Mishra, SK (2010): A note on empirical sample distribution of journal impact factors in major discipline groups.
Preview |
PDF
MPRA_paper_20747.pdf Download (1MB) | Preview |
Abstract
What type of statistical distribution do the Journal Impact Factors follow? In the past, researchers have hypothesized various types of statistical distributions underlying the generation mechanism of journal impact factors. These are: lognormal, normal, approximately normal, Weibull, negative exponential, combination of exponentials, Poisson, Generalized inverse Gaussian-Poisson, negative binomial, generalized Waring, gamma, etc. It is pertinent to note that the major characteristics of JIF data lay in the asymmetry and non-mesokurticity. The present study, frequently encounters Burr-XII, inverse Burr-III (Dagum), Johnson SU, and a few other distributions closely related to Burr distributions to best fit the JIF data in subject groups such as biology, chemistry, economics, engineering, physics, psychology and social sciences.
Item Type: | MPRA Paper |
---|---|
Original Title: | A note on empirical sample distribution of journal impact factors in major discipline groups |
Language: | English |
Keywords: | Journal impact factor; JIF; theoretical probability distribution; Burr; Dagum; Generalized extreme value; generalized gamma; Inverse Gaussian; Johnson SU; Johnson SB; Kumaraswamy; Log-logistic; lognonmal; log-Pearson; Weibull; Generalized normal; Hypersecant; Beta; empirical distribution; sample |
Subjects: | |
Item ID: | 20747 |
Depositing User: | Sudhanshu Kumar Mishra |
Date Deposited: | 17 Feb 2010 07:24 |
Last Modified: | 12 Feb 2013 01:06 |
References: | 1. Avramescu, A. (1979) “Actuality and Obsolescence of Scientific Literature”, Journal of the American Society for Information Science, 30(5): 296-303. 2. Bensman, S. J. (2008) “Distributional Differences of the Impact Factor in the Sciences Versus the Social Sciences: An Analysis of the Probabilistic Structure of the 2005 Journal Citation Reports”, Journal of the American Society for Information Science and Technology, 59(9): 1366–1382. 3. Brookes, B. C. (1970) “The Growth, Utility, and Obsolescence of Scientific Periodical Literature”, Journal of Documentation, 26(4): 283-294. 4. Brown, P. (1980) “The Half-life of Chemical Literature”, Journal of the American Society for Information Science, 31(1): 61-63. 5. Burrell, Q. and Fenton, M. R. (1993) “Yes, the GIGP Really Does Work – and is Workable”, Journal of the American Society for Information Science, 44(2): 61-69. 6. Chakravarti, I. M., Laha, R. G. and Roy, J. (1967) Handbook of Methods of Applied Statistics, Volume I, John Wiley and Sons, NY. 7. Dubey, S. D. (1966) “Characterization Theorems for Several Distributions and their Applications”, Journal of Industrial Mathematical Society, 16(1): 1-12. 8. Dubey, S. D. (1970) “Compound Gamma, Beta and F Distributions”, Metrica, 16(1): 27-31. 9. Egghe, L. (2009) “Mathematical Derivation of the Impact Factor Distribution”, Journal of Informetrics, 3(4): 290-295. 10. Egghe, L. and Rao, I. K. (1992) “Citation Age of Data and the Obsolescence Function: Fits and Explanations”, Information Processing and Management, 28(2): 201-217. 11. Glänzel, W. (2009) “The Multi-dimensionality of Journal Impact”, Scientometrics, 78(2): 355-374. 12. Hurt, C. D. and Budd, J. M. (1992) “Modeling the Literature of Superstring Theory: A Case of Fast Literature”, Scientometrics, 24(3): 471-480. 13. Irwin, J. O. (1975) The Generalized Waring Distribution. Part I, Journal of the Royal Statistical Society. Series A (General), 138: 18–31. 14. Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Wiley, Hoboken, NJ. 15. Larivière, V. and Gingras, Y. (2009) “The Impact factor’s Matthew Effect: A Natural Experiment in Bibliometrics”, http://www.ost.uqam.ca/Portals/0/docs/articles/2009/MathhewsEffect.pdf 16. Mansilla, R., Köppen, E., Cocho, G., & Miramontes, P. (2007) “On the Behavior of Journal Impact Factor Rank-order Distribution”, Journal of Informetrics, 1(2): 155–160. 17. Matricciani, E. (1991) “The Probability Distribution of the Age of References in Engineering Papers”, IEEE Transactions on Professional Communication, 34(1): 7-12. 18. Mishra, S. K. (2009) “Does the Journal Impact Factor Help Make a Good Indicator of Academic Performance?”, Available at SSRN: http://ssrn.com/abstract=1485868 19. Panaretos, J. and Xekalaki, E. (1986) “The Stuttering Generalized Waring Distribution”, Statistics & Probability Letters, 4(1986) 313-318. 20. Rossner, M., Van Epps, H. and Hill, E. (2007) “Show Me the Data”, The Journal of Cell Biology, 179(6): 1091-1092 21. Rousseau, R. and West-Vlaanderen, K. I. H. (1993) “A Note on Maximum Impact Factors”, Available at http://www.cais-acsi.ca/proceedings/1993/Rousseau_1993.pdf 22. Sichel, H.S. (1985) “A Bibliometric Distribution which Really Works”, Journal of the American Society for Information Science, 36: 314-321. 23. Sahoo, B. B. and Rao, I. K. R. (2006) “A Distribution of Impact Factors of Journals in the Area of Software: An Empirical Study”, Information Processing & Management, 42(6): 1465-1470. 24. Singh, S. K., and Maddala, G. S. (1976) “A Function for Size Distribution of Incomes”, Econometrica, 44(5): 963-970. 25. Stephens, M. A. (1974) “EDF Statistics for Goodness of Fit and Some Comparisons”, Journal of the American Statistical Association, 69 (347): 730-737. 26. Stephens, M. A. (1976) “Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters”, Annals of Statistics, 4(2): 357-369. 27. Stephens, M. A. (1977-a) “Goodness of Fit for the Extreme Value Distribution”, Biometrika, 64(3): 583-588. 28. Stephens, M. A. (1977-b) “Goodness of Fit with Special Reference to Tests for Exponentiality”, Technical Report No. 262, Department of Statistics, Stanford University, Stanford, CA. 29. Stephens, M. A. (1979) “Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function”, Biometrika, 66(3): 591-595. 30. Stringer, M. J., Sales-Pardo, M. and Amaral, L. A. N. (2008) Effectiveness of Journal Ranking Schemes as a Tool for Locating Information. PLoS ONE 3(2): e1683. doi:10.1371/ journal.pone.0001683: 1-8. 31. Tadikamalla, P. R. (1980) “A Look at the Burr and Related Distributions”, International Statistical Review, 48(3): 337-344. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/20747 |