
Munich Personal RePEc Archive

The Semantic Web Paradigm for a
Real-Time Agent Control (Part I)

Mazilescu, Vasile

Dunarea de Jos University Galati, Romania

17 February 2010

Online at https://mpra.ub.uni-muenchen.de/20759/

MPRA Paper No. 20759, posted 17 Feb 2010 23:46 UTC

The Semantic Web Paradigm for a Real-Time Agent Control (Part I)

Vasile MAZILESCU

Department of Accounting and Economic Informatics

University Dunărea de Jos of Galati

vasile.mazilescu@ugal.ro

Abstract. For the Semantic Web point of view, computers must have access to structured

collections of information and sets of inference rules that they can use to conduct automated

reasoning. Adding logic to the Web, the means to use rules to make inferences, choose

courses of action and answer questions, is the actual task for the distributed IT community.

The real power of Intelligent Web will be realized when people create many programs that

collect Web content from diverse sources, process the information and exchange the results

with other programs. The first part of this paper is an introductory of Semantic Web

properties, and summarises agent characteristics and their actual importance in digital

economy. The second part presents the predictability of a multiagent system used in a

learning process for a control problem.

Keywords: Semantic Web, agents, fuzzy knowledge, evolutionary computing

Jel code: C63, C 88

1. Introduction

When discussing the Semantic Web (SW), it is

important to get one thing clear from the start: this

is not a new version of the Internet. The SW

technologies will allow machines to make

inferences. Pioneering this new approach to the

Web is Tim Berners-Lee, the original worldwide

web inventor. With health care and economic

data, and databases of environmental information,

all marked up in machine-readable codes, the SW

could search for connections between where the

sick people live, and any contextual

environmental and economic information that

might have contributed to the illness. Researchers

are formulating projects that are likely to

transform everyday use of the web, and

potentially ways in which the internet can be used

for better educational effectiveness.

The amount of information available via networks

and databases has rapidly increased and continues

to increase. Existing search and retrieval engines

provide limited assistance to users in locating the

relevant information that they need. Autonomous,

intelligent agents may prove to be the needed item

in transforming passive search and retrieval

engines into active, personal assistants. Intelligent

agents can improve the performance of short-term

information retrieval in an existing search or

retrieval engine [1,3,4].

This first part of paper is divided in two sections:

section 2 is an introductory of SW properties, and

section 3 summarises agent characteristics and

their actual importance in digital economy.

2. On the Semantic Web

One of the projects that is developing involves the

integration of public transport information using

RDF. The project requires the integration of

timetable information and route plans, and would

also incorporate specific geographical information

recorded at specific points in time to provide

relevant travel information to the user as and

when required, rather than leaving the traveller to

consult a variety of timetable information from a

variety of sources. Additionally, RDF describes

objects and their relationships, rather than

documents and the way they are displayed. This

means it is easy to reuse information described in

RDF for different devices such as mobile phones,

and for presentation to people with different

capabilities, such as those with cognitive or visual

impairments. Using a similar framework, it is

possible to extrapolate that in the near future

schoolchildren will be able to extract far more

data from a networked computer or wireless

device, far more efficiently, to complete tasks.

Based on a few specific search terms, library

catalogues could be scanned automatically.

Students could also be directed to relevant

discussion lists and research groups, all in formats

and on platforms they are most comfortable with

or are most convenient.

Perhaps also relevant to the educational sector is

Internet Relay Chat (IRC), a tool used by the

Semantic Web development community to

manage distributed working. IRC is a chat

protocol where people can meet on channels and

talk to each other. The semantic web community

is enhancing this by writing robots that can help

to log the chat when members are away, and a

real-time chat-based tool that allows them to

create and annotate links on a web page by typing

in a chat room. Such tools have been used to

support development in a community that is

geographically and culturally widely distributed.

IRC tools' usefulness comes both from their

ability to enable many people to work together

and distribute information about their work while

separated in time and space, and also because they

enable real-time support and discussion from the

community. From an educational perspective,

these qualities suggest that IRC and related tools

could work well within education, for project

discussion, remote working, and collaborative

document creation. As demonstrated by the rising

popularity of video-conferencing, schools are

increasingly becoming interested in widening the

boundaries within which students work. The

incorporation of SW technologies could enable

them to work across distributed locations in

communities of learning and content creation

within and outside of the classroom confines.

Whether or not the SW as a concept remains

unclear, it is clear that a shake-up of the web is

required to make it more meaningful, respond

faster to questions, and join up disparate

information objects and sources automatically.

The SW is not a separate Web but an extension of

the current one, in which information is given

well-defined meaning, better enabling computers

and people to work in cooperation. The first steps

in weaving the SW into the structure of the

existing Web are already under way. In the near

future, these developments will usher in

significant new functionality as machines become

much better able to process and "understand" the

data that they merely display at present. The

essential property of the WWW is its universality.

The power of a hypertext link is that anything can

link to anything.

For the SW to function, computers must have

access to structured collections of information and

sets of inference rules that they can use to conduct

automated reasoning. Adding logic to the Web—

the means to use rules to make inferences, choose

courses of action and answer questions—is the

task before the SW community at the moment. A

mixture of mathematical and engineering

decisions complicate this task. The logic must be

powerful enough to describe complex properties

of objects but not so powerful that agents can be

tricked by being asked to consider a paradox.

Fortunately, a large majority of the information

we want to express is along the lines of "a hex-

head bolt is a type of machine bolt," which is

readily written in existing languages with a little

extra vocabulary [4].

Two important technologies for developing the

SW are already in place: eXtensible Markup

Language (XML) and the Resource Description

Framework (RDF). XML lets everyone create

their own tags—hidden labels such as or that

annotate Web pages or sections of text on a page.

Scripts, or programs, can make use of these tags

in sophisticated ways, but the script writer has to

know what the page writer uses each tag for. In

short, XML allows users to add arbitrary structure

to their documents but says nothing about what

the structures mean. Meaning is expressed by

RDF, which encodes it in sets of triples, each

triple being rather like the subject, verb and object

of an elementary sentence. These triples can be

written using XML tags. In RDF, a document

makes assertions that particular things (people,

Web pages or whatever) have properties (such as

"is a sister of," "is the author of") with certain

values (another person, another Web page). This

structure turns out to be a natural way to describe

the vast majority of the data processed by

machines. Subject and object are each identified

by a Universal Resource Identifier (URI), just as

used in a link on a Web page. (URLs, Uniform

Resource Locators, are the most common type of

URI.) The verbs are also identified by URIs,

which enables anyone to define a new concept, a

new verb, just by defining a URI for it somewhere

on the Web.

A program that wants to combine information

across the two databases has to know that these

two terms are being used to mean the same thing.

This program must have a way to discover such

common meanings for whatever databases it

encounters. A solution to this problem is provided

by the third basic component of the SW,

collections of information called ontologies. An

ontology is a theory about the nature of existence,

of what types of things exist. Artificial

intelligence and Web researchers have adopted the

term and for them an ontology is a document or

file that formally defines the relations among

terms. The most typical kind of ontology for the

Web has a taxonomy and a set of inference rules.

3. An overview on agent technology

The real power of the SW will be realized when

people create many programs that collect Web

content from diverse sources, process the

information and exchange the results with other

programs. The effectiveness of such software

agents will increase exponentially as more

machine-readable Web content and automated

services (including other agents) become

available. The SW promotes this synergy: even

agents that were not expressly designed to work

together can transfer data among themselves when

the data come with semantics. An important facet

of agents' functioning will be the exchange of

"proofs" written in the SW's unifying language

(the language that expresses logical inferences

made using rules and information such as those

specified by ontologies).

Intelligent Agent. Computers need rules and

instructions. Computers are very good at

following rules. If we can explain our rules and

patterns to computers, then we can design systems

which can follow those rules. It is much more

difficult to teach them how to find a pattern, but,

within limited boundaries, one can teach

computers to identify patterns, extract rules, and

implement them. That is what intelligent agents

are — software programs that can identify

repetitive patterns of behavior, similarities

between events or things, and changes in patterns

over time. However, these programs are agents as

well. An agent in the legal sense is one

empowered to act on the behalf of another. Thus,

an intelligent agent is one which can learn the

patterns of behavior, or the rules regarding certain

actions and transactions, and then act

appropriately on behalf of its owner.

Definitions and Technologies. There are many

definitions of an intelligent agent, how many

agent systems exist. They are computer programs

with a knowledge base and set of rules. Therefore,

although many experts define intelligent agents

more widely, we will stick with our more

demanding definition. Most current researchers do

agree on the following facets:

1. Autonomy is the first and foremost common

criterion for agents. Autonomous agents use their

knowledge of their owner’s needs and interests to

undertake tasks that their owner does repeatedly.

The concept of proactiveness is closely related to

the concept of autonomy. It emphasizes that

agents do not simply act in response to their

environment. They exhibit goal-directed behavior

by taking the initiative. Proactiveness is usually

considered a key element of autonomy. An

operational definition for autonomy would be:

agents operate without the direct intervention of

humans or others and have some kind of control

over their actions and internal state.

2. Adaptiveness is the second common criterion

for an intelligent agent. Agents should be able to

learn as they react to or interact with their external

environment, so that their performance improves

over time. The external environment may include

the physical world, users (humans), other agents,

or the Internet. Adaptive agents are sometimes

called learning agents for this reason. Many

researchers and developers believe that systems

should adapt to people, instead of the other way

around. Since it would be impractical to assume

that we could predict all possible events in the

external environment and encode all the

knowledge about those events in advance, agents

need learning capabilities. How they react to new

circumstances can be programmed. What they

learn cannot. The qualities necessary for

adaptiveness are [4,5]:

• Reactivity: agents perceive their environment and

respond in a timely fashion to changes that occur in it.

• Social ability: agents interact with other agents (and

possibly humans) via some kind of agent-

communication language such as KQML, a high-level

language that agents can use to conduct conversations

and exchange meaningful messages. KQML

(Knowledge Query and Manipulation Language) is the

de facto standard agent communication language

nowadays.

3. Collaborative behavior is the third commonly

criterion for intelligent agents. It builds upon the

concept of social ability mentioned above. Most

of today’s research concentrates on sets of agents

or multi-agent systems (MAS). Each agent is

given a discrete task. Sometimes they are parallel,

such as finding the same information in different

sources. They must work together to establish

which agent will carry out each task, and how

they will merge the information they collect for

presentation to the user. Agents should be able to

work in concert with other agents, possibly via an

agent-communication language, to achieve a

common goal. Agents may share knowledge and

learning experiences in the problem solver

process. This concept is important because a large

portion of agent research is historically rooted in

distributed artificial intelligence, that emphasizes

task decomposition and distribution and

collaboration among agents.

4. Mobility. This concept refers to the ability of

agents to migrate in a self-directed way from one

host to another on a network, such as the WWW,

in order to perform their assigned duties. The

duties may include gathering information at each

host or balancing workload or traffic on the

network, as will be presented in the second part of

this article. Clearly it can be considered as an

extension to the original concept of autonomy.

Currently we are interested in building intelligent

agents using machine learning techniques.

Intelligent agents can either learn from the explicit

training examples provided by the developers or

from interactions with other agents, human or

computer. They change or adapt their behaviour,

based on the examples and the interactions.

The agent functionality. Any of several

technologies can design intelligent agents. All of

them use some combination of statistical

operations, artificial intelligence, machine

learning, inference, neural networks, and

information technologies. Agent systems are not

plug and play. They need to be trained or taught.

Most require examples of right answers or rules

for appropriate behaviour. Typically, an agent

system is implemented in several stages. First, one

develops rules or training data. Once the agent

system performs satisfactorily on the training

data, it is ready to work on test data to make sure

that it can extend what it has learned to unknown

materials. A last step, but a continuing one, at

least in theory, is to evaluate performance at

several intervals. Agents should learn over time,

and their performance should improve as they

adapt to the user’s needs, as well as to the kinds of

information they navigate.

The Reasoning Technique. Of all the

technologies used to build intelligent agents, the

easiest to understand is rule-based reasoning, the

basis for inference engines. Anyone who has ever

set up an e-mail filter knows about setting up

rules. These are usually some form of IF...THEN

statements. Users can specify the rules or the

agent systems can supply the rules, after training.

Agents use the set of rules to decide which action

or actions they should take. The problem with this

approach is that the user needs to recognize the

opportunity for employing an agent, take the

initiative in programming the rules, endow the

agent with explicit knowledge specified in an

abstract language, and maintain the rules over

time, as habits or events change. IBM’s RAISE

(Reusable Agent Intelligence Software

Environment) is an example of rule-based

reasoning. RAISE is the inference engine of

IBM’s Agent Building Environment (ABE)

developer’s toolkit. It can perform information

flow functions: finding, searching, filtering,

categorizing, storing, routing, and/or selectively

disseminating information items. Prototype

applications for RAISE include e-commerce

shopping, customer service support, workflow on

the Web and in Lotus Notes, news, and e-mail.

One problem with rule-based systems is that users

must keep them up to date manually. These

systems cannot change by themselves. A second

problem is that complex sets of rules may develop

conflicting rules that the agent can’t resolve. One

can build knowledge bases based on a specific

subject area or domain. These then serve as the

basis for some inference mechanisms, including

the rule-based reasoning techniques mentioned

above. The major problem with such systems is

that they require a large amount of work from the

knowledge engineers. Furthermore, the

knowledge of the agent is fixed and cannot be

customized to the habits of individual users. In

highly personalized applications the knowledge

engineer cannot possibly anticipate the best aid

for each user in each situation. The agents would

have to modify their own behavior and extend

their own knowledge, instead of relying on users

to constantly modify, and possibly mess up, the

rule bases and knowledge bases. Learning refers

to this modification of behavior as a result of

experience. That is the next step.

Statistical Analysis. The simplest learning

technique that an intelligent agent can use is

statistical analysis. It can determine the temporal

or non-temporal correlation among events of

interest. Charles River Analytics’ Open Sesame

and General Magic’s Magic Cap are two such

examples. The former periodically scans and

analyzes the logs of user actions to find repeated

sequences of actions. The latter recognizes

frequently contacted people by their first names.

EVA (evolving agent) technology uses statistical

analysis to find terms that co-occur and should be

added to a query.

Fuzzy Agents. When an agent needs to reason

with imprecise or incomplete information, or the

domain variables are expressible using linguistic

variables, such as the words or adjectives we use

to describe our world, fuzzy logic is a useful tool.

Fuzzy logic is a form of logic used in some expert

systems in which variables can have degrees of

truthfulness or falsehood represented by a range

of values between 1 (true) and 0 (false). Using

fuzzy logic, we can design decision support or

crisis management systems that offer a range of

alternative actions to solve a problem [1,3,6]. A

fuzzy system, based on fuzzy logic, is a collection

of membership functions and rules that are used to

reason about data. It resembles human decision

making from uncertain and approximate

information. It can be applied to systems whose

information is inherently fuzzy to diagnose the

problem, and find some fuzzy solutions. In fuzzy

systems knowledge can be expressed using

linguistic variables that are described by fuzzy

sets. Fuzzy Systems usually consist of four

components (as is presented in figure, a classic

fuzzy inference system):

1. Fuzzification Interface: maps crisp input

values into Fuzzy sets (linguistic values).

2. Fuzzy Inference engine: receives inputs and

evaluates all the rules to determine their

truth-value. The two main steps in the

inference process are aggregation and

composition. Aggregation is the process of

computing for the values of the IF

(antecedent) part of the rules, while

composition is the process of computing for

the values of the THEN (consequent) part of

the rules.

3. Fuzzy rule base: A collection of Fuzzy If-Then

rules.

4. Defuzzification Interface: maps Fuzzy sets to

a crisp output value. There are different

methods of doing so, such as: Centroid,

Bisector, Middle Of Max, and more.

Neural Networks Neural networks consist of a

set of interconnected nodes, like a web. Each node

has a weight assigned to it. Like brains, neural

nets need training by experience. Training sets of

data, in the case of an information system, consist

of two parts: the set of training data and the

“right” answers extracted from that data. The

neural net keeps trying connections until it gets

the answer right. Neural nets are tricky.

They need training with large amounts of data in

order to develop the right patterns. They can

perform non-linear mappings between their input

and output patterns. The most popular type of

neural networks are three-layer, feed-forward

neural networks, which consists of an input layer,

an output layer, and a hidden layer. Each of these

layers consists of one or more processing units (or

neurons). Each unit in a given layer connects with

all the units in the neighboring layers, but not with

those in the same layer.
Each unit receives inputs from the units one layer
below it and sends outputs to the units one layer
above it. Each connection is associated with a
weight, which, conceptually, represents the
strength of the connection between this pair of
units. Given a set of weights, the entire network
can be thought of as a mapping from a set of input
vectors to a set of output vectors. If we embed
such a neural network in an information agent, the
input vector could represent a set of query terms,
while the output vector could indicate the
“relevance” of the input vector to a certain
information need.
Neural networks handle unstructured data or noisy
data effectively. These are often difficult to
process using rigid reasoning techniques. In agent
systems, they can identify sequences of user
actions, like statistical analysis, and train agents to
automatically assign documents or Web pages to
pre-defined categories.

Evolutionary Computing To expand the learning
horizon and to create more intelligent agents, one
needs a learning algorithm, such as a genetic
algorithm, that can operate at a higher level and
view things from an inter-agent perspective. By
approaching the learning algorithm from two
different levels — the local level of individual
agents and the global level of inter-agent
operation — we can ensure the optimization of
each agent from local knowledge, while genetic
algorithms will act as a driving force to evolve the
agents collectively based on global knowledge.
The goal is to construct a new generation of
agents that benefit from the learning experiences
of individual parent agents and the collective
learning experiences of previous generations. The
most popular examples of evolutionary computing
are genetic algorithms. They work by maintaining
a population of possible solutions (chromosomes,
or agents in our case).

Successive evaluations of the performance of the
agents determine which unfit set of agents to
terminate, and which fittest set of agents to
recombine to produce (or reproduce) possibly
better agents.

References

1. Knapik M., Johnson J., Developing Intelligent
Agents for Distributed Systems, McGraw Hill,
1998.

2. Wooldridge M., Jennings N.R., 1995. Proceedings
of ECAI Workshop on Agent Theories,
Architectures and Languages, pp. 1-32.

3. An introduction to ontologies: www. Semantic
Web.org/knowmarkup.html

4. Simple HTML Ontology Extensions Frequently
Asked Questions (SHOE FAQ):
www.cs.umd.edu/projects/plus/SHOE/faq.html

5. DARPA Agent Markup Language (DAML) home
page: www.daml.org/

