Gun control and suicide: The impact of state firearm regulations, 1995-2004

Dr. Katherine Hempstead and Dr. Antonio Rodriguez Andres

2009

Online at http://mpra.ub.uni-muenchen.de/20728/
MPRA Paper No. 20728, posted 17. February 2010 06:56 UTC
Gun control and suicide: The impact of state firearm regulations, 1995–2004

by:

Katherine Hempstead
Antonio Rodríguez Andrés

December 2009

The views expressed in the Development Research Working Paper Series are those of the authors and do not necessarily reflect those of the Institute for Advanced Development Studies. Copyrights belong to the authors. Papers may be downloaded for personal use only.
Gun control and suicide:
The impact of state firearm regulations, 1995–2004

Katherine Hempstead*
Antonio Rodríguez Andrés$

December 2009

Abstract:
Suicide is a major cause of preventable death. Restricting access to lethal means has been identified as an effective approach to suicide prevention, and firearms regulations are one way to reduce gun availability. This study examines the relationship between state firearms regulations and suicide among males, using negative binomial regression and state panel data for the years 1995–2004. Results suggest that firearms regulations which function to reduce overall gun availability have a significant deterrent effect on suicide, while prohibited persons categories have less of an effect. Overall, the results suggest that gun control measures such as permit and licensing requirements might have public health benefits.

Keywords: suicide; guns; state regulations; panel data.

JEL classification: I18.

* The authors thank Sara Markowitz, Camelia Minoiu, and Gary Kleck for helpful comments and suggestions.
$ The Center for State Health Policy Rutgers, The State University of New Jersey 55 Commercial Avenue, 3rd Floor New Brunswick, NJ 08901-1340 (E-mail: khempstead@ifh.rutgers.edu). (Tel: 732-932-3105; Fax:732-932-0069)

§ School of Public Health, Department of Health Services Research, University of Aarhus, Bartholins Allé 1, DK- 8000 C, Aarhus, Denmark, (E-mail: ara@folkesundhed.au.dk). Tel: (+55) 89423122.
1. INTRODUCTION

1.1 Firearms and suicide

Suicide is a major cause of preventable death. In 2006, more than 32,000 suicides occurred in the United States, as compared with approximately 18,000 homicides. Suicide is the 8th leading cause of death for males, and the 19th leading cause for females in the United States. For every suicide, there were more than ten hospitalizations from non-fatal attempts. In 2006, an average of 46 Americans committed suicide daily with a firearm, accounting for approximately 50 percent of all suicides (CDC, 2009).

There is a considerable body of empirical work that has documented a positive relationship between access to firearms and suicide (Miller and Hemenway, 2008; Miller et al., 2005). In fact, much of the decline in suicide in the United States over the past decades has been linked to the reduced prevalence of firearms (Miller et al., 2005; Miller et al., 2007; Cook and Ludwig, 2006). Although the respective roles of self-selection and availability in explaining the relationship between guns and suicide have not been completely resolved, the implication in either case is that reducing access to firearms should reduce suicide (Duggan, 2003) Restricting access to firearms has been recommended as a suicide prevention strategy by national and international organizations such as the CDC and the WHO. Gun control policies can serve to reduce overall gun availability by creating barriers to firearm ownership. Additionally, firearms policies can also prevent individuals who are at a relatively higher risk of suicide from purchasing firearms.

Gun Control

Gun control is a highly contentious issue in the American political debate. Guns are common in the United States – 40 percent of Americans reported having a gun in their home in 2009 (Gallup, 2009). Calls for increased regulation are based on the belief that restrictions will reduce gun violence. Regulation is opposed by those who claim infringement on the constitutional right to bear arms, and/or argue that firearm
ownership deters crime. In the academic literature, the efficacy of gun control in reducing violence has received considerable attention, although little consensus has emerged from the empirical work (Cook and Ludwig, 2006; Lott and Whitley, 2000; Kleck and Kates, 2001; Kleck, 2004).

The current era of gun control in the United States originated with the Brady Handgun Violence Prevention Act (1993)\(^1\), more commonly known, as the Brady Bill. The Brady Bill established a federal requirement for a waiting period of up to five days before the transfer of a handgun to a purchaser. During this period, a background check is performed, which is intended to prohibit individuals with criminal backgrounds from purchasing firearms. The transfer of the handgun is completed whether or not the background check is finalized within the five-day period. The federal waiting period was phased out in 1998 with the development of the National Instant Criminal Background Check System (NICS), administered by the Federal Bureau of Investigation (FBI). Over time, many states have passed laws which matched or surpassed the federal minimums.

There are many different types of state firearm regulations. Some seek to establish general oversight over individuals owning firearms, and mainly consist of permit, registration, and/or license requirements, and bans on the purchase of firearms by minors. These laws also facilitate the tracing of firearms used in crimes to original purchasers. Other state laws seek to prevent gun trafficking and the use of firearms in crimes. These consist of bans on the sale of certain types of firearms, and restrictions on the number of firearms that can be sold to individuals. Restrictions on carrying concealed weapons serve a similar purpose. A number of laws are designed to prevent firearm ownership by individuals considered disproportionately likely to commit gun crimes. These laws include prohibitions on gun ownership by those with criminal histories, such as conviction for a felony, misdemeanor, or domestic violence offence, as well as those with a history of mental illness, and alcohol or drug problem, and minors. The requirement of a “cooling off” period of some specified period before the purchase can be completed is a measure designed to reduce the consequences of impulsive firearm purchases.

\(^1\) The Gun Control Act (1968) was the first firearm act in the USA.
There is considerable variation in the comprehensiveness of firearm regulation across U.S. states. Some states have almost no firearm regulation of their own. Forty-four states have a provision in their state constitutions similar to the Second Amendment of the Bill of Rights (the exceptions are California, Iowa, Maryland, Minnesota, New Jersey, and New York). Firearm license holders are subject to the firearm laws of the state in which they are carrying and not the laws of the state in which the permit was issued. Reciprocity between states may exist for certain licenses such as concealed carry permits. These are recognized on a state-by-state basis.

Some firearms regulations are more relevant to suicide prevention than others. Restrictions banning the purchase of guns by convicted felons, or laws banning the sale of “Saturday Night Specials”, for example, have little obvious applicability to suicide. Yet other categories of restriction are potentially more salient, particularly those that reduce overall firearm availability. Permit requirements create barriers to gun ownership and may also serve to prevent impulsive purchases. The prohibition of purchases by minors serves a similar function. Some of the “prohibited persons” categories, such as those related to mental illness, a drug or alcohol problem, or history of domestic violence problems may theoretically be relevant to suicide prevention, but in all likelihood are not. Mental illness is the single most important risk factor for suicide, and substance abuse and domestic violence are also risk factors. However, while the criteria for “prohibited persons” categories varies by state, they are generally based on fairly serious incidents, such as hospitalization against one’s will or conviction records. Such bans are likely to identify only a fraction of the population with mental health, substance abuse, or domestic violence problems.

At the state level, the comprehensiveness of gun control laws tends to be correlated with firearm prevalence. The causality most likely runs in both directions, since restrictive gun control regimes reduce gun ownership, yet these laws are more likely to be passed in states where overall gun ownership rates are relatively low and the

2 In some states, the alcohol regulation means that sale of firearms are prohibited to people who are intoxicated at the time they are trying to buy them, while in other states it refers to people with a documented alcohol problem. Indeed, in some states it covers both situations.
population of gun rights advocates is relatively small. In general, Western and more rural states have fewer gun control restrictions and higher rates of gun ownership as compared with more urbanized states in the Northeast. These states also have significantly higher rates of suicide, particularly firearm suicide.

1.2 Gun Control and Suicide

The literature on gun control and suicide has in general found a negative relationship between firearm restrictions and suicide. However, most of these studies lack a strong design and are essentially pre- and post- comparisons (Killias et al., 2001). Lambert and Silva (1998) perform a literature review of studies in the United States and Canada and conclude that available information generally supports the notion that gun control can reduce suicide rates, particularly among males. Another review of gun control in the United States, framed within the context of historical and rational choice theory, covers attempts to curb firearm violence in that country and the success of such measures (Cook et al., 2001). A recently published analysis suggests that states where background checks are conducted locally have lower rates of firearm suicide and homicide (Sumner et al., 2008)

Several other studies find no empirical evidence in favor of a relationship between firearms regulations and suicide. However, one study has a weak design, while the other does not capture the most relevant types of firearms regulations. Price et al. (2004) use cross-sectional state data for 1999 to perform a simple partial correlation analysis between several types of gun control laws and suicide rates. Their results suggest that gun control laws were not significantly related to suicide in 1999, even after controlling for firearm prevalence. Rosengart et al. (2005) conduct a study of the relation between firearm regulations and homicides and suicides using state panel data over 1979–1998. They fail to uncover a statistically robust link between suicide rates and firearm regulations. However, most of the regulations they examined—such as bans on carrying concealed weapons, “junk gun” bans, and quantity sales restrictions—are not particularly relevant to suicide.
Several studies in other countries where regulations restricted general access to firearms have found evidence of an effect on suicide. Cheung and Dewa (2005) examine the relationship between suicide and the implementation of new restrictions on firearms (Bill C-17), using time series data from Canada. They concluded that there was a relationship between means used by young people and the imposition of the restrictions. In the case of New Zealand, Beautrais et al. (2006) find that after the introduction of legislation restricting ownership and access to firearms, firearm suicides significantly decreased, particularly among the young. Ozanne-Smith et al. (2004) conclude that the implementation of a strong reform in New Zealand lowered firearms deaths, particularly suicides. An evaluation of the 1996 National Firearms Agreement (NFA) in Australia documents a decline in firearm suicides after the implementation of the agreement (Klieve et al., 2009). However, these findings may be confounded with an overall decline in gun ownership that preceded the NFA. Additionally, there was some evidence of increased suicides by hanging.

In Europe, a study of the E.U. countries as a group and the U.K. in particular has found that changes in firearm legislation have led to fewer firearm suicides (Kapusta et al., 2007; Hawton et al., 1998; Haw et al., 2004). An analysis of firearm legislation reforms enacted in 1997 in Austria also found a statistically strong effect on suicide rates (Wahlbeck and Mäkinen, 2008).

2. EMPIRICAL MODEL AND DATA

2.1 Empirical model

The basic model that motivates the empirical analysis is that firearm availability affects suicide rates, and that gun control affects firearm availability. Our hypothesis is that regulations such as permit requirements, which create overall barriers to gun ownership, are the most important way in which gun control may affect suicide. While it is possible that “prohibited persons” categories can affect the likelihood that certain persons at above average risk of suicide will obtain firearms, we believe that the actual measurement and enforcement of those categories will result in the
prohibition of a relatively small proportion of people at risk. Firearms regulations designed to prevent gun trafficking or other criminal activity involving guns are not expected to influence suicide rates.

There are several potential complications to this simple model. The first is that of state variation in views towards guns is likely to affect both firearm prevalence and the comprehensiveness of gun control regulation. Additionally, views toward gun ownership evolve over time. Finally, there is the problem of the mismeasurement of gun ownership.

The basic model can be expressed with two equations:

1. \(S = \alpha + \beta G + \mu \)
2. \(G = \delta - \Delta R + \Phi \)

Where \(S \) is suicide, \(G \) is firearm prevalence, and \(R \) is firearms regulation. The reduced form is:

3. \(S = \alpha + \beta \delta - \beta \Delta R + \beta \Phi + \mu \)

The potential endogeneity of firearm prevalence with respect to gun control is reflected in the identifying equation,

4. \(R = \omega + \eta G + \varphi \)

However, \(G \) is not measured annually. For our main specification we estimate the reduced form equation (3), thereby assuming that \(\eta \) is zero. In an alternative specification, we instrument for \(G \) with the number of hunting licenses per capita, a statistic which is collected annually for all states.

For the main specification, the estimating equation is:

5. \(S_{it} = f(Z_{it}, X_{it}, \alpha_i, \lambda_t, \varepsilon_{it}) \)

where the subscript \(i \) indexes each age group with \(i = 15–24, 25–44, 45–64, \) and \(65+ \), \(j \) indexes each state with \(j = 1, \ldots, 50 \) and \(t \) indexes time period with \(t = 1995, \ldots, 2004 \).

Equation (5) specifies that the number of male suicides for age group \(i \) in state \(j \) during the year \(t \) is a function of laws regulating the possession of firearms \((Z_{it}) \), other socioeconomic characteristics \((X_{it}) \), state effects \((\alpha_i) \), year effects \((\lambda_t) \), and \(\varepsilon_{it} \) the classical error term. The sample contains 500 state-year observations. The sample period (1995-2004) was chosen because gun data before and after 1995 is not readily
comparable, and there are in fact relatively few state firearms regulations prior to 1995.

The dependent variable— male suicides by state, year and age group— violates the Poisson assumption that the conditional mean is equal to the conditional variance. Instead, the suicide data are overdispersed: the variance exceeds the mean. The overdispersion can cause a downward bias in the standard errors resulting from Poisson regression. To avoid such bias, we estimate a negative binomial model via maximum likelihood. The variance of the distribution is modeled as a quadratic function of the mean, $E[Y_i] = \mu$, so that $\sigma^2 = \mu + \alpha\mu^2$, where α is the dispersion parameter (Cameron and Trivedi, 1998). In our case, the negative binomial model has a significantly better goodness of fit than the Poisson model. A likelihood ratio test of the negative binomial dispersion parameter leads to the conclusion that the Poisson distribution is inappropriate for the data. We do not use zero-inflated specifications since there is no excess of zeros in the dependent variable.

Each model includes the relevant population as a right hand side control variable to normalize by exposure. The specification includes fixed effects that account for unobserved heterogeneity across states. The fixed effects model is appropriate in this case given the almost complete population coverage by the sample (Kennedy, 1998, pp. 227) and it is likely that the omitted variables captured by the α_i are correlated with some of the included covariates. Since nearly ninety percent of firearm suicides are committed by males, we have excluded females from the analysis (CDC, 2009). We estimate separate models for males of all ages and in four different age groups: 15–24, 25–44, 45–64, and 65 years and older.

We face several identification challenges. The first is that gun control regulations by state tend to change slowly, so there tends to be relatively little within-state year–on-year change. Further, once states adopt particular gun control regulations, they never remove them. For these reasons, it is not possible to analyze leads and lags, which would be a desirable robustness check. To maximize variation, we have created several indices of categories of gun control regulations, which are additive measures of individual measures.
2.2 Data

a. Dependent variable

Data on the number of suicides in states over the period 1995–2004 come from the Centers for Disease Control (CDC). Deaths included in the study are those categorized as suicides according to the International Classification of Diseases (ICD). In 1999, there was a change in the classification system from ICD–9 to ICD–10. In the case of suicide, this change in ICD version is thought to have a negligible effect on the classification of suicides. For 1995–98, suicide deaths were coded as E950–E959. Starting in 1999 and later, suicide deaths were coded as X60–X84, Y87.0, and U03.

Table 1 displays the age adjusted male suicide rates across US states for the year 2004. Reported suicide rates in the US vary considerably across states. The suicide rate in Nevada (30.2), for example, is nearly thrice that in New York (10.4). The District of Columbia is excluded, since it has essentially banned the possession of handguns.

Table 1. Age-adjusted male suicide rates, by state, 2004

<table>
<thead>
<tr>
<th>State</th>
<th>Deaths</th>
<th>Population</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>444</td>
<td>2180516</td>
<td>20.6</td>
</tr>
<tr>
<td>Alaska</td>
<td>118</td>
<td>341960</td>
<td>33.8</td>
</tr>
<tr>
<td>Arizona</td>
<td>694</td>
<td>2875320</td>
<td>24.9</td>
</tr>
<tr>
<td>Arkansas</td>
<td>291</td>
<td>1340696</td>
<td>22.0</td>
</tr>
<tr>
<td>California</td>
<td>2546</td>
<td>17781851</td>
<td>15.2</td>
</tr>
<tr>
<td>Colorado</td>
<td>611</td>
<td>2319950</td>
<td>26.6</td>
</tr>
<tr>
<td>Connecticut</td>
<td>230</td>
<td>1690101</td>
<td>13.5</td>
</tr>
<tr>
<td>Delaware</td>
<td>70</td>
<td>400799</td>
<td>17.2</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>27</td>
<td>273235</td>
<td>9.3</td>
</tr>
<tr>
<td>Florida</td>
<td>1800</td>
<td>8483460</td>
<td>20.3</td>
</tr>
<tr>
<td>Georgia</td>
<td>773</td>
<td>4386229</td>
<td>19.0</td>
</tr>
<tr>
<td>Hawaii</td>
<td>90</td>
<td>627760</td>
<td>14.0</td>
</tr>
<tr>
<td>Idaho</td>
<td>191</td>
<td>699441</td>
<td>28.9</td>
</tr>
<tr>
<td>Illinois</td>
<td>819</td>
<td>6225442</td>
<td>13.4</td>
</tr>
</tbody>
</table>

3 We do not show average suicide rates over 1995-2004 because of the relative position of the states is basically unchanged during the study period.
Indiana 563 3054027 18.9
Iowa 287 1448679 19.7
Kansas 291 1351179 21.8
Kentucky 464 2024358 22.9
Louisiana 437 2176259 20.8
Maine 137 637824 21.0
Maryland 403 2675138 15.3
Massachusetts 343 3114101 10.9
Michigan 875 4960895 17.8
Minnesota 427 2523241 16.8
Mississippi 295 1395815 21.8
Missouri 562 2799494 20.4
Montana 142 462398 30.6
Nebraska 132 861390 15.4
Nevada 342 1181165 30.2
New Hampshire 104 636504 16.4
New Jersey 482 4202733 11.4
New Mexico 291 931748 31.5
New York 972 9335736 10.4
North Carolina 796 4170787 19.5
North Dakota 63 318958 19.0
Ohio 1036 5570983 18.7
Oklahoma 395 1731819 23.3
Oregon 415 1775505 23.3
Pennsylvania 1130 5981910 18.5
Rhode Island 70 517179 13.1
South Carolina 391 2041647 19.4
South Dakota 94 385163 24.7
Tennessee 627 2880226 22.0
Texas 1803 11163013 17.4
Utah 310 1227347 28.4
Vermont 77 303996 24.7
Virginia 657 3651909 18.6
Washington 639 3073759 21.4
West Virginia 236 880805 26.4
Wisconsin 507 2732268 18.4
Wyoming 67 253954 27.5
United States 25,566 144,060,672 18.0

Note: *The District of Columbia is excluded from the remainder of the analysis because it had virtually outlawed the possession of guns during the study period.

b. Independent variables

Firearms regulations

In order to maximize variation across states and over time in the measure of gun control, we created three additive indices that reflect different intensities of firearms regulations. The first index —arguably is the most important in terms of suicide
prevention—measures general prohibitions. It is the sum of two indicator variables reflecting the presence of permit requirements and on firearm, purchases by minors. This index thus varies between 0 and 2.

The second index measures prohibitions based on behavioral problems, some of which have been identified as risk factors for suicide, but which are not likely to actually affect suicide. This index is the sum of five indicators variables reflecting the presence of bans on persons with mental health, alcohol, or drug problems, as well as prohibitions on those with prior convictions for misdemeanors and domestic violence offenses.

Our third and last index captures four types of prohibitions reflecting criminal concerns. We include this variable primarily as a robustness check, since the prohibitions captured are least likely to affect suicide. The index, varying between 0 and 4, is the sum of indicator variables measuring the presence of prohibitions against “aliens”\(^4\), convicted felons, fugitives from justice, and those who committed serious offenses as juveniles.

\textit{Gun ownership}

Given the relationship between firearm regulations and firearm prevalence, as well as that between firearm prevalence and suicide, it is necessary to control for gun ownership in the alternative specification. Gun ownership is available every several years from the CDC’s Behavioral Risk Factor Surveillance System, but there is no annual data at the state level, and the available data only dates back to 2001. The most commonly used proxies for gun ownership are the proportion of homicides and the proportion of suicides committed with firearms (see, Lester, 1987; Lester, 1989; Hemenway et al., 2001; Miller et al., 2002; Shenassa et al., 2006; Azrael et al., 2004). These variables are combined to create an index called Cook’s index. However, given that the dependent variable for this analysis is the total number of suicides, it was felt that this proxy was inappropriate. As an alternative, the number of hunting licenses per capita from the Fish and Wild Life Service\(^5\) was used as a control for gun

\(^4\) In some states, this prohibition refers to undocumented immigrants, while in others to individuals who have “forsaken their allegiance to the United States.”

\(^5\) www.fws.gov
ownership. Hunting licenses per capita and firearm suicides as a proportion of suicides were highly correlated \((r = 0.74, \text{ p-value} < .05) \). Data on state gun regulations was obtained from the Bureau of Justice Statistics.

Data on state personal income \((\text{income})\) were obtained from the Bureau of Economic Analysis and deflated by the consumer price index (CPI) extracted from the Bureau of Labor Statistics (BLS). Unemployment rates \((\text{unemployment})\) also come from the BLS. Data on per capita ethanol consumption of beer \((\text{beer})\), an estimate for the amount of pure ethanol consumption per capita, was extracted from the NIIA Surveillance Reports. Alcohol consumption and economic conditions have been linked to suicide in a number of population level studies (Yang, 1992; Markowitz et al., 2003) The percentage of people over 65 \((psh65)\) years of age and the proportion of the population which is non-Hispanic white \((\text{white})\) were obtained from the US Census Bureau (2007). Table 2 reports summary statistics for the variables used in regressions.

Table 2. Summary statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male suicides, total</td>
<td>500</td>
<td>484.09</td>
<td>476.87</td>
<td>49</td>
<td>2939</td>
</tr>
<tr>
<td>Male suicide, ages 15-24</td>
<td>500</td>
<td>70.95</td>
<td>62.67</td>
<td>3</td>
<td>421</td>
</tr>
<tr>
<td>Male suicide, ages 25-44</td>
<td>500</td>
<td>191.06</td>
<td>181.23</td>
<td>18</td>
<td>1191</td>
</tr>
<tr>
<td>Male suicide, ages 45-64</td>
<td>500</td>
<td>134.20</td>
<td>134.80</td>
<td>7</td>
<td>831</td>
</tr>
<tr>
<td>Male suicide, ages > 65</td>
<td>500</td>
<td>93.36</td>
<td>102.79</td>
<td>1</td>
<td>575</td>
</tr>
<tr>
<td>Socioeconomic variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent with bachelor's degree</td>
<td>500</td>
<td>24.65</td>
<td>4.67</td>
<td>12.70</td>
<td>38.70</td>
</tr>
<tr>
<td>Real per capita income (log)</td>
<td>500</td>
<td>10.20</td>
<td>0.15</td>
<td>9.82</td>
<td>10.65</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>500</td>
<td>4.81</td>
<td>1.17</td>
<td>2.20</td>
<td>8.20</td>
</tr>
<tr>
<td>Beer consumption per capita</td>
<td>500</td>
<td>1.27</td>
<td>0.20</td>
<td>0.73</td>
<td>1.91</td>
</tr>
<tr>
<td>Percent non white</td>
<td>500</td>
<td>0.78</td>
<td>0.15</td>
<td>0.26</td>
<td>0.99</td>
</tr>
<tr>
<td>Percent 65 years or older</td>
<td>500</td>
<td>0.14</td>
<td>0.11</td>
<td>0.05</td>
<td>1.34</td>
</tr>
<tr>
<td>Gun supply:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunting licenses per capita</td>
<td>500</td>
<td>0.087</td>
<td>0.071</td>
<td>0.007</td>
<td>0.340</td>
</tr>
<tr>
<td>Firearm regulation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General prohibitions(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit requirements</td>
<td>500</td>
<td>0.22</td>
<td>0.41</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ban on purchase by minors</td>
<td>500</td>
<td>0.68</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>General prohibitions index</td>
<td>500</td>
<td>0.90</td>
<td>0.63</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

\(\text{6} \) The model was also estimated using the firearm suicide proxy, and results were very similar. We do not report them here for brevity.

\(\text{7} \) http://www.ojp.usdoj.gov/bjs/
Behavioral prohibitions (2)

- Mental health problem: 0.47, 0.50, 0, 1
- Alcohol problem: 0.34, 0.47, 0, 1
- Drug problem: 0.41, 0.49, 0, 1
- Misdemeanor conviction: 0.36, 0.48, 0, 1
- Domestic violence conviction: 0.29, 0.45, 0, 1

Criminal prohibitions (3)

- Alien: 0.15, 0.36, 0, 1
- Felony: 0.73, 0.45, 0, 1
- Juvenile offense: 0.41, 0.49, 0, 1
- Fugitive: 0.17, 0.38, 0, 1

Criminal prohibitions index: 1.87, 1.70, 0, 5

3. RESULTS

The regression results are reported in Table 3. The estimations include year and individual state specific effects which are statistically significant in all regression models. All coefficients have been put on an exponential scale; thus the parameters \(\beta \) obtained from the negative binomial regression should be interpreted as incidence rate ratios (hereafter, IRR). The IRR are obtained by exponentiation of the regression coefficients, that is, exp \((\beta) \). The expression 100*(exp \((\beta) \)-1) is the percentage change in the incidence or risk of suicide mortality for each unit increase in the independent variable.

Table 3: Results of Negative Binomial Regression, all males, 1995-2004 (N=500).

<table>
<thead>
<tr>
<th>Dependent variable is number of male suicides, exposure variable is male population</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Fixed Effects</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School graduates (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beer consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fixed effects only: Socio-economic variables, General Prohibitions and hunting licenses per capita, Behavioral prohibitions, Criminal prohibitions
- Year Fixed Effects: X
- High School graduates (%): 0.9985, 0.9991, 0.9991, 0.9986, 0.9986
- Beer consumption: 1.1067, 1.1022, 1.1021, 1.1184, 1.0986
- Unemployment rate: 1.0181, ** 1.0185, ** 1.0185, ** 1.0165, ** 1.017
The first two models show the effects of fixed state and year effects (Model 1), and the fixed effects in addition to a set of socio-demographic variables namely education, income, alcohol consumption, the proportion of the population over age 65, and the proportion of non-Hispanic white population (Model 2).

Model 3 introduces the index of general prohibitions – namely gun control regulations which affect the largest number of people and which create general barriers to entry. We find the general prohibition index to be statistically significant, both individually and when we include our proxy for gun prevalence, hunting licenses per capita, which enters insignificantly (Model 4).

The next model includes the second index of gun control measures, which aims to capture firearm restrictions based on, behavioral issues such as a history of mental
health or alcohol/drug problems. While significant, the IRR is 0.9946 in this model compared to 0.9440 in Model 3 that includes the general prohibition index; and the coefficient is only significant at the 10 percent level. Model 6 includes our last index, which captures gun control measures that are least unlikely to affect suicide. They are designed rather to prevent criminal behavior. As expected, this variable does not enter with a statistically significant coefficient.

Table 4 shows the effects of individual state level firearm restrictions on the phenomenon of the suicide for particular age groups. In all models, we control for gun prevalence with the number of hunting licenses per capita, and include the standard covariates. We find that gun control measures do not affect all age groups identically. For instance, a ban on firearm purchases by minors affects suicides particularly among younger males, while restrictions on permits and waiting period requirements have a more deterrent effect on for older males. Among behavior related prohibitions that based on a history of mental illness prohibition is only significant for males aged 25-44 years, and that against alcohol abusers only matters for 65+ males. The drug and misdemeanor conviction bans do not enter significantly for any of the age groups, and the prohibition linked to a history of domestic violence only affects suicides among the middle aged. None of the criminal prohibitions enter significantly for specific age groups, and are therefore omitted.

Table 4: Selected gun control measures, males by age, 1995-2004 (N=500).

<table>
<thead>
<tr>
<th>Dependent variable is number of male suicides, exposure variable is male population, within age groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
</tr>
<tr>
<td>Males 15-24 years</td>
</tr>
<tr>
<td>General prohibitions</td>
</tr>
<tr>
<td>Permit requirement</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>Ban on minor purchase</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>Behavioral prohibitions</td>
</tr>
<tr>
<td>Mental health</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>Alcohol</td>
</tr>
<tr>
<td>.</td>
</tr>
</tbody>
</table>
4. DISCUSSION

Access to lethal weapons is an important risk factor for suicide. Our study suggests that general barriers to firearm access created through state regulation can have a significant deterrent effect on male suicide rates in the United States. Permit requirements and bans on sales to minors were the most effective of the regulations analyzed. These findings have important implications for U.S. gun control policy, which remains exceptionally heterogeneous across states. While all states except Wyoming have banned sales of handguns to minors, twelve states still allow the sale of *long guns* to minors. Furthermore, only twelve states currently require purchase permits for firearms. While gun control remains a controversial issue both at the state and federal level in the U.S., this analysis suggests that there are clear public health benefits to restricting access to firearms through regulation.

6. References

