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Abstract 

Mixed-strategy Nash equilibrium (MSNE) is a commonly-used solution concept in game-

theoretic models in various fields in economics, management, and other disciplines, but the 

experimental results whether the MSNE predicts well actual play in games is mixed. Consequently, 

evidence for naturally-occurring games in which the MSNE predicts the outcome well is of great 

importance, as it can justify the vast use of MSNE in models. The game between the kicker and 

goalkeeper in soccer penalty kicks is a real-world game that can be used to examine the application 

of the MSNE concept or its accuracy because payoffs are a common knowledge, the players have 

huge incentives to play correctly, the game is simple enough to analyze, its Nash equilibrium is in 

mixed strategies, and players' actions can be observed. We collected and analyzed data on the 

direction of kicks and jumps in penalty kicks in various top leagues and tournaments. Our analysis 

suggests that the MSNE predictions are the closest to the actual sample data, even though some 

other prediction methods use information on the marginal distribution of kicks or jumps whereas 

the MSNE does not.  
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1. Introduction 

Mixed-strategy Nash equilibrium (MSNE) is a common solution concept employed in many 

theoretical and applied-theory articles in economics, management, and other disciplines. In a pure-

strategy Nash equilibrium, each player chooses an action and the actions constitute an equilibrium 

if given the equilibrium actions of the other players, no player finds it beneficial to deviate from his 

equilibrium action and choose another action instead. In a mixed-strategy Nash equilibrium, on the 

other hand, players adopt mixed strategies, which means that they randomize (not necessarily with 

equal probabilities) between several actions (they may randomize between all their possible 

actions, or only between a subset of them). In an MSNE, each player’s mixed strategy is optimal 

given the equilibrium mixed strategies of the other players. In other words, no player has an 

incentive to deviate from his mixed strategy to another pure or mixed strategy, conditional on the 

other players choosing their equilibrium strategies.  

One reason for the popularity and importance of the MSNE concept is that every finite 

strategic-form game has a mixed-strategy equilibrium, while it does not necessarily have a pure-

strategy equilibrium (Nash, 1950). However, it is not clear why players should play the strategies 

dictated by the MSNE. It is hence important to examine whether in actual games players play 

according to the MSNE or not. This question has been addressed by several experimental studies, 

with mixed results.1 Results that support MSNE play in experiments were obtained by O'Neill 

(1987), in an experiment involving a repeated two-person constant-sum game, but later it was 

argued that O'Neill's data support the conclusion of MSNE play less than argued by O'Neill (Brown 

and Rosenthal, 1990). Additional support of MSNE play was obtained by McCabe, Mukherji and 

Runkle (2000) in a three-person matching-pennies game played with perfect monitoring and 

complete payoff information.  

                                                 

1 In order to be able to use a mixed strategy effectively, the player should be able to randomize his actions, 

and therefore the psychology literature that examines whether people can produce random series is also 

related to the question whether people play the MSNE. The interested reader is referred to Rapoport and 

Budescu (1992) and Budescu and Rapoport (1994) and the references they cite.  



 2

Somewhat more ambiguous results (regarding whether players play the MSNE or not) were 

obtained by Rapoport and Boebel (1992), who conducted two studies designed to investigate 

interactive behavior in two-person zero-sum games and assess the descriptive power of the 

minimax hypothesis. Additional ambiguous results are reported by Rapoport and Amaldoss (2000, 

2004): in both articles, they find mixed-strategies equilibrium play on the aggregate but not the 

individual level.  

Mookherjee and Sopher (1994) found support for equilibrium play in a matching-pennies game 

when subjects had only two possible actions and were provided with complete information 

regarding opponent's choices and payoffs. In a later article, however (Mookherjee and Sopher, 

1997), they discovered that in constant-sum games with at least four choices available to each 

player, observed behavior departed significantly from the equilibrium predictions. Ochs (1995) also 

obtained results that deviated from the Nash equilibrium predictions, in an experiment studying the 

choices of subjects playing mixed extensions of three variants of simple 2X2 non-constant sum 

matching-pennies games. Erev and Roth (1998) examined learning in games with a unique 

equilibrium in mixed strategies, analyzing both the ex-ante and ex-post descriptive power of 

learning models, and found that even a one-parameter reinforcement learning model robustly 

outperforms the equilibrium predictions. Shachat (2002) introduces a new methodology for 

eliciting mixed strategies and finds evidence that subjects do not play according to their minimax 

strategies. 

The mixed results obtained in lab experiments, the importance of learning (see for example 

Ochs, 1995; Roth and Erev, 1995; Erev and Roth, 1998), and the inherent problem of external 

validity of lab experiments (i.e. to what extent can we learn from play in artificial games in the lab 

about behavior in naturally-occurring games in the real world) have led in recent years to several 

attempts to examine whether players play the MSNE in natural contexts. By looking at how experts 

play games, we can bypass the complexities of learning (because those experts have already 

learned and practiced the games they play). They generally have significant incentives to play 

correctly, and because we examine directly play in natural contexts, there is no question of external 

validity.  
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It is not hard to think about contexts in which players may randomize among several actions in 

real contexts; for example, as Osborne and Rubinstein (1994, p. 37-38) point out, tax authorities 

may randomize regarding which taxpayer to audit, and taxpayers may randomize whether to report 

their income truthfully. The fact that we observe people randomizing, however, does not guarantee 

that the probabilities with which they randomize are close to the probabilities predicted by the 

MSNE. To examine whether people play the MSNE in natural contexts, we should find a natural 

game in which payoffs are common knowledge, the players have significant incentives to play 

correctly, the game is simple enough to analyze, its Nash equilibrium is in mixed strategies, and 

players' actions can be observed. It is hard to find such games because natural games tend to be 

complex, but one interesting game satisfying the above criteria quite well is the game between the 

goalkeeper and the kicker during penalty kicks in soccer.2  

Penalty kicks in soccer occur either after certain offenses, or at the end of the game, to untie a 

game or a match, in certain tournaments (including the World Cup, the European Cup, and many 

other top tournaments). A kick is shot from the penalty mark which is located 11 meters from the 

goal, the goalkeeper is not allowed to move forward before the ball is kicked, and no player other 

than the goalkeeper is allowed to stand between the goal and the penalty mark, thus giving the 

kicker a very high probability of scoring a goal. Because of the short distance between the ball and 

                                                 

2 Another sports context that allows to analyze whether professional players play the MSNE is tennis. Indeed, 

the first to examine MSNE play in sports are Walker and Wooders (2001), who looked at win rates in the 

serve and return play of top professional tennis players at Wimbledon. In addition, soccer provides 

opportunities to examine MSNE play not only in penalty kicks. Moschini (2004), for example, examined 

whether soccer players, during the regular game (not in penalty kicks), choose to kick to the near goalpost or 

the far one, concluding that their behavior is consistent with the MSNE. Finally, soccer has also served as a 

case study for additional economic studies, such as studies about the relationship between pay and 

performance (Torgler and Schmidt, 2007), the effect of soccer results on the stock market (Scholtens and 

Peenstra, forthcoming; Klein, Zwergel and Fock, forthcoming), the effect of hosting the soccer World Cup on 

unemployment (Hagn and Maennig, forthcoming), and the efficiency of betting markets (Forrest and 

Simmons, 2008). 
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the goal, and because of the high speed of the ball during penalty kicks3, the goalkeeper generally 

cannot afford to wait until he sees clearly to which direction the ball is kicked; rather, he has to 

make a decision whether to jump to one of the sides or to stay in the center at about the same time 

that the kicker chooses where to direct the kick. This creates a simple but interesting real-life 

example of a game in which the Nash equilibrium is in mixed strategies. The reason that no pure-

strategy equilibrium exists for this game is that if one of the players adopts a pure strategy, the 

other player can take advantage of this, and then the first player no longer finds it optimal to choose 

that pure strategy. For example, if the goalkeeper chooses the pure strategy of jumping left, 

meaning that he always jumps left, then the kicker will always kick to the other direction. But then 

the goalkeeper should deviate and not jump left, and therefore no equilibrium exists with pure 

strategies. When the players randomize between several actions we can find an equilibrium for this 

game (as is analyzed in more detail in section 3), and therefore an MSNE does exist in this game. 

In practice, the players do not completely randomize. The goalkeeper uses his knowledge of the 

directional distribution of penalty kicks in general, the past behavior of the kicker, and cues he 

might obtain from the kicker's behavior in the seconds before the kick, to try to decide correctly to 

which side to jump, if at all. Similarly, the kicker chooses where to direct the ball according to his 

conjecture about where the goalkeeper is likely to jump, where stopping the ball is harder, etc. 

Even though the players’ choices are not completely random, we can treat these choices as coming 

from a mixed strategy of each player.   

Because a goal achieved in a penalty kick counts as any other goal, and because the number of 

goals scored in an average soccer game is very small4, the importance of the goalkeeper's (as well 

as the kicker's) performance during the penalty kick is tremendous. World Cup and European Cup 

games have been won many times by the penalty kicks that followed a tied game, for example. Not 

only the outcome of the game depends on the goalkeeper's performance during a penalty kick, but 

                                                 

3 The time it takes the ball to reach the goal from the penalty mark is about 0.2-0.3 seconds (see Chiappori, 

Levitt and Groseclose, 2002; Palacios-Huerta, 2003).  

4 For example, in the Korea/Japan 2002 World Cup, an average of 2.52 goals per match were scored (see 

http://www.fifa.com/images/pdf/IP-301_12A_comparative.pdf). 
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also huge amounts of money are involved. Players receive bonuses for winning games, teams can 

make large amounts of money by winning and climbing to the next stage of a tournament, and the 

goalkeeper's reputation and thus future earnings also depend on his performance, to give a few 

examples. Since players in top leagues earn hundreds of thousands and often millions of dollars 

annually, it is clear that the goalkeeper's performance and reputation have a very significant 

monetary effect, and the goalkeeper has huge incentives to do his best in general and in the few 

seconds of a penalty kick in particular.  

We examine whether the decisions made by kickers and goalkeepers during penalty kicks are 

close to the predictions of the MSNE. We collected data on penalty kicks in top leagues and 

championships worldwide (the data are described in more detail in the next section). While the 

players in the various penalty kicks are not always the same players, the reasons that lead players to 

use mixed strategies in many games (such as matching pennies) are still relevant, and therefore it is 

still appropriate to examine whether the players play the MSNE. For example, if a certain 

goalkeeper adopts a strategy of always jumping left, this strategy will soon be noticed and learned 

by kickers of other teams, who will direct penalty kicks to the other side when playing against this 

goalkeeper. Similarly, if one of the kickers in a team always kicks to the right, this strategy will 

soon be observed by others, and goalkeepers who face this kicker during penalty kicks will jump to 

the direction of the kick. Indeed, teams keep records of past behavior of players in other teams 

during penalty kicks. Consequently, the incentive to randomize exists for both the kickers and the 

goalkeepers. 

When we started the project and collected the data, no other study of mixed-strategy play in 

penalty kicks was published, but recently two important contributions were added to the literature: 

Chiappori, Levitt and Groseclose (2002) (CLS), and Palacios-Huerta (2003) (PH). CLS built a 

theoretical model that describes the penalty-kick game as a simultaneous 3X3 game between the 
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kicker and the goalkeeper, where each can choose left, center, and right.5 They make certain 

assumptions about the payoffs in the game (e.g. that if both players choose "center," the goalkeeper 

always stops the ball), and these assumptions yield predictions about which strategies or 

combinations of strategies should be more common than others if players play the MSNE (e.g., the 

kicker chooses left more often than right). They find that these predictions hold in data they 

collected on penalty kicks in the French and Italian first leagues.  

PH examines whether penalty kicks satisfy the assumptions of minimax play using a dataset of 

penalty kicks from various countries (mostly Italy, Spain and England). He performs most of the 

analysis on a simplified 2X2 game (the goalkeeper and the kicker can each choose only right or 

left) rather than a 3X3 game. He finds that the winning probabilities of each strategy of each player 

are similar, and that players' choices are serially independent. 

While we also explore penalty kicks in soccer, there are significant differences between our 

article and those of CLS and PH. First, our analysis allows the goalkeeper and the kicker to choose 

also center in addition to left and right (as opposed to PH). The addition of the center makes a big 

difference, for two reasons. First, the payoffs to choosing center are substantially different from 

those to choosing right and left, whereas the differences between right and left are not that large. 

Second, in our analysis there are nine possible strategy combinations in each kick (3X3), whereas 

in the analysis of PH there are only four. Both of the above differences imply that from the players' 

perspective a 3X3 game is much more complex and it makes it more difficult for them to figure out 

how to play the MSNE. Finding that the MSNE still predicts reasonably well the outcomes in this 

more complex game therefore provides much more convincing evidence for the claim that players 

play the MSNE, and therefore is an important contribution over the existing literature.  

Second, as opposed to CLS, we look at the predictions of the MSNE about the exact 

probabilities of the joint distribution of kicks and jumps. Finding that the actual probabilities of 

                                                 

5 The reader who compares our results to theirs should notice that they define "right" as a kick to the right 

from the kicker's perspective, while we define "right" as the right from the goalkeeper's perspective (i.e. our 

directions are the opposite of theirs; PH uses the goalkeeper's perspective as we do). 
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different actions in the empirical data match closely the probabilities predicted by the MSNE 

provides strong support for the MSNE concept and is therefore an important addition to the current 

literature.  

Finally, we explore various alternatives to the MSNE predictions, and show that the MSNE 

yields the best predictions. This approach significantly adds to the results in the former two studies, 

where the MSNE was not confronted with other alternatives to see whether it predicts better or not. 

One of the alternatives we consider is that the players play according to probability matching - 

playing each action with a probability that is identical to the probability that this action is optimal.6 

The rationale for examining this idea is that many experimental studies (for a literature review see 

Vulkan, 2000) show that probability matching is a very common behavior in situations that 

resemble the one of penalty kicks. To examine the predictions implied by probability matching 

without consulting the actual marginal distribution of kicks, we surveyed 21 of the best goalkeepers 

in Israel, and obtained their perception about the distribution of penalty kicks, in two different 

methods.  

Given the vast use of the MSNE concept in theoretical models and the ambiguous results in 

experimental studies that test whether players play the MSNE, it becomes especially interesting and 

important to examine play of experienced players who have high incentives to perform optimally, 

in a natural context. We do so in the context of soccer penalty kicks and find that the MSNE 

predicts the behavior of soccer players better than various alternatives. This is an important support 

for the vast use of the MSNE concept to analyze games and to predict their outcomes.  

The rest of the article is organized as follows: Section 2 describes the data collection process 

and presents the data. Section 3 analyzes the data to determine whether the observed behavior of 

kickers and goalkeepers is reasonably close to the mixed-strategy Nash equilibrium. The last 

section concludes.  

                                                 

6 Notice that this is not optimal play; we elaborate on this later on.  
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2. The Data 

In order to collect data on penalty kicks during real games, we searched in the archives of 

various television channels, found different soccer games in various leagues and championships 

worldwide, and watched the games to see whether they involved penalty kicks. For those penalty 

kicks that we found, we asked three independent judges to determine to which part of the goal the 

ball was kicked, to which direction the goalkeeper jumped (if at all), and whether he stopped the 

ball, using a diagram of the goal's area.7 This process yielded a dataset of 286 penalty kicks.8  

We can think about each penalty kick as a game in which the goalkeeper chooses one of three 

actions (staying at the center, jumping to the right, or jumping to the left) and the kicker chooses 

one of three actions (kicking to the center, right, or left). There is a potential confusion about 

directions in this context. If the goalkeeper jumps to his left, and the kicker kicks towards his left, 

these are two opposite directions even though both are "left." To avoid this confusion, in what 

follows, every time we mention right or left, it is from the goalkeeper's perspective. Table 1 

presents the outcomes in the 286 observations, divided according to the direction of jumps and 

kicks.  

 

                                                 

7 To get a feeling for the task the goalkeeper performs, we note that the size of a soccer goal is 8 yards (7.32 

meters) wide and 8 feet (2.44 meters) high.  

8 Some additional details about the data collection process are reported in Bar-Eli et al. (2007), who combine 

these data with a survey of goalkeepers (not the one reported later in this article) in order to examine whether 

goalkeepers exhibit an action bias – having a preference to jump rather than to stay in the center. However, 

Bar-Eli et al. do not consider the implications of the data with respect to the Nash equilibrium as we do here. 

Instead, they take the kickers' actions as given and only ask whether goalkeepers seem to behave optimally. 

Interestingly, while they claim that goalkeepers seem to be biased in favor of jumping, we find here that the 

MSNE predicts the outcome very well. Notice, however, that Bar-Eli et al. examine the optimality of 

goalkeepers' behavior given the actual kickers' behavior, whereas the predicted behavior of goalkeepers in the 

MSNE implicitly assumes that the kickers play the MSNE as well (and kickers' actual play is not identical to 

kickers' MSNE play). A possible interpretation of the results is that the action bias is small in relation to the 

strength of the MSNE concept, and thus, despite the possible bias in goalkeepers' behavior, the MSNE still 

yields better predictions than other alternatives.  
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Table 1: Joint Distribution of Jumps and Kicks 

  Goalkeeper  
  Left Center Right Total 

 Left 
54 
(18.9%) 

1 
(0.3%) 

37 
(12.9%) 

92 
(32.2%) 

Kicker Center 
41 
(14.3%) 

10 
(3.5%) 

31 
(10.8%) 

82 
(28.7%) 

 Right 
46 
(16.1%) 

7 
(2.4%) 

59 
(20.6%) 

112 
(39.2%) 

 Total 
141 
(49.3%) 

18 
(6.3%) 

127 
(44.4%) 

286 
(100%) 

 

The next step is to determine the utility of each player from each outcome. In any specific kick 

either a goal is scored or not. When a goal is scored, the most natural payoffs to assign to the 

players are 1 to the kicker and -1 to the goalkeeper (i.e., the payoff represents the impact of the 

penalty kick on the score in the game). When a goal is not scored, the payoffs are 0 to both the 

goalkeeper and the kicker. This is illustrated in Table 2. 

 

Table 2: Payoff Matrix  

 Goal is scored Goal is not scored 

Kicker’s payoff 1 0 

Goalkeeper’s payoff -1 0 

 

 

The game can have 9 different realizations of strategy choice by both players (3X3), and the 

payoffs that the players should consider when evaluating the game (and when we compute the 

MSNE) are the expected payoffs from each pair of actions by the two players. These can be 

obtained by looking at the percentage of goals scored for each pair of actions chosen by the players. 

Table 3 presents information about the kicks that were stopped by the goalkeepers.  
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Table 3: Stopped Kicks 

  Goalkeeper  
  Left Center Right Total 
 Left 16 0 0 16 
Kicker Center 4 6 1 11 
 Right 0 0 15 15 
 Total 20 6 16 42 

 

Not surprisingly, most of the kicks stopped occur when the goalkeeper chooses the same 

direction in which the ball was kicked. We can see, however, that in a few cases a goalkeeper who 

jumped to one of the sides was still able to stop a ball directed towards the center. It is clear why 

this is possible if we remember that a kick that is classified as "Center" need not be at the exact 

center, but rather at any point in cells 4, 5, or 6, so jumping to the left allows the goalkeeper to 

potentially stop a ball directed a little to the left of the center.  

Based on the data in Tables 1 and 3 we can compute the average percentage of kicks in which a 

goal was scored for each of the 9 cells in the tables, giving us the expected payoffs of the players 

from each outcome of the game. Table 4 presents these expected payoffs, computed as the number 

of goals scored divided by the number of kicks (for each combination of kick direction and jump 

direction).  

 

Table 4: Expected Payoffs 

  Goalkeeper 
  Left Center Right 
 Left 0.704, -0.704 1, -1 1, -1 
Kicker Center 0.902, -0.902 0.4, -0.4 0.968, -0.968 
 Right 1, -1 1, -1 0.746, -0.746 

 

3. Do Goalkeepers and Kickers Play the Mixed-Strategy Nash Equilibrium? 

Based on the payoffs presented in Table 4, we can examine whether the observed distribution 

of kicks and jumps is close to the distribution that results from the MSNE. In a mixed-strategy 

equilibrium in which each player plays every possible action with positive probability, each player 
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must be indifferent between his possible actions. Let us denote the probability that the goalkeeper 

jumps to the left by p, and the probability that he stays in the center by q. Let us also denote the 

probability that the kicker kicks towards the left by α and the probability he kicks to the center by 

β. The expected utility from the three actions possible for each player, given the mixed-strategy 

adopted by the other player, is denoted as U (left), U (center), and U (right).  

The kicker is indifferent between choosing left, center or right if and only if the following two 

equations hold: 

U (left) = 0.704p + q + (1 - p - q) = 0.902p + 0.4q + 0.968(1 - p - q) = U (center), and 

U (center) = 0.902p + 0.4q + 0.968(1 - p - q) = p + q + 0.746(1 - p - q) = U (right). 

Similarly, the goalkeeper is indifferent between choosing left, center or right if and only if the 

following two equations hold: 

U (left) = -0.704α - 0.902β - (1 - α - β) = -α - 0.4β - (1 - α - β) = U (center), and 

U (center) = -α - 0.4β - (1 - α - β) = -α - 0.968β - 0.746(1 - α - β) = U (right).  

Solving these two systems of equations yields the following values:9  

p = 0.411, q = 0.110, α = 0.344, and β = 0.203. 

If each player plays his mixed strategy according to these probabilities, independently of what 

the other does, it is simple to compute the expected frequency in each cell of the 3X3 table of 

actions. For example, the probability that we will observe an outcome in which both players choose 

"left" is given by αp = 0.344*0.411 = 0.141. If we multiply the resulting nine probabilities by the 

number of kicks in the sample (286), we obtain a prediction about the distribution of kicks and 

jumps if kickers and players play simultaneously and play according to the MSNE. Table 5 

presents this predicted distribution: 

 

                                                 

9 We present here the values rounded to the third number after the decimal point, but carry on the 

computations below with the accurate values.  
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Table 5: Predicted Distribution According to the MSNE 

 Goalkeeper  
  Left Center Right Total 
 Left 40.42 10.83 47.10 98.34 

Kicker Center 23.83 6.38 27.77 57.99 

 Right 53.29 14.27 62.10 129.67 

 Total 117.54 31.48 136.98 286.00 

 

Not surprisingly, this table is not exactly equal to the actual distribution (see Table 1). The real 

question, however, is not whether the MSNE predictions are identical to the actual distribution. In a 

large sample of 286 different penalty kicks, and in a natural context (as opposed to a lab 

environment), where so many factors play a role in the decisions of the players, it will be naïve to 

expect that any method can be very accurate in predicting the actual distribution of kicks and 

jumps.  

A more meaningful question to ask is whether the MSNE predictions are closer to the actual 

distribution than predictions obtained from other reasonable conjectures about how the players may 

play this game. The MSNE concept is a useful one if it predicts behavior better than other 

prediction methods that use the same information, even if its predictions are not completely 

accurate.10 To compare the MSNE predictions to competing alternatives, we should do two things: 

one is to define a measurement method that allows us to quantify the difference between the 

predictions and the actual distribution, and thus to compare between the predictions obtained from 

different conjectures about how the players play the game. The second thing we should do is to 

formulate other reasonable conjectures about the players' strategies.  

                                                 

10 An analogous example is the use of expected utility theory. Suppose that we obtained the exact utility 

function over all possible goods of hundreds of individuals. We can then compute the bundle they should buy 

according to expected utility theory, and compare it to the bundle they actually decide to purchase. If we have 

enough data, probably we can reject the hypothesis that people behave exactly according to expected utility 

theory. But this does not mean we have to dismiss this theory; the important question is whether expected 

utility theory predicts behavior better than competing theories. If it does, it is a useful theory, even if its 

predictions are not completely accurate.  
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To measure the difference between the predicted and actual distributions we employ two 

natural criteria. To proceed, let us first code the strategies left, center, and right as strategies 1, 2, 

and 3. Denote the actual number of penalty kicks where the kicker chose strategy i and the 

goalkeeper chose strategy j as Aij, where i,j = 1, 2, or 3 (so A31 = 46, for example). Similarly, 

denote the respective predicted numbers as Pij (for the MSNE, for example, P31 = 53.29). The first 

measure of inaccuracy between the actual and predicted distributions is the sum of the absolute 

values of the differences between the predicted and actual raw frequencies in each of the nine cells, 

which is denoted by AD (for "absolute differences"). Formally, for each prediction method, the AD 

value is equal to: 

AD = ΣiΣj |Aij – Pij| 

The AD value can range from 0 (predictions are exactly equal to actual distribution) to 570.11 

The second criterion is similar, but takes the squared differences between the predicted and actual 

distributions instead of the absolute value, thus punishing for mistakes in prediction in a convex 

fashion (the marginal punishment being higher the higher is the mistake). This measure, denoted by 

SD (for "squared differences"), can range from 0 to 93,898, and is formally equal to: 

SD = ΣiΣj (Aij – Pij)
2 

 Employing these two criteria on the MSNE predictions yields an AD value of 75.2, and an SD 

value of 817.0.  

The next step is to formulate some other conjectures about how the players may play this game. 

One simple alternative is to examine the conjecture that the goalkeeper plays only after observing 

the direction of the ball (i.e. to replace the assumption that the game is simultaneous with an 

assumption that the kicker plays first). In this case, the payoff table (see Table 4) suggests that the 

goalkeeper should always jump to the direction of the kick (because then his chances of stopping it 

are the greatest, and therefore his expected utility is maximized). It is easy to see from Table 1 that 

                                                 

11  The most inaccurate prediction is to predict that the kicker always kicks to the left and the goalkeeper 

always stays in the center; this prediction yields a predicted value of 286 in the cell where actually there is 

only 1 kick, and predicts 0 for all the other cells, which have together 285 actual kicks, resulting in the sum 

of absolute differences being 285X2 = 570. 
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this is not the case, but nevertheless the AD and SD values give us benchmarks to which we can 

compare the results obtained from other predictions. To employ this conjecture, we assume that the 

distribution of kicks is the actual one, and the goalkeeper jumps to the direction of the kick. This 

means that we predict that in 92 observations the kicker and goalkeeper both choose left, in 82 

observations both choose center, and in 112 observations both choose right. The cells off the 

diagonal all have a predicted number of observations equal to zero. Notice that this method has an 

advantage over the MSNE: when using the MSNE, we did not use any data about the marginal 

distributions of kicks or jumps to predict their joint distribution, while here we use the actual 

marginal distribution of kicks to predict the joint distribution. Nevertheless, because the data are far 

from matching the conjecture that the goalkeeper can choose his action after observing the 

direction of the kick, the AD and SD values are high. The AD value is 326, and the SD value is 

15,614.  

Another simple conjecture is that because the ball is very fast during penalty kicks and the 

distance between the ball and the goal is only 11 meters, the goalkeeper has to choose to which 

direction to jump even before the ball is kicked, and the kicker can observe this before choosing the 

direction of the kick (i.e. the goalkeeper plays first). In this case, if the goalkeeper chooses right, 

the best for the kicker is to choose left, and vice versa. If the goalkeeper chooses center, the kicker 

is indifferent between right and left, so we will assume that he chooses each with equal 

probability.12 In a similar fashion to what we did when we conjectured that kickers play first, we 

now use the actual marginal distribution of the jumps to predict the joint distribution of kicks and 

jumps. Table 6 presents the predicted joint distribution.  

 

                                                 

12 Because the goalkeeper chooses center only in a few cases, other assumptions do not change much.  
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Table 6: Predicted Distribution if Goalkeeper Plays First 

 Goalkeeper  
  Left Center Right Total 
 Left 0 9 127 136 

Kicker Center 0 0 0 0 

 Right 141 9 0 150 

 Total 141 18 127 286 

 

Computing the AD gives a value of 390, and the SD is equal to 26,332. We can see that these 

values are higher than those of the conjecture that the kicker plays first, suggesting that to the 

extent that the game between the goalkeeper and the kicker is not completely simultaneous, 

goalkeepers might have better signals about kick direction than kickers have signals about jump 

direction. We can also see that so far the MSNE predictions are by far the closest to the actual data. 

This might be, however, not because the MSNE is a good prediction, but because the game is 

simultaneous and therefore the results obtained from assuming that one of the players plays first are 

far from the data.  

Can we come up with a reasonable conjecture about how the players might play 

simultaneously, which will do better than the MSNE predictions? A natural alternative to the 

MSNE is to conjecture that the players randomize with equal probabilities among their three 

actions. Assuming that they play simultaneously, the randomization of the two players should be 

independent of each other, and consequently each of the nine cells in the table should have 286/9 = 

31.78 observations. The AD value for this prediction is 156.2, and the SD value is 3585.6.  

Another interesting conjecture worth exploring is that the goalkeepers or the kickers play 

according to probability matching, a well-known behavior that has been observed in many 

experiments (for a review of this literature, see Vulkan, 2000). To give a brief explanation of what 

probability matching means, assume that subjects have option A, which is optimal with a 

probability p > 0.5, and option B, which is optimal with a probability (1-p). Also assume, for 

simplicity, that the difference in utility between the two options is constant; for example, one 

option wins a dollar and another wins nothing, but which option wins can change in each round of 

a repeated game or experiment, and the subjects do not know when making their choice in each 
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round which option wins in that round. If subjects receive feedback after each round, they 

gradually learn the pattern of the game (i.e., the value of p), and then their optimal behavior is to 

always choose option A (because they have to choose before knowing which option is better in that 

round). It turns out, however, that people often choose A with probability p and B with probability 

(1-p). More generally, probability matching implies that when people have various possible 

actions, they choose each action with a probability that is equal to the probability that this action is 

the best response.  

We can employ the probability matching principle either on the choices of the kickers or those 

of the goalkeepers. For the kickers, the optimal action is to kick left when the goalkeeper jumps to 

the right and vice versa, and to either kick left or right when the goalkeeper stays in the center 

(therefore we will assume that in the latter case the kicker chooses left and right with equal 

probabilities). According to the probability matching principle, the kickers should therefore kick 

left 47.6% of the kicks (the goalkeeper jumps to the right in 44.4% of the kicks, plus half of the 

6.3% in which the goalkeeper stays in the center), and kick right 52.4% of the kicks. The 

goalkeepers are assumed to play according to the actual marginal distribution of jumps in the data. 

Because the game is simultaneous, the decisions are independent, and we can get the predicted 

distribution by multiplying the probabilities of the mixed strategies of the two players by each 

other, and then by the number of kicks (286). Notice that while this gives the same marginal 

distribution as when the goalkeepers play first (see Table 6), here the two players are playing 

simultaneously and therefore the joint distribution is not the same as in the former case. Kickers do 

not act optimally in each kick, as they did when goalkeepers played first. Table 7 presents the 

predicted joint distribution obtained: 
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Table 7: Predicted Distribution if Kickers Use Probability Matching 

 Goalkeeper  
  Left Center Right Total 
 Left 67.05 8.56 60.39 136 

Kicker Center 0 0 0 0 

 Right 73.95 9.44 66.61 150 

 Total 141 18 127 286 

 

The AD value in this case is 164.0 and the SD value is 4361.7.  

Alternatively, the goalkeepers might be the ones who use probability matching. In this case, 

they will choose to jump left with the same probability with which the kickers choose left, and 

similarly for center and right. This means that the marginal predicted distribution of both kicks and 

jumps will be equal to the actual marginal distribution of kicks. The predicted values in each cell, 

presented in Table 8, are obtained by multiplying the probabilities of the mixed-strategies of the 

two players by each other, and then by 286. 

 

Table 8: Predicted Distribution if Goalkeepers Use Probability Matching (Using Actual 

Marginal Distribution of Kicks) 

 Goalkeeper  
  Left Center Right Total 
 Left 29.59 26.38 36.03 92 

Kicker Center 26.38 23.51 32.11 82 

 Right 36.03 32.11 43.86 112 

 Total 92 82 112 286 

  

The AD value here is 130.2 and the SD value is 2597.4.  

An interesting mix of the last two predictions is that each of the two players might play 

according to probability matching based on the actual marginal distributions. That is, goalkeepers 

choose directions with the same probabilities of the sample marginal distribution of kicks, and 

kickers choose the opposite direction of the marginal distribution of jumps (choosing a side 

randomly for the percentage of observations in which the goalkeeper stays at the center). This 

method results in the predicted distribution presented in Table 9: 
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Table 9: Predicted Distribution if Both Goalkeepers and Kickers Use Probability Matching 

 Goalkeeper  
  Left Center Right Total 
 Left 43.75 38.99 53.26 136 

Kicker Center 0 0 0 0 

 Right 48.25 43.01 58.74 150 

 Total 92 82 112 286 

  

The AD value obtained is 185.0 and the SD value is 5856.6.  

We can see that so far the conjecture that goalkeepers use probability matching performs the 

best except for the MSNE. To try to improve it further, we wanted to see what happens if instead of 

using the actual marginal distribution of kicks we use the perception of goalkeepers about the 

distribution of kicks as the basis for the probability matching. This has two advantages: first, to the 

extent that goalkeepers perceptions are different from the actual distribution of kicks, if they use 

probability matching, it might be based on their perceived distribution rather than on the actual 

distribution.  

Second, using the actual marginal distribution of kicks for the purpose of predicting the joint 

distribution of kicks and jumps in the probability matching case gives it an advantage over the 

MSNE, where we do not use information on the marginal distribution of kicks for prediction. By 

using the perceived distribution of goalkeepers rather than the actual distribution we alleviate this 

advantage. While it is likely that goalkeepers' perception of kick distribution is close to the actual 

distribution in general, which in turn is close to the distribution in our sample, there is still some 

difference between the perceived distribution and the sample distribution, and thus we do not use 

the exact marginal distribution of kicks in the sample to predict the joint distribution of kicks and 

jumps in the sample.  

To elicit the perception of goalkeepers, we compiled a list of 69 goalkeepers who played in the 

three top leagues in Israel during the 2001-2 season. Then we chose four Israeli soccer experts, who 

were elite goalkeepers in the past and have remained involved in professional soccer to this day (as 

coaches etc.). We asked these four experts to rank each of the 69 goalkeepers on a 1-5 scale. We 
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then asked the goalkeepers ranked 1-24 (according to the average ranking by the experts) to 

participate in a survey. 21 goalkeepers agreed, and we showed them a photograph of the goal area 

as it looks from the penalty kick mark. The goalkeepers were asked "Imagine to yourself that you 

are facing the best penalty-kicks kicker, and he kicks 10 penalty kicks. You are asked to mark 10 

marks on the goal that represent the location to which the kicked ball arrives." We later converted 

their drawings to left, center, and right by dividing the goal area to three equal areas. As a 

robustness check, we also showed the goalkeepers a diagram of the goal divided to different areas 

and asked them "It is known that in one season there are on average 100 penalty kicks in the 

National League. You are asked to write in numbers how the kicks are distributed. Please check 

yourself that the numbers are accurate and their sum is 100." Table 10 presents the results, 

aggregated over the 21 goalkeepers: 

 

Table 10: Perceived Distribution of Penalty Kicks Given by 21 Top Goalkeepers 

 Left Center Right Total 
10 kicks of best player 88 

(41.9%) 
20 
(9.5%) 

102 
(48.6%) 

210 
(100%) 

100 season kicks 844 
(40.2%) 

236 
(11.2%) 

1020 
(48.6%) 

2100 
(100%) 

Percentage average of 
the two methods 

41.0% 10.4% 48.6% 100% 

 

We took the average percentage in both methods as the perceived distribution. We can see that 

the perceived distribution is similar under both elicitation methods. If we assume that kickers 

indeed kick according to these probabilities, and that goalkeepers jump according to these 

probabilities because they use probability matching, we obtain the predictions about the joint 

distribution of kicks and jumps presented in Table 11: 
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Table 11: Predicted Distribution if Goalkeepers Use Probability Matching (Using Perceived 

Distribution of Kicks) 

 Goalkeeper  
  Left Center Right Total 
 Left 48.19 12.19 57.02 117.40 
Kicker Center 12.19 3.08 14.42 29.69 
 Right 57.02 14.42 67.47 138.91 

 Total 117.40 29.69 138.91 286.00 

 

The AD value here is 116.2 and the SD value is 1961.0.  

To have a convenient summary of the results in the various methods employed, Table 12 

presents a summary of the AD and SD values. 

 

Table 12: AD and SD Values in the Various Methods 

Method AD value SD value 
Maximal possible mistakes 570.0 93898.0 
Kicker plays first 326.0 15614.0 
Goalkeeper plays first 390.0 26332.0 
Simultaneous-play methods:   
MSNE 75.2 817.0 
Both play each strategy with equal probability  156.2 3585.6 
Kickers use probability matching (based on the sample 
marginal distribution of jumps) 

164.0 4361.7 

Goalkeepers use probability matching (based on the sample 
marginal distribution of kicks) 

130.2 2597.4 

Both goalkeepers and kickers use probability matching 185.0 5856.6 
Goalkeepers use probability matching (based on the 
perceived marginal distribution of kicks) 

116.2 1961.0 

 

We can see that the MSNE yields the best predictions, even though most of the other methods 

use information about the sample marginal distribution of kicks or jumps, which the MSNE does 

not use, implying that the MSNE predicts better despite using less information.  

 

4. Conclusion 

Analyzing the dataset and using several methods to predict the joint distribution of kicks and 

jumps suggest that the MSNE predictions are the closest to the actual sample data, even though 
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some other methods use information on the marginal distribution of kicks or jumps whereas the 

MSNE does not. It should also be noted that the MSNE is not trivial, in the sense that payoffs are 

such that the probabilities with which each player plays each strategy are not equal (as opposed to 

some simple games such as matching pennies with equal payoffs, for example). Because the MSNE 

concept is so widely used, finding additional natural contexts in which the relevant conditions are 

satisfied (payoffs are common knowledge, the players have significant incentives to play correctly, 

the game is simple enough to analyze, its Nash equilibrium is in mixed strategies, and players' 

actions can be observed) and examining whether actual outcomes are close to the predictions of the 

MSNE is a worthwhile and important direction for future research. 
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