if α > 0, then x = τ

Now, just as in the efficient equilibrium, it is straightforward to show that
part of the solution to this problem is α = 0. That is, if there is a sustainable
equilibrium where α > 0, then there is another equilibrium with a higher money
growth factor, lower α, and higher welfare that is also sustainable. Given that
α = 0 is optimal (no theft in the punishment equilibrium), the government will
choose the lowest money growth rate consistent with sustainability and no theft.
Therefore, the solution to the above problem is

If βu0(τ) ≤ 1, then x = x̂, μ = 1, and v̂ =
βu(x̂)− x̂

1− β

If βu0(τ) > 1, then x = τ , μ = βu0(τ), and v̂ =
β {−τ [(1− β)u0(τ) + 1] + u(τ)}

1− β

Here, recall that u0(x̂) = 1
β .

Now, suppose that βu0(τ) ≤ 1, that is τ ≥ x̂. Then, given the same ar-
guments as we used in the absence of the theft technology, the only incentive
compatible equilibrium allocation is x = y = x̂ and μ = 1. Since τ ≥ x̂, this
is an equilibrium where there is only monetary exchange and no theft. It is
identical to what we obtained when there was no theft technology.
The interesting case is the one where βu0(τ) > 1, or τ < x̂. Here, in a

manner similar to what we did in the last subsection, we are looking for an
efficient equilibrium that is the solution to the government’s problem

max
x,y,μ

{ρ [u(x)− x] + (1− ρ) [u(y)− y]} (38)

subject to

ρu0(x) + (1− ρ)u0(y) =
μ

β
, (39)

x ≤ τ (40)

0 ≤ x ≤ y ≤ q∗ (41)

ρβ [u(x)− x]+β(1−ρ)u(y)−(1−ρβ)y ≥ β {−τ [(1− β)u0(τ) + 1] + u(τ)} , (42)

Lemma 17 If βu0(τ) > 1, then with non-autarkic punishment, x = τ in an
efficient equilibrium.

Proof. Suppose not. Then, an increase in x will relax constraint (42), since
τ < x̂. Therefore if there exists an equilibrium with x < τ and y = q∗, there
exists another equilibrium with larger x and smaller μ such that the constraints
in the above problem are all satisfied and the value of the objective function
increases. Similarly, if there exists an equilibrium with x < τ and y < q∗,
so that (42) holds with equality, then we can construct another equilibrium
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satisfying all of the constraints in the problem and increase the value of the
objective function, simply because increasing x relaxes the incentive constraint
and increases the value of the objective function, and we can find a value for μ
that satisfies (39) and therefore supports this allocation as an equilibrium.
Given the above lemma, we can write the incentive constraint (42) as

β(1− ρ)u(y)− (1− ρβ)y ≥ β(1− ρ)[u(τ)− τ ]− β(1− β)τu0(τ) (43)

Now, let y(τ) denote the value of y satisfying (43), given τ , where y(τ) = q∗ if
(43) does not bind. The function y(τ) is defined for τ ∈ [0, x̂], with u0(x̂) = 1

β .

We know that y(0) = q∗∗∗ and y(x̂) = x̂. Therefore, for example, if q∗∗∗ >
x̂, then by continuity there are some values of τ for which a reduction in τ
causes an increase in y. That is, a decrease in the cost of theft can increase
the quantity of consumption in the monitored state, which makes this case
much different from the one where the punishment equilibrium is autarky. It
is straightforward to show that, if βu0(τ) > 1, and y = τ , then (43) is satisfied
as a strict inequality, so that y(τ) > τ for τ ∈ [0, x̂). Thus, as long as theft
matters, an efficient equilibrium supports some credit, just as in the autarkic
punishment case. Finally, the optimal money growth rate will be given by

μ = β {ρu0(τ) + (1− ρ)u0 [y(τ)]}

With non-autarkic punishment, theft acts as a disciplining device. The op-
portunities are greater for thieves in the punishment equilibrium, since all ex-
change is carried out using money. Thus, the government needs to inflate at
a higher rate in order to drive out thieves, which makes the punishment more
severe. The efficient money growth rate is always smaller than it is in the pun-
ishment equilibrium. Therefore, buyers who default not only give up access to
credit markets, but they will have to face a higher inflation tax.

8 Conclusion

In determining the roles for money and monetary policy, it is important to an-
alyze models with credit. Credit and outside money are typically substitutes in
making transactions, and an important aspect of the effects of monetary policy
may have to do with how central bank intervention works through credit market
relationships. In the model studied in this paper, limited memory provides a
role for money, as in much of the recent monetary theory literature, and does
this by reducing the role for credit. This role for credit is further mitigated by
limited commitment.
In this context, monetary policy works too well, in the sense that efficient

monetary policy drives out credit. In reality, money and credit appear to be
robust, in that it is hard to imagine an economy where there are not some
transactions carried out with both money and credit. To obtain this robustness
in our environment, it is necessary that there be some cost to operating the
monetary system. The cost we choose to model is theft, as we think that theft,
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or the threat of theft, is likely an empirically significant cost associated with
monetary exchange. If the cost of theft is small enough to matter, than money
and credit always coexist under an optimal monetary policy, and a reduction in
the cost of theft acts to increase lending in the economy, though this depends to
some extent on how bad behavior in the credit market is punished. In general,
the Friedman rule is not optimal given theft, and the optimal money growth
rate tends to increase as the cost of theft falls.
For convenience, we have modeled monetary intervention by the central bank

as occurring through lump-sum transfers. Though we have not shown this in
the paper, we think that the results are robust to how money injections occur.
For example, it should not matter if money is injected through central bank
lending or open market purchases. In the latter case, of course, we would have
to take a stand on why government bonds are not used in transactions.
This model should be useful for evaluating the performance of monetary

policy in the context of aggregate shocks. As well we could easily consider other
types of costs of operating a monetary system, including counterfeiting, the
costs of deterring counterfeiting, or the costs of replacing worn currency.
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Figure 1 :  Efficiency When q** > q*
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Figure 2 :  Efficiency When q** <  q*
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Figure 3 :  Equilibrium with Credit 
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