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FORECASTING AND TESTING A NON-CONSTANT

VOLATILITY

VYACHESLAV M. ABRAMOV AND FIMA C. KLEBANER

Abstract. In this paper we study volatility functions. Our main assumption
is that the volatility is deterministic or stochastic but driven by a Brownian
motion independent of the stock. We propose a forecasting method and check
the consistency with option pricing theory. To estimate the unknown volatil-
ity function we use the approach of [12] based on filters for estimation of an
unknown function from its noisy observations. One of the main assumptions
is that the volatility is a continuous function, with derivative satisfying some
smoothness conditions. The two forecasting methods correspond to the the
first and second order filters, the first order filter tracks the unknown function
and the second order tracks the function and it derivative. Therefore the qual-
ity of forecasting depends on the type of the volatility function: if oscillations
of volatility around its average are frequent, then the first order filter seems
to be appropriate, otherwise the second order filter is better. Further, in de-
terministic volatility models the price of options is given by the Black-Scholes
formula with averaged future volatility [16], [29]. This enables us to compare
the implied volatility with the averaged estimated historical volatility. This
comparison is done for five companies and shows that the implied volatility
and the historical volatilities are not statistically related.

1. Introduction

The aim of this paper is to propose a method of forecasting a volatility function,
and then check whether the models agree with option pricing theory. The concept
of volatility is associated with fluctuations of a time series. More specifically, in
finance volatility

√
vt is the function appearing in the the Black-Scholes model for

the stock price St

(1.1) dSt = rStdt +
√

vtStdWt,

where Wt is a standard Wiener process. The function
√

vt is referred to as the
spot volatility process. In the standard Black-Scholes model [6], [23], the spot
volatility is assumed to be constant σ, i.e.

√
vt ≡ σ. Recently (e.g. [11], [12],

[13], [20] [21], [28] and many others), there has been an increasing attention to
non-constant volatility models. We assume that in the above model the stock
price is the only observable, and only at discrete times t1, t2, . . . , tN so that the
challenge is: firstly to extract information about the volatility function from past
stock prices, and secondly to predict this function into the future where no stock
prices are yet observed. We propose a new method of volatility forecasting based
on the technique of functional estimation in the presence of noise developed in the
context of volatility by [12], which rests on nonparametric approach due to [18] and

Key words and phrases. Non-constant volatility; approximating and forecasting volatility;
Black-Scholes formula, best linear predictor.
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[19]. The method is essentially prediction by solving of a control problem. This
method might be especially useful in the context of volatility forecasting due to the
extra information about volatility in the future that is derived from options, e.g.
values of the implied volatility.

Volatility estimation and forecasting is discussed in a large number of papers (see
[1] and the references therein, which also gives a review of this field). Specifically,
[1] discusses a wide circle of problems of volatility forecasting based on GARCH,
stochastic volatility and realized volatility; and includes different forecast evalua-
tion methods for univariate and multivariate cases. Another recent paper [2] also
discusses univariate and multivariate forecasting models for realized volatility in
Australian stocks.

Our method of forecasting is based on the development of recent results of track-
ing historical volatility [12]. The approach of [12] represents a wide class of approx-
imations and is based on adaptive algorithm for tracking historical volatility using
ideas of non-parametrical statistics. We assume that unknown spot volatility func-
tion belongs to the Ibragimov-Khasminskii class [17], [18]. 1 If the spot volatility
function is continuous and satisfies the Lipschitz condition with constant L, i.e.

|v(t) − v(s)| ≤ L|t − s|
then it belongs to the class Σ(1, L). Note that the integrated spot volatility is a
differentiable function and therefore automatically belongs to the class Σ(1, L). In
this situation the first order filter is used and given by the formula (see Section 3
of [12])

(1.2) v̂n =
(
1 − a1

N

)
v̂n−1 +

a1κ

N
+

ϑ

N2/3
(Xn − v̂n−1) ,

where N is the number of observations, n = 1, 2, . . . , N , and a1 and κ are spe-
cific parameters of this filter, ϑ is the (unique) parameter chosen to minimize the
innovation difference

SN (ϑ) =
1

N

N∑

n=1

(Xn − v̂n−1)
2,

Xn =
1

∆

[
log

(
Stn

Stn−1

)]2

,

and ∆ = tn+1 − tn = T
N .

It is worth noting that the first order filter in [12] is derived under the assumption

(1.3) vn =
(
1 − a1

N

)
vn−1 +

a1κ

N
+ white noise.

1Recall that the Ibragimov-Khasminskii class of functions Σ has the properties

Σ(β, L) =







f :





f has k derivatives with k-th derivative satisfying

|f (k)(t2) − f (k)(t1)| ≤ L|t2 − t1|α, ∀ t1, t2 and α ∈ (0, 1];
β = k + α.











.

Thus if the function f belongs to the class Σ(ℓ, L), where ℓ is a positive integer, then it is assumed
that the function f has the ℓ − 1st derivative satisfying the Lipschitz condition. If f belongs to
the class Σ(β, L), where β is a positive real but not integer number, then it is assumed that f

has k derivatives, k = ⌊β⌋, where ⌊β⌋ denotes the integer part of β, and the kth derivative of f

satisfies the Hölder condition with parameter α = β − k.
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More specifically, in this equation the standard deviation parameter of white noise

is small having order O

(
1

N2/3

)
. It is derived exactly in Chow, Khasminskii and

Liptser [8] to be consistent with mean square error of kernel estimates obtained
earlier in Ibragimov and Khasminskii [17], Theorem 2.1.

Therefore the best linear predictor v̂n is defined by the representation similar to
(1.3), using the formula with the same coefficients and replacing the last term by
zero when future observations are not available, i.e.

(1.4) v̂n =
(
1 − a1

N

)
v̂n−1 +

a1κ

N
.

If the volatility function has a derivative that satisfies the Lipschitz condition
(and therefore belongs to Σ(2, L)), then the second order filter is used, and is given
by the system (see Section 3 of [12])

(1.5)
v̂n = v̂n−1 +

1

N
v̂
(1)
n−1 +

√
2ϑ

N4/5
(Xn − v̂n−1),

v̂(1)
n =

(
1 − a1

N

)
v̂
(1)
n−1 −

a2

N
v̂n−1 +

a2κ

N
+

ϑ

N3/5
(Xn − v̂n−1),

where the superscript (1) stands for the derivative of volatility function, and a1, a2

and κ are the specific parameters of this filter.
Similarly to the first order filter, the second order filter is derived by assumption:

(1.6)
vn = vn−1 +

1

N
v
(1)
n−1 + white noise,

v(1)
n =

(
1 − a1

N

)
v
(1)
n−1 −

a2

N
vn−1 + white noise,

where the white noises in the first and second equations of (1.6) are indepen-
dent. Similarly to the case of the first order filter, the standard deviation parame-

ters of these noises are small, and correspondingly having orders O

(
1

N4/5

)
and

O

(
1

N3/5

)
. They are derived exactly in [8] to be consistent with mean square error

of kernel estimates obtained in [17], Theorem 2.1.
Then the last terms of the first and second equations of (1.5) are replaced by

zero for the projection and therefore we have

(1.7)
v̂n = v̂n−1 +

1

N
v̂
(1)
n−1,

v̂(1)
n =

(
1 − a1

N

)
v̂
(1)
n−1 −

a2

N
v̂n−1.

The above parameters a1, a2, N , κ of these two filters can be found by tuning
procedure.

The accuracy of volatility approximation in [12] depends on the class of that
volatility. If the class of volatility is higher, then there is more information on
volatility function is used and accuracy of approximation is higher. However the
numerical experiments of [12] show that the difference between approximations
given by the first and second order filters is so small, that in most cases it is not
actually visible on the graph. For this reason the paper discusses volatility classes
of the first two orders and studies corresponding volatility forecasting by the first
and second order filters only.
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Along with the method of approximation volatility suggested in [12], there is a
number of different methods of approximation of volatility in the literature which
are discussed in the next section.

The main idea in the proposed method for forecasting is to attain a given point
in the future. That is, having a historical volatility dynamics in the first n0 points
and assuming its value at the last point N to be known (N > n0), we interpolate
volatility dynamics in all intermediate points between n0 and N . The volatility at
point N is assumed to be known according to open periodical information about

option prices, i.e. the value of
1

T − t

∫ T

t
v(s)ds is assumed to be known, where T is

the last point of time interval and t is an initial (current) time moment. According
to our notation, where daily information is considered in discrete time scale, the

above integral is approximately written as the sum:
1

N − n0 + 1

∑N
n=n0

vn, and

this value is just assumed to be known. Denote the known value of
∑N

n=n0
vn by

V .
The standard problem of interpolation is formulated as follows. Assume that∑N
n=n0

vn = V . Then the problem is to find a control sequence un, n = n0, . . . , N

minimizing the mean squared error of approximation. The detailed description of
this minimization problem for the first and second order filters is given in next
section.

The paper is structured as follows. In Section 2 we review briefly other methods
of approximation and forecasting volatility known in the literature making a com-
parison when possible. In Section 3 we approach forecasting by the control method
for the first and second order filters respectively. Section 4 discusses numerical
examples of forecasting volatility. Section 5 checks volatility functions on options.
Specifically, it checks whether the volatility obtained by the method of [12] agrees
with the observed implied volatility.

2. Other methods of approximation and forecasting volatility

Along with the approach of [12] there is a number of different approaches to
approximation of volatility in the literature (e.g. [2], [3], [9], [10], [14], [15], [22]).
In this section we briefly describe these methods and compare with that of [12].

One of the simplest methods of approximation is discussed in [3] (see also [4] and
[5]). The method is based on calculation of realized variance (realized volatility)
for fixed intervals of given length h, containing a large number M of observations.
The estimator is consistent (as M → ∞). An approximated realized volatility is
piecewise constant taking for intervals of length h some specific value. Accuracy
of calculation essentially depends on chosen value M : It was shown in [4] that the
above convergence is at rate 1√

M
to asymptotically normal distribution of estimator.

Some examples for exchange of US dollar/DM is given in [5] for different values of
M = 1, 8 and 48.

To obtain satisfactory volatility approximation it is required a large volume of
information. In our experiments with stock data it is taken M = 100 from daily
information of a number of companies. Compared with the rate of convergence 1√

M
,

this volume of information is small and does not give satisfactory accuracy. Only in
a small number of cases the comparison results of two methods seem to be relatively
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Figure 1. Comparison results for calculation of volatility by two
methods for CECO Environmental Corporation: red line - the first
order approximation by the method of [12]; blue line - piecewise
constant approximation by the approach suggested by [3].

close to each other as in figure 1. Relatively close results by two approaches [3] and
[12] can be expected in cases when price variation is not too large.

Anderson and Vahid [2] also study realized volatility in Australian stocks, and
their approach is closely related to the approach of [5]. They use multi-factor
models and show that application of the methods of factor analysis can improve
forecasting of volatility. In the case when the cross-sectional factor dimension is
not large, the estimation procedures for approximate factor models is robust to
jumps. However similarly to the approach of Barndorff-Nielsen and Shephard [3],
[4], [5], the approach of [2] requires a large volume of information to obtain piecewise
constant approximation for volatility functions.

Another approach is suggested by Mercurio and Spokoiny [22]. They suppose
that volatility can be locally approximated by a constant, that is for every time
moment t there exists interval of time homogeneity [t−m, t] where the volatility vt

varies very slowly. An algorithm for estimation of these intervals of time homogene-
ity has been proposed, and the estimate of volatility is obtained by local averaging
over that interval. The local averaging adaptive estimate has been constructed in
order to perform this local averaging and create the volatility function. However,
the proposed algorithm of [22] seems to be hard. Another more simple way of esti-
mating and forecasting volatility is based on the so-called adaptive weight smoothing

(AWS) introduced by Polsehl and Spokoiny [24]. The AWS procedure is a method
of non-parametric estimation which is based on locally constant smoothing with
adaptive choice of weights for every pair of data points. The AWS procedure was
then developed in [25], [26] and applied to extended GARCH models with vary-
ing coefficients in [27]. The suggested there adaptive procedure could estimate the
GARCH coefficients as a function of time and was applied to short term forecasting
in GARCH(1,1) models.
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Hillebrand [14], [15] studied short-term forecasts for GARCH models as well as
generalizations of GARCH models allowing several time scales. Specifically presence
of two time scales, short and long, and their influence to the GARCH parameters
has been investigated. Multi-scale stochastic volatility processes have been also
studied in [9] and [10]. Specifically Fouque et al [9], [10] studied stochastic volatility
asymptotics proposing to use a combination of regular and singular perturbations to
analyze parabolic partial differential equations arising in context of prising options
when a stochastic volatility varies in several time scales. They showed efficiency
of asymptotic methods in presence of separation time scales between the main
observed process and stochastic volatility.

3. Approach to forecasting by the control method

3.1. The first order filter. Denote a = 1− a1

N
and b =

a1κ

N
in (1.4), and rewrite

(1.4) in the form:

(3.1) v̂n = av̂n−1 + b.

Since a < 1, recursion in (3.1) converges to the fixed value v̂∞, and

v̂∞ = av̂∞ + b.

Hence

(3.2) v̂∞ =
b

1 − a
= κ.

It is clear that following recursion (3.1) we most likely won’t end up at the speci-
fied at time N point v. Therefore introduce a control sequence un (n = n0, . . . , N),
to be determined by minimization of the mean square error of approximation, and
the following recurrence relation

(3.3) ṽn = aṽn−1 + b + un,

(which in the case un ≡ 0 gives us approximation (3.1))
Let N be a large number (of steps). The values ṽn are assumed to be known for

all n = 1, 2, . . . , n0. For n = N , ṽN = v, where v can be deduced from the known

value V (it turns out v = V −
∑N−1

i=n0
v̂i.)

Thus, the value v is known, and the sequence un should be chosen such that

(3.4)

{
ṽN = v,∑N

n=n0+1 u2
n is minimal.

The control sequence un is found as follows. For the point v = ṽN we have

v = ṽN = ṽn0
aN−n0 +

N∑

n=n0+1

aN−n(b + un).

On the other hand, according to (3.1)

v̂N = v̂n0
aN−n0 + b

N∑

n=n0+1

aN−n.

Therefore

ṽN = v̂N +

N∑

n=n0+1

aN−nun.
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This enables us to write

(ṽN − v̂N )2 =

(
N∑

n=n0+1

aN−nun

)2

.

By the Cauchy-Schwartz inequality,

(3.5)

(
N∑

n=n0+1

aN−nun

)2

≤
N∑

n=n0+1

a2(N−n) ·
N∑

n=n0+1

u2
n.

The equality in (3.5) is achieved if and only if aN−n = cun for some constant c,
and since the equality in (3.5) is associated with the minimum of the left-hand side
of (3.5), the problem reduces to find an appropriate value c = c∗ such that

un = c∗aN−n.

Therefore,

ṽN = v̂N + c∗
N∑

i=n0+1

a2(N−i),

and then finally for c∗ we have:

(3.6) c∗ =
ṽN − v̂N∑N

i=n0+1 a2(N−i)
.

Thus, the sequence un satisfying (3.4) is

(3.7) un =
v − v̂N∑N

i=n0+1 a2(N−i)
· aN−n,

and its substitution for (3.3) yields

(3.8) ṽn = aṽn−1 + b +
v − v̂N∑N

i=n0+1 a2(N−i)
· aN−n.

The aforementioned explicit values a = 1−a1

N
and b =

a1κ

N
are finally substituted

for (3.1) and (3.8) in order to obtain the desired values of ṽn, n = n0 +1, . . . , N −1.

3.2. The second order filter. The equations for the second order filter can be
written in the form of a two dimensional analogue of the equations for the first
order filter. Specifically, the analogue of (3.3) is written as

(3.9) ṽn = Aṽn−1 + b + un,

where ṽn, b, un are two-dimensional vectors corresponding to ṽn, b and un in the
one- dimensional case, and A is a 2× 2 order matrix corresponding to the constant
a in the one-dimensional case. To be specific note, that the control vector un in
(3.9) is of the form

un =

(
un

0

)
,

un is a sequence chosen to minimize the error.
In the case where un ≡ 0 we obtain the following equation

(3.10) v̂n = Av̂n−1 + b,
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where v̂n =

(
v̂n

v̂
(1)
n

)
, and the components of this vector v̂n and v̂

(1)
n are defined by

(1.5). Note also that explicit form of A and b are A =


 1

1

N
−a2

N
1 − a1

N


,

b =

(
0

a2κ

N

)
. Similarly to the above one-dimensional case, the control sequence un

should be chosen such that

(3.11)

{
ṽN = v,∑N

n=n0+1 u2
n is minimal,

where ṽN is the first component of the vector ṽN which is determined by (3.9).
Next, we have the following:

ṽN = AN−n0 ṽn0
+

N∑

n=n0+1

AN−n(b + un).

On the other hand,

v̂N = AN−n0 v̂n0
+

N∑

n=n0+1

AN−nb.

This enables us to write:

(3.12) (ṽN − v̂N )⊤(ṽN − v̂N ) =

(
N∑

n=n0+1

AN−nun

)⊤ (
N∑

n=n0+1

AN−nun

)
,

where ⊤ is the notation for the matrix (vector) transpose operation.
Now, let (ai,j)n denote the element of the matrix An taken in an intersection of

the ith row and jth column. Then, taking into account that the second component
of all vectors un is equal to zero, the right-hand side of (3.12) reduces to

[
N∑

n=n0+1

(
(a1,1)N−nun

(a2,1)N−nun

)]⊤ [
N∑

n=n0+1

(
(a1,1)N−nun

(a2,1)N−nun

)]

=

[
N∑

n=n0+1

un

(
(a1,1)N−n

(a2,1)N−n

)]⊤ [
N∑

n=n0+1

un

(
(a1,1)N−n

(a2,1)N−n

)]

Therefore, applying the Cauchy-Schwartz inequality, we obtain

(3.13)

[
N∑

n=n0+1

un

(
(a1,1)N−n

(a2,1)N−n

)]⊤ [
N∑

n=n0+1

un

(
(a1,1)N−n

(a2,1)N−n

)]

≤
N∑

n=n0+1

(
(a1,1)N−n

(a2,1)N−n

)⊤ (
(a1,1)N−n

(a2,1)N−n

)
·

N∑

n=n0+1

u2
n

=

N∑

n=n0+1

[(a1,1)
2
N−n + (a2,1)

2
N−n] ·

N∑

n=n0+1

u2
n.
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Here in (3.13) we use the standard notation for the square of (ai,j)n: (ai,j)
2
n =

(ai,j)n · (ai,j)n.
The equality for the left-hand side of (3.13) is achieved if and only if

√
(a1,1)2N−n + (a2,1)2N−n = cun

for some constant c, and since the equality is associated with the minimum of the
left-hand side of (3.13), the problem reduces to find an appropriate value c = c∗

such that

(3.14) un = c∗
√

(a1,1)2N−n + (a2,1)2N−n.

Therefore,

ṽN = v̂N + c∗
N∑

n=n0+1

[(a1,1)
2
N−n + (a2,1)

2
N−n],

where ṽN and v̂N are the first components of the vectors ṽN and v̂N respectively.
Then for c∗ we have:

(3.15) c∗ =
ṽN − v̂N∑N

i=n0+1[(a1,1)2N−i + (a2,1)2N−i]
.

Substituting (3.15) for (3.14) and taking into account (3.11) we finally obtain

(3.16) un =
v − v̂N∑N

i=n0+1[(a1,1)2N−i + (a2,1)2N−i]

√
(a1,1)2N−n + (a2,1)2N−n.

Recall that in the case of the second order filter, A =


 1

1

N
−a2

N
1 − a1

N


,

b =

(
0

a2κ

N

)
, and these matrix and vector are used for calculations in (3.16) and

(3.9).

4. Numerical examples of forecasting volatility

The numerical examples are based on the real data on financial market.
In figure 2 the volatility dynamics for the IBM corporation stock is presented.

The figure consists of two graphs of real volatility dynamics compared with its
approximations with the first and the second order filters respectively. At the end
the graphs are split into two colors: the real dynamics of volatility is marked by
red while the approximated by one or other filter is marked by blue. It is seen
from the figure that the second order approximation in the given case has a visible
advantage over the first order approximation.

This advantage is slightly less visible in figure 3, where dynamics of the exchange
volatility of the US dollar vis the Australian dollar is given. Then in figure 4 the
dynamics of the exchange volatility of US dollar vis Russian ruble is given. The
difference between the first and the second order approximation seems not to be
visible at all in the given scaling. Which approximation is more appropriate in this
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Figure 2. Dynamics of the stock volatility of IBM Corporation:
(a) First order approximation; (b) Second order approximation

case? We made the following elementary calculations. For the observed volatility
dynamics vn, n = n0, n0 + 1, . . . , N its average is

V(n0, N) =
1

N − n0

N∑

i=n0+1

vi.

Similar averaging was done for the data corresponding to the first and second order
approximations:

V(i)(n0, N) =
1

N − n0

N∑

i=n0+1

v
(i)
i ,
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Figure 3. Dynamics of the exchange volatility of the US dollar
vis the Australian dollar: (a) First order approximation; (b) Second
order approximation

where the superscript (i), i = 1, 2, characterizes first or second order approximation.
We observed the inequality

(4.1)
∣∣∣V(1)(n0, N) − V(n0, N)

∣∣∣ ≤
∣∣∣V(2)(n0, N) − V(n0, N)

∣∣∣,

the left-hand side of which was 0.000132 while the right-hand side 0.000697. The
results obtained by the simple calculation above justify a possible advantage of the
first filter. But as seen this advantage is negligible. The advantage of the first order
filter in this case can be explained by analytic properties of the forecasting curves
of these two filters.
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Figure 4. Dynamics of the exchange volatility of the US dollar
vis the Russian ruble: (a) First order approximation; (b) Second
order approximation

The main property of the first order filter is based on (3.1) converging geomet-
rically fast to the limit κ, hence and the corresponding forecasting curve tends
sharply to κ and then smoothly changes towards the point v (see Figures 2 (a) and
3 (a)).

The behaviour of the second order forecasting curve also depends on parameter κ,
but this dependence is much weaker. The curvature of the second order forecasting
curve is small, its trajectory is close to the segment of straight line connecting two
points (see Figures 2 (b) and 3 (b)). This is observed experimentally and can be
proven using formulae (3.1) and (3.10) above. Both filters “remember” historical
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information (κ the overall average volatility) but the first filter has better memory
than the second.

First order filter will be better than the second one in the situations when volatil-
ity oscillates symmetrically about its mean, but in all other cases the second order
filter is superior.

5. Testing volatility on options

The aim of this section is to analyze the spot volatility functions of a number
of companies and to check whether the obtained volatility as the function of time
t can be considered as a function deterministic or stochastic process but driven
by Brownian motion independent of stock. Such type of analysis goes back to the
classical results of Hull and White [16] and Stein and Stein [29].

Assume that the model of stock is described by

(5.1) dSt = µtStdt +
√

vtStdWt,

where Wt is a standard Wiener process, and vt is a function of time. Then the
price of the option is given by the Black-Scholes formula with the averaged future

volatility, see [29].
General expression for the call option that expires at T with exercise price κ is

C(T,K) = er(T−t)EQ(ST − K)+,

where Q is the so-called equivalent martingale measure, i.e. under Q the process
Ste

−rt is a martingale. The net effect of this is that the drift parameter µt does
not enter the option formula, and (5.1) reduces to (1.1).

Therefore, according to Itô’s formula,

ST = S0 exp

[∫ T

0

(
r − vt

2

)
dt +

∫ T

0

√
vtdWt

]
.

∫ T

0

√
vtdWt has normal distribution, mean zero and variance

∫ T

0
vtdt.

Then ST is a lognormal random variable, and therefore E(ST − K)+ is given
by the Black-Scholes formula. So that when the spot volatility is a deterministic
function then the price of options is given by

C(T, K) = E(ST − K)+ = B
( 1

T

∫ T

0

vtdt
)
,

with the notation B(σ2) = S0Φ(h) − Ke−rT Φ
(
h − σ

√
T

)
,

h =

log
S0

K
+

(
r +

σ2

2

)
T

σ
√

T
, and Φ(u) =

1√
2π

∫ u

−∞ e−x2/2dx is the standard nor-

mal distribution.

Options prices from the following companies were sampled, where applicable,
between 27th of December 1995 to 14th of May 1997.

- Australia & New Zealand Banking Group Ltd. (ANZ)

- BHP Billiton Ltd. (BHP)

- National Australia Bank Ltd. (NAB)

- News Corporation Ltd. (NCP)

- Thomas Nation-Wide Transportation (TNT)
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Regression ANZ BHP NCP
and correlation Call Put Call Put Call Put

I = aV + b

a -0.00585 -0.03937 0.020830 0.035903 0.081272 0.112515
b 0.07070 0.08890 0.065760 0.058934 0.063890 0.058198

rI,V 0.154246 0.168609 0.152362 0.141581 0.169936 0.169961
Table 1. Regression equations and correlations for the call and
put options of companies ANZ, BHP and NCP

In figures 5-7 I denotes integrated volatility

I =

√
1

T − t

∫ T

t

v̂(s)ds,

and V implied volatility, i.e. that value of σ in the Black-Scholes formula that gives
the observed market price of an option.

The computations below related to three companies ANZ, BHP and NCP show
that there is visible difference between I and V . Specifically, we have the following
estimations. Conclusion that I and V are distinct can be made on the base of the
available statistical information. The regression equations in the form I = aV +
b and correlation coefficients rI,V are provided in Table 4 for call and put options
of these companies. It is seen from Table 4 that the correlations rI,V vary in the
bounds 0.14 - 0.17. These bounds enable us to conclude that there is no correlation
between I and V , and our computational experiments support this hypothesis at the
level of probability 0.95 (we used software ITSM-2000 from the book of Brockwell
and Davis [7] for this hypothesis). Then absence of correlation helps to support
the conclusion that I and V are distinct for all these three companies by using the
standard statistical tests.

Acknowledgements. The authors thank R. Liptser for useful discussions, L.
Goldentayer for providing them by necessary software for computation volatility
function and consultations on exploitation of the package of programs and C. Lill
for help in numerical calculations.
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Figure 5. Volatility function for ANZ and comparison of I and
V for ANZ call and put options



16 VYACHESLAV M. ABRAMOV AND FIMA C. KLEBANER

BHP volatility

0

0.005

0.01

0.015

0.02

0.025

1

4
0

7
9

1
1
8

1
5
7

1
9
6

2
3
5

2
7
4

3
1
3

3
5
2

3
9
1

4
3
0

4
6
9

5
0
8

5
4
7

5
8
6

6
2
5

6
6
4

7
0
3

7
4
2

=

BHP Call Options

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

V

I

BHP Put Options

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

V

I

Figure 6. Volatility function for BHP and comparison of I and
V for BHP call and put options
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