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The knowledge management systems based on artificial reasoning (KMAR) tries to 

provide computers the capabilities of performing various intelligent tasks for which 

their human users resort to their knowledge and collective intelligence. There is a need 

for incorporating aspects of time and imprecision into knowledge management 

systems, considering appropriate semantic foundations. The aim of this paper is to 

present the FRTES, a real-time fuzzy expert system, embedded in a knowledge 

management system. Our expert system is a special possibilistic expert system, 

developed in order to focus on fuzzy knowledge. 
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1. Introduction 
Knowledge management is a discipline focused on 
systematic and innovative methods, practices, and 
tools for managing the generation, acquisition, 
exchange, protection, distribution, and utilization of 
knowledge, intellectual capital and intangible 
assets. The knowledge management systems based 
on artificial reasoning (KMAR) tries to provide 
computers the capabilities of performing various 
intelligent tasks for which their human users resort 
to their knowledge and collective intelligence. At 
present KMAR is a highly economically important 
field due to its ability of approaching new sets of 
problems, different from those dealt with by the 
classical systems, such as: perception, decision 
making, planning, diagnosis, natural language 
comprehension, enterprise knowledge 
management, learning, semantic technologies, web 
service interfaces, Semantic Web, etc. The 
Semantic Web relies on structured sets of metadata 
and inference rules that allow it to “understand” the 
relationship between different data resources.  
 

The technologies that form the basis of the 
Semantic Web by adding these metadata and 
inference rules are RDF (Resource Description 
Framework), RDFS (RDF Schema) and OWL-
Web Ontology Language (Afandi R., et. al. 2006, 
Naeve A., et. al. 2005, Sampson D., et. al. 2004).  
 

A key issue for developing cognitive systems is the 
distinction between architected or human modeled 
ontology on the one hand, and emergent, largely 
machine-automated knowledgebase construction, 
on the other. Therefore, there are in KMAR three 
large groups of problems that should approach in 
terms of decision-based applications: human-

environment interface, qualitative knowledge 
modeling and time management. Such applications 
obviously require dated event operations the life-
time of which should be managed by the system, 
which often works asynchronously with the 
acquisition and control system. Time restrictions 
are not excessive in usual applications. Critical 
time reasoning problems may occur in case of 
faulty operations and overloading. At present, the 
reasoning depth developed for such system is still 
poor.  
Conventional expert system shells are too slow for 
real-time environments, and their inference process 
is unbounded. We need a reactive, interruptible 
system that can assimilate data and asynchronous 
events, and present the operator with a reasoned 
opinion in a timely manner. Speed alone is not 
enough. A real-time expert system shell must also 
represent imprecise, time and temporal data, 
encode temporal knowledge, and manage 
temporal/fuzzy reasoning (Zadeh, 1983, Zhang and 
Yang, 1993). 
We have developed an object-oriented fuzzy real-
time expert system (FRTES) shell to meet the 
challenges of the dynamic environment. We have 
investigated the relations between fuzzy reasoning 
and its temporal characteristics. For this, the impact 
of ontology and knowledge management has been 
specified in section 2, and the embedded temporal 
aspects in FRTES are defined in section 3.  To 
illustrate the theoretical results we provide in 
section 4 an example of fuzzy reasoning based on 
knowledge-model for a balancing problem in a 
specific structural definition. Section 5 presents 
concluding remarks on future semantic 
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technologies and Semantic Web. Comparisons to 
relevant research are made throughout the paper. 
 
2. The impact of Ontology and Knowledge 
Management  
In the global economy, knowledge has become 
a key asset in organizations. Knowledge 
Management (KM) has emerged as a major 
issue that managers must deal with. To 
conceive and implement KM is becoming more 
complicated, because it must assess complex 
and confusing situations, initiate KM, identify a 
lot of causal or abductive relationships between 
components, make appropriate decisions, and 
guarantee that the recommended action plan 
will be effective. The last property is essential. 
In the past few years, the emergence of 
knowledge management has facilitated the 
progress for the knowledge demander in 
searching for knowledge efficiently and 
effectively [Barthes, J. et. al. 2002, Hendler, J. 
et. al. 2001].The activity of knowledge 
management is wide and complex. It can be the 
management of individual knowledge or the 
operation of enterprise knowledge. It also 
includes activities that form the communication 
of tacit knowledge to the integration of explicit 
knowledge. In order to achieve the goal of 
knowledge management, ontology has been 
considered as an adequate methodology to 
support a variety of activities of knowledge 
management, including knowledge retrieval, 
store, sharing, and dissemination [Pundt, H. et. 
al. 1999]. In one of the most popular 
definitions, ontology is the specification of a 
conceptualization [Waterson, A. et. al. 1999]. 
For knowledge management system in 
enterprises, ontology can be regarded as the 
classification of knowledge. That is to say, 
ontology defines shared vocabulary for 
facilitating knowledge communication, storing, 
searching and sharing in knowledge 
management systems [O'Leary D.E., 1998]. 
Defining ontology is a time-consuming and 
laborious task. In general, the identification and 
application of ontology is only for some 
specific domain, such as medicine, industry, or 
the enterprise. The basic activities of 
knowledge management are knowledge 
acquisition, creation, sharing/diffusion, and 
utilization. There are a variety of technologies 
have been applied to support these activities, 
such as e-mail, database and data warehouse, 
group decision software, intranet and extranet, 
expert system, intelligent agent, data mining 
etc. There also exist different knowledge 
management systems (KMS) that facilitate the 

activities of knowledge management [Chau 
K.V., 2002].  
 

In 1990s, the knowledge reuse and sharing already 
became the major issue in knowledge engineering. 
To achieve the goal of knowledge reuse, the 
concept of object orientation has been introduced to 
knowledge management systems. In the sense a 
knowledge entity can be treated as a knowledge 
object (KO). KOs can be numerical data, text 
streams, validated models, meta-models, movie 
clips, or animation sequences. Since enterprises are 
interested in the integration of existed knowledge 
bases [Waterson A., 1999], how to integrate and 
share KOs among different KMS is of great 
necessity and is a crucial challenge. In the 
literature, metadata has been widely used in the 
integration of existed knowledge bases [Tiwana A., 
2001] whereas the ontology has been considered as 
a meta-level description of knowledge presentation 
[Guarino N., 1997]. A three-level architecture for 
intelligent decision support is possible to be 
proposed. It contains, from the top to the bottom, 
application level, description level, and object 
level. The object level comprises various 
information and knowledge sources, the so-called 
KOs. Ontologies are in the description level, which 
enable users in the application level to intelligently 
access object-level sources. Users can precisely 
select and efficiently access knowledge via the 
description level from the application level. In 
other words, ontologies are metadata that provide 
the search engine with the functionality of a 
semantic match. It is different from traditional 
search engines that directly search for the contents 
of data. Without doubt, the most popular markup 
language of metadata is XML. With the mature of 
the XML development, different definitions of 
metadata have been proposed, such as ebXML. 
From the viewpoint of ontology, XML is not suited 
to describe the interrelationships of resources in the 
Internet. Therefore, W3C has proposed the 
resource description framework (RDF) and RDF 
schema (RDF/S) [Lassila O.]. Since then, many 
ontology tools have been developed for 
implementing metadata of ontology by using RDF 
and RDF/S , like Ontoprise. Each ontology tool has 
its characteristics and advantages. KAON, 
Ontoprise, and Ontopia provide a complete set of 
ontology tool suites for building, maintaining and 
utilizing ontologies. In particular, KAON and 
Ontopia these tool suites can be deployed onto Java 
J2EE architecture, a distributed component-based 
architecture, which makes the ontology-based 
system more flexible and robust. For this reason 
and the consideration of open source, KAON is 
chosen as the ontology development platform in 
this example.  
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3. Temporal aspects in FRTES  
Real-time systems span a broad spectrum of 
complexity from very simple microcontrollers 
to highly complex and distributed systems 
(Stankovic and Ramamritham, 1993). These 
complex future systems include the space 
station, integrated vision/robotics/AI systems, 
collections of human/robots coordinating to 
achieve common objectives (usually in 
hazardous environments), and various 
command and control applications. To further 
complicate the problem there are many 
dimensions along which real-time systems can 
be categorized. The main one includes: the 
granularity and the strictness of the deadlines, 
reliability requirements of the system, the 
characteristics of the environment in which the 
system operate. The characteristics of the 
environment, in turn, seem to give rise to how 
static or dynamic the system has to be. 
However, one common denominator seems to 
be that all designers want their real-time system 
to be predictable. It means that it should be 
possible to show, demonstrate, or prove that 
requirements are met subject to any 
assumptions made, for example, concerning 
failures and workloads. In other words, 
predictability is always subject to the 
underlying assumptions being made. In this 
section we concentrate on predictability with 
respect to the timing requirements. The use of 
temporal aspects refers to the design of those 
tools to solve the following metaequation: Time 

= complexity ⊕ real-time ⊕ temporal 
reasoning, which is employed in order to integrate 
time into a process control application (Mazilescu, 
1999). This equation is formally found on the 
inference engine algorithm, able to make full use of 
the specific knowledge to the process control. The 

symbolic aggregation metaoperator ⊕ can be 
instantiated into different classes of specific 
operators, depending on the goal pursued by the 
control model. We assume that the process 
operates like finite nondeterministic system, while 
the  FRTES will operate like a finite deterministic 
state machine.  
 

The closed-loop control expert system can be 
modeled like a nondeterministic state machine, 
whose outputs are the process outputs. A major 
obstacle to the widespread use of (possibilistic) 
expert systems in real-time domains is the non-
predictability of rule execution time. A widely used 
algorithm for real-time production systems is the 
Rete algorithm. To achieve a fast reasoning the 

number of fuzzy set operations must be reduced. 
For this, we use a fuzzy compiled structure of 
knowledge, like Rete, because it is required for 
real-time responses and a fuzzy inference engine 
(Mazilescu, 1998). The engine represents a method 
of fast fuzzy logic inference. It must provide 
guaranteed response times, completing its 
reasoning within a deterministic amount of time. 
Systematic analysis methods must be used so that 
the possibilistic expert system behavior can be 
studied quantitatively within the developed 
modeling framework.  
 

The relationships and the analogy between 
expert and control system architectures are 
important problems for intelligent control 
(Passino, et. al. 1994). This is possible because 
both are problem solving systems with different 
problem domain (environment) the expert 
system reasons about and takes actions on. The 
problem domain must be defined as a collection 
of problems that the expert system desires to 
solve. In conventional control, the plant is a 
dynamical system, described with linear or non-
linear differential/ difference equations. An 
artificial intelligent expert system consists of 
the planner or the inference engine, the problem 
domain, the exogenous inputs, and their 
interconnections. The outputs of the FRTES are 
the inputs (control actions) to the problem 
domain. There are unmeasured exogenous 
inputs to the problem domain (disturbances) 
that represent specific uncertainty. The 
measured exogenous input to the FRTES is the 
goal, and it must represent imprecise, time and 
temporal data, encode temporal knowledge and 
manage temporal/fuzzy reasoning. Following a 
conventional control-theoretic approach, we can 
introduce a mathematical model for the plant P 
and the possibilistic expert control system 
(PECS), which consists of the possibilistic 
expert system (PES) and the plant (Mazilescu, 
1998). The PES must be designed so that it can 
coordinate the use of the plant outputs and 
reference (user) inputs, to decide what plant 
command inputs (or hypothesis/ conclusions) to 
generate so that the closed-loop specifications 
are met. Although the PES (viewed as an expert 
system) are frequently being used to perform 
complex control functions, most often it is the 
case that no formal analysis of the dynamics is 
conducted because mathematical analysis of 
such systems is often considered to be beyond 
the scope of conventional control theory. 
 

The FRTES requires adapting the representation of 
knowledge in order to operate it and to improve the 
efficacy of its operating using the compilation 
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technique. The accepted data are: variables, atomic 
and fuzzy constants. The fuzzy constants may 
appear both in facts and in rules and are always 
associated with a fuzzy set trough the constfaz 
function. The possibility distribution modeling 
allows a unified framework for the representation 
of imprecision and uncertainty (Dubois and Prade, 

1991). The λ parameter is used to measure the 

uncertainty of the fuzzy sets (0≤λ≤1). If a fuzzy set 

is uncertain, the λ parameter must be declared in 

the constfaz function through a list (uncertain λ). 
We shall admit that a fully uncertain fuzzy set 

(λ=1) does not affect the behavior of the system. A 
fact does not entail variables, that are the terms 
permitted in facts are only the atomic and the fuzzy 
constants. In opposition with the facts, a cause is a 
structured list in which variables may appear. This 
implies the presence of the variables, of the atomic 
and fuzzy constants in the structure of the causes. 
The causes may appear both in the conditional part 
and in the conclusion of the rules. The operation of 
the fuzzy expert system proceeds by the following 
steps: 
 

1. Acquiring the process output and reference 
input events at time k; 

2. Forming the conflict set in the fuzzy match 
phase from the compiled set of rules in the 
fuzzy knowledge-base and based on euk , the 
current status of the truth of various fuzzy 
facts, and the current values of variables in the 
knowledge-base; 

3. Using conflict resolution strategies (refraction, 
recency, distinctiveness, priority, and 
arbitrary) in the select phase to find one rule r' 
to fire; 

4. Executing the actions characterized by the 
consequent of rule r' in the act phase. 

 
he timing of the event occurrences in FRTES fuzzy 
expert system is such that the PES is synchronous 
with the plant. Although every occurrence of an 
input event of the plant always affects the expert 
system state, the occurrence of an input event of the 
expert system does not necessarily immediately 
affect the plant state. In qualitative analysis of our 
fuzzy expert system, the focus is on testing if the 
plant, expert system, and especially the closed-loop 
PECS satisfy certain properties, as follows: 
reachability, ciclic properties and stability 
(Mazilescu, 1999).  
 

We can also analyze the properties of the isolated 
fuzzy expert system (i.e., without the plant). In our 
case the "plant" is fuzzy compiled knowledge-base, 
the "fuzzy expert system" is the fuzzy inference 
engine, the "command inputs" are the changes that 
the inference engine makes to the knowledge-base, 

and the "outputs" of the closed-loop system are 
fuzzy facts or variables in working memory (that 
the inference engine uses in its decision-making 
process). 
 

4. Fuzzy Reasoning in Load Balancing Problem 
An example is a load balancing problem (LBP) and 
it is described by a directed graph (C, A) where 

C={1,2,..., N} represents a set of subsystems i∈C, 

and A⊂ C x C is the set of connections between 
them ({(1,2), (2,1), (1,3), (3,4), (4,3), (4,2), (3,5), 
(5,6), (6,5), (6,4)}) (Passino, et al.1994). We 

require that if i∈C then there exists (i,j)∈A or (j,i) 

∈A fore some j∈C (i.e., every machine is 

connected). Also, if (i,j)∈A and if (i,j) ∈A i≠j. 
Each machine has a buffer which hold load, given 

by xi, xi ≥ 0. Each connection (i,j)∈A allows for 
subsystem i to pass a portion of its load to 
subsystem j. It also allows subsystem i to sense the 
size of the load of subsystem j (for any two 

subsystem i and j such that (i,j)∉A, i may not pass 
load directly to j or sense the size of j's load). This 
problem appears also in the paper (Mazilescu, 
1998). Below we consider the discrete case: when 
the load is in the form of fixed uniform-sized 
blocks that cannot be subdivided. In this case, the 
crisp knowledge base contains twelve rules Ri, 
i=1,...,12 in G2, of  the following  type: 
Ri:  If (the charge of m1 >= the charge of m2) and 
(the charge of m1 >= the charge of m3) and (the 
charge of m1 >= the charge of m4) and (the charge 
of m1 >= the charge of m5) and the charge of m1 

>= the charge of m6) and (xb[1] ≠0) and (xb[3] ≠ 

0) and (the charge of m1 ≠  the charge of m2)  
 
Then in order conclude that xb[0] = 1 and inform 
the operator and infer that "[the name of this rule], 
xb1 [xb[1]], xb2 [xb[2]], xb3 [xb[3]], xb4 [xb[4]], 
xb5 [xb[5]], xb6 [xb[6]], xb7 [xb[7]], xb8 [xb[8]], 
xb9 [xb[9]], xb10 [xb[10]]" and start 
modify_charge (xb[0]) and conclude that xb[2] = 1 
and conclude that xb[4] = 1 and conclude that 
xb[6] = 1 and ?conclude that xb[8]=1 and conclude 
that xb[9] = 1 and conclude that xb[10] = 1 and 
conclude that xb[1] = 0. 
 

In spite of its greater expressiveness, the present 
crisp model (knowledge base and the simulation 
results) for the discrete load balancing problem has 
several limitations: the load cannot be infinitely 
subdivided, so that not for any initial loads the 
problem has a good balancing, or acceptable. The 
expert control system does not have as many ways 
to perform redistribution, so that only imperfect or 
inexact load balancing can be achieved. In 
conclusion, the embedding a metaknowledge was 
used, like fuzzy knowledge (Klawon and Novak, 
1996), represented in our formalism, so that the 
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balancing problem will have good solutions in any 
initial load cases. This is similar with the continuo 
load-balancing problem, for which the qualitative 
analysis can be performed. 
 

The set of command input events is Eu = {e00, 
e12, e13, e21, e35, e34, e42, e43, e56, e65, e64}, where 
e00 denotes the event "no part is moved". In this 

case Ed = ∅,  Eo = X
PECS

. The terms fPES,e

,δPES
, g

PES
 are  defined in (Mazilescu, 1999). 

The sequence of events executed was (eij,k 

means transfer parts from i to j at time k or HC 
means human control): e34, e13, e21, e13, e21, e13, 
e34, e13, e21, e13, e21, e34, e13, e21, e34, e13, e35, HC, 
e13, e21, e43, e35, e21, e42, e43, e56, HC, e13, e21, e43, 
e35, e13, e21, e13, e35, e56, e13, e21, HC, e43, e13, e35, 
e13, e21, e56, e35, e13, e21, e35, e13, e56, e35, HC, e43, 
HC, e43, e35, HC, e43, e21, HC, HC, HC, e13, e00. 
 

It is obvious that the open-loop plant has cyclic 
properties that may prevent the open-loop from 
achieving the desired control objective. When 
closed-loop fuzzy expert control is used, as in our 
example, the invariant set exists, by simple analysis 
of the system dynamics. Using a search algorithm, 
we show that there exists at least one path from any 
given initial part distribution in the LBP. The 
reachability result (the BLP described above is 
reachable for all initial states, because there exists a 
sequence of events to occur that produces a state 
trajectory, so that the end state of the plant is in the 
invariant set). In our fuzzy expert system, any rule 
whose "partially matches" the current data can 
"fire" (i.e., contribute to specifying the control 
input). In the FRTES we consider here, there may 
be more than one rule whose antecedent "exactly 
matches" the current data, but our inference engine 
allows only one rule to fire at a time. 
 

We have shown that conventional knowledge-
based debugging tools can ignore important 
dynamic behavior that can result from connecting 
the full fuzzy expert system (i.e., with an inference 
engine) to user inputs and a dynamical process. We 
have illustrated the results by modeling and 
analyzing expert systems that solve a LBP as a 
simple control problem. The results of this paper 
shows that fuzzy expert control system are a class 
of (heuristically constructed) nonlinear control 
systems that can be studied with the analytical tools 
available from conventional control theory. Current 
research in real-time KMAR is driven by a need to 
make knowledge-based systems function in real-
time, to be predictable, and a need to integrate 
approaches to handle non-linearities. Response 
time analysis is in general undecidable, and is 
PSPACE-hard in the case where all the variables 
have finite domain (Liberatore, 1997).  
 

5. Concluding remarks 
The work reported in this paper serves to promote 
the development of a firm mathematical foundation 
on which to perform careful analysis for the 
verification and validation of the dynamics of 
expert control systems that operate in critical 
environments. There are important another future 
directions for this work, investigating the dynamics 
of reasoning systems that utilize learning and 
planning in various complex applications, studying 
computational complexity issues relative to conflict 
resolution strategies and metaknowledge 
representation, and modeling realistic applications 
that involve intelligent models, like knowledge-
based systems, Semantic Web agents, etc. 
Acquiring models means learning by observation, 
exploration and experiment, teaching and coaching, 
or reading. Using models, means reasoning 
including mental simulation and testing, 
hypotheticals, plausible inference, logical thinking, 
and value-based trade-off.. The Semantic Web has 
recently emerged as a new and highly promising 
context for knowledge and data engineering. 
Within an atmosphere of high expectations, many 
myths as well as many visions have exhibited a 
number of different approaches for the exploitation 
of the Semantic Web in both academia and 
industry. However, a struggling business reality 
requires a concrete strategy as well as the 
development of specific competencies from the 
knowledge and data engineering community in 
order to prove the value of the Semantic Web to 
society. The Semantic Web agent does not include 
artificial intelligence – rather, it relies on structured 
sets of information and inference rules that allow it 
to “understand” the relationship between different 
data resources. The computer doesn’t really 
understand information the way a human can, but it 
has enough information to make logical 
connections and decisions. The true impact of the 
Semantic Web will not be known for quite some 
time, but its potential is staggering. Some Semantic 
Web proponents have asserted that it will lead to 
the evolution of human knowledge itself by 
allowing people - for the first time - to quickly filter 
and synergize the massive amounts of data that 
exist in the world in a relevant, productive. 
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