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Xenxkun I.M., IToareposuu B.M. IuddepeHIMATEHO-Pa3HOCTHBIH  aHATor
ypaBHeHMsl Bioprepca M HEKOTOPHIE MOIENN SKOHOMUYECKOro paaputisa/ Ilpenpunr #
WP /98/051. - M. LIDMU PAH, 1998. - 63 c. (aHrn.)

PaGora mMocBslleHa MCoIenoBaHmio psma audidepeHlalbHO-PA3HOCTHEIX
YpaBHEHHIH, Cpely KOTOPHIX LEHTPATLHYIO POJib HIPAET CACAYIOLIEe:

dF,fdt = o(F,) (F1~ Fy, )
rne {F, (D, n =0, 1, 2, ...} npu moBoM ¢ apisieTcd QYHKUMEH pacrpefeJenns, a ¢ -
noMoXUTebHAsS yHKLMA Ha orpeske [0, 1]. ¥pasHeHue (*) BOHMKIO KaK OIMCAHHE
SKOHOMHYECKOTO  Da3sBHTHMA  OTPACTM, YYMTBIBAIOIIEE TMPOLECCHl  CO3MAHMA U
pACTIPOCTPAHEHHs! HOBBIX TeXHoNorui. CTaThs CONEPXKHT 0030p paHee MOLy4eHHBIX
pe3yNnbTaToB, B TOM UMCIE, KACAIOWMXCSH MHOMOMEpPHOTO 000DIIeHHS W NPHMEHEHHS
3TOTO YPaBHEHHs K TEOPHH 3KOHOMHYECKOIO pPOCTa.

§ Ecnu ¢ y6biBaeT, To peluenus npobremsl Koy mis ypagHeHus (*) cXomaTes K
CEMEHCTBY BOJHOBBIX pelueHHMit. [UIs BO3pACTAIOLIErO ¢ aCUMITOTHIECKOE MOBEIEHUE
umeeT xapaktep auddysun. ChopMyruposana oGLIAs THITOTE3a Ui HEMOHOTOHHOTO
ciyyast M JoKasaH aHanor TeopeMbl BaitnGeprepa (1990). [TpuBeneHBI ApryMEHTHL
OKA3BIBAIOLIHE, YTO ypaBHeHHE (*) MOXKHO CUMTATh aHATIOTOM ypaBHeHUs! Bioprepca.

Henkin G.M., Polterovich V.M. A difference-differential analogue of the
Burgers equation and some meodels of economic development / Working paper
# WP/98/051. - Moscow, CEMI of Russian Academy of Science, 1998. - 63 p. (Engl.)

The paper is devoted to investigation of a number of difference-differential
equations, among them the following one plays the central role:

dF,/dt = o(F)(Fy-1 - Fp) 1o
where, for every ¢, {F,(?), n =20, 1, 2, ...} is a probability distribution function, and ¢ is
a positive function on [0, 1]. The equation (*) arose as a description of industrial
economic development taking into account processes of creation and propagation of
new technologies. The paper contains a survey of the earlier received results including a
multy-dimensional generalisation and an application to the economic growth theory. N

If ¢ is decreasing then solutions of the Cauchy problem for (*) approach- to a
family of wave-trains. We show that diffusion-wise asymptotic behaviour takes place if ¢
is increasing. For the nonmonotonic case a general hypothesis about asymptotic
behaviour is formulated and an analogue of a Weinberger's (1990) theorem is proved. It
is argued that the equation can be considered as an analogue of Burgers equation.

Key words: Difference-differential equations, Burgers equations, non-linear
diffusion, long-time asymptotic of Cauchy problem, evolution of industries, economic
growth, innovation and imitation processes. '
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1. Introduction

[n this paper having partially survey character we present a number of resulls, obtained
during last 10 years, concerning some nonlinear difference-dilferential equations, their
solutions reveal stable wave-vise behavior, In a sense the main of the equations can be
considered as an analogue of the famous Burgers equation. We come to them think-
ing about an old economic problem: how to describe endogenous economic growth or
technical progress.

This application merits to be discussed before we concentrate on mathematical
essence of the theory under consideration.

Our main initial point is the idea developed by Josef Schumpeter (1939), who divided
the mechanism of technological changes into two components: creation of new technolo-
gics by a firm (innovation process) and adoption of technologies created by other firms
(imitation process).

There are many papers about the transition processes from one technology to an-
other. Most of them use the simple equation such as dF} /dt = —3(1— 1) Fy; Fi(—ec) =
1, where F} is the share of firms (or capacities) which use an old technology; the speed
of the transition is proportional to £ and the proportionality coellicient increases with
expansion of the share of the firms which have adopted the new technology. So the
imitation is the main force in the development of the system. This equation has an ex-
plicit solution—famous logislic curve which was used in many hundreds empirical works
(Schumpeter have mentioned it and Zvi Griliches was the first who used it for some case
studies of technological change (Griliches(1957)). In many cases it is in good accordance
with empirical data (Davies (1979)).

Almost all of these works consider only transition process between two technologies.
But in many big industries we have permanent interactions between innovation and

imitation processes: some firms create new technologies and others imitale them.



Even in industries producing a homogeneous good, technologies of different effective-

ness often coexist. Therefore, considering an industry with many firms, one can describe
its development in terms of elficiency distribution, that is the distribution of firms on
efficiency. Bfficiency may be defined as profit or added value per unit of capacity. It
is assumed that each firm wants to increase its level of efficiency. We will consider this
level as a discreet variable n which may take any integer values. Empirical observations
show thal the efficiency distributions in a “mature” industry are similar at different
time moments (Sato (1975)).

So we have some empirical observations to explain.

Iwai (1984a, b) undertook the first attempt to show that both of these empirical
facts, that is, the “logistic” character of diffusion curves and stability of the form of the
efficiency distribufion in some industries, are consequences of a “dynamic equilibrium”
between innovation and imitation processes. The Iwai model is based on two main
assumptions. He supposes that the probability of transition to an efficiency level is the
same for all less efficient firm. Therefore the rate of change of the integral distribution
function at every point is defined by its value at that point. Morcover, the exponential
velocity of the emergence of new, the most effective technologies is postulated directly
and thus the displacement velocity of the efficiency distribution is established a priori.
Both assumptions seem fo be artificial.

Developing the Iwai approach, we proposed an alternative model (Polterovich,
Henkin, 1988a, 1989) based on the assumption that transitions are realized in succession
from each level to the higher neighboring one.

In the next Section we formulate four hypothesis that lead to a very simple difference-

differential equation
dF,
dt

= (a4 B(1 = F)(Fuer — Fy), (1)

where n is integer and for every ¢t {F{V}52 _, is a distribution function. The equa-
tion looks like a discretization of the shock-wave equation. Bul it turns out that the
Cauchy problem for equation (1.1) admits explicit solutions that approach to a fam-
ily of wave-trains uniformly by n. The linearizing substitution and the behavior are
very similar to the Burgers equation ones. There is no straightforward connection be-
tween (1.1) and Burgers equation but in the Burgers equation literature [Hopf (1950},
1I%jin, Olejnic (1960), Weinberger (1990)] we found a number of ideas thal turned out
to be useful for exploration of (1.1). It is the reason why we called (1.1) as difference-
differential analogue of Burgers equation.

In the Section 3 we consider a natural generalization of (1.1)

dF,
dt

= @(Fu)(Fa1 — Fn) (1.2)

for non-increasing . This equation seems to be not linearizable. But qualitative be-
havior of its solutions is substantially the same as for (1.1).

Section 4 is devoted to several applications and variations of the basic model (1.2)
including an evolutionary model of economic growth.

Section 5 contains the following two-dimensional generalization of (1.1)

o _ (PO Eetn = Frn) + 01 Prrm) = Fon), (1.3)

where
F) = sup Enny (1.4)
F®) = sup Fn, (1.5)

is a two-dimensional distribution. If ¢y, i = 1,2 are non-increasing

where { Fou}

then solutions of the Cauchy problem for (1.3)-(1.5) approach to a family of wave

)
mn=—o0

solutions. Each of them is a product of one-dimensional wave-trains. We do not know

any continuous analogues of the system (1.3):
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If ¢ is an increasing function then equation (1.2) has no wave solutions. In this case
we observe a diffusion behayior which is similar to heat expansion: here the distribution
density tends uniformly to zero. Its asymplotics is described in Section 6 in detail.

In Section T we do not assume that in (1.2)  is monotonic and formulate necessary
and sufficient conditions for wave trains to exish. Stability problem [or general case of
nonmonotonic ¢ is considered in Section 8. We have no general results but considering
some particular cases we come to hypothesis that general asymptotic behavior is a
combination of wave Lrain behavior and diffusion movement. In the concluding Section 9
we compare (1.2) with Burgers equation.

Sections 2-4 contain a short survey of main already published results. Sections 6-8
contain mainly new results. We give them with complete proofs. As a step to demon-
strale the hypothesis we prove an analogue of the theorem received by Weinberger (1990)

for Burgers equation.

2. The simplest model

Let F, be the share of firms which have efficiency level n or less. So F = {F,} is a
distribution function.
Our model describes the evolution of the distribution curve F, in time. We introduce

four hypotheses.

1. The firm can not jump over levels: if a firm has the level n then it may transil to

the level n + 1 only.

2. The speed ol the transition is the sum of two components: an innovation compo-

nent and an imitalion component.

3. The speed of the transition from the level n to the next level per unit of time as

a result of the imitation is proportional to the share of more efficient firms.
4. The speed of the fransition as a resull of the innovalion is constant.

One can doubt in each of these assumptions. But it is the simplest system of assump-
tions which saves a reasonable differences between innovation and imitation: innovation
processes are spontaneous whereas the imitation propensity depends on the position of
the firm among other firms.

So we have the following infinite system of difference-differential equations.

dF,
di

=a(Fuq— F) + 8(1— Fu)(Fam1 — Fa)

=(a+8(1 - F))(Fu — Fu) (21)
under initial conditions
Fi(0)=0, forn<0; 0< F, <1, foralln; (2:2)

[='<}
Y (1-F,) < oo,
n=1
where the constant e > 0 characterizes the velocity of the properly innovatory process,
and the value 3(1 — F,.), 3 > 0, defines the share of firms going over from the level n to
the next higher level n + 1 per unit of time due to imitation.
In accordance to the hypothesis 2 the speed of transition from level n to the level n+1

is the sum of innovation and imitation components:
o(Fa) = o+ (1 - F). (2:3)
This equation can be linearized by substitution [Levi, Ragnisco, Bruschi (1983)]
Fo=1/8(p — zn-1/2n), 1< n <ico,

9.4)
zg = et w=oa+p.
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Since F,,(¢) = 0 under n < 0 we can consider positive n only. We get: dz,/di = 2,1,
1 <n < oo, 2g = e’. Hence dz,/dt = e,

T'he explicit formula of the solution F), is rather complicated and it is not necessarily
to write it down. But it is remarkable that the equation (2.1) has the following family
of solutions

Fr(t, A) = (1 + Ale/p)*e™) ™, (2.5)
where A is an arbitrary parameter of a shift. The function (2.3) is a wave solution which

runs to the right (that is to the direction of increase of efficiency) with a constant speed
c=3/In(p/e), p=a+g. (2.6)

Theorem 2.1 (Polterovich, Henkin, 1988a). Let F = {F,} be a solution of the
problem (2.1), (2.2).

1. Then one can find d such that

sup |F,.(t) — F(t, d)| — oo, t — co.

2. [If the initial conditions are finile, that is F,(0) = 1 under n > N, N—some

positive integer, then

F,,U) - F:(t,d)] < }‘E-—‘Its

0<n<oco,t>Ty

where v = (e, B), A, Ty depend on o, 3, N, and on the value of the first integral
(see (3.4) below). So every solution approaches to some wave-solulion uniformly

by n.

If n is fixed then the wave solution (2.5) is the well known logistic diffusion curve; so
we have a result in accordance with many empirical works. Under fixed ¢, the wave solu-

tion is Lhe logistic probability distribulion. Theorem 2.1 says that asymptotic behavior
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of the solution doesn’t depend on initial conditions. Alter some time any solution has
the shape and the speed ol a wave solution.

The linearizing substitution (2.4) is similar to the well-known Florin-Cole-Hopl sub-
stitution for the Burgers equation, and the theorem 2.1 is quite similar to the corre-
sponding Hopl theorem about Burgers equation (Hopf [1950]). Due to these facts we
consider (2.1) as a difference-differential analogue of the Burgers equation. This analogy
is discussed in the last section.

An important generalization of the equation (2.1) arises if one considers nonlinear
speed of transition @(F),) instead of linear one (2.3). The most complete results can be

obtained for the case ol non-increasing .

3. The case of nonlinear non-increasing ¢

We assume that at every moment a fraction ¢(F,) firms goes over from level n to
level n + 1; leaps through several levels are not admitted. Obviously F, — Fn_y is
the proportion of all firms that are at the level n, and in a unif of fime decreasing
of the share is equal to @(F,)(Fn — Fa—1). Hence we obtain the following system of
difference-differential equations deseribing the evolution of the efficiency distribution in

the industry

dF, .
Lo p(B)(Fai = F),  —oo<n<oo (3.1)
under initial conditions
0 o0
W<EO)<h  NEO-a<wm  Sb-RO) <o, (32
e 0

where a, b—constants, a < b, ¢ : [a,b] = R".
We accept the following assumption.

Al. @ is positive, bounded in [a,b], and 1/ is integrable.



Let us introduce a function ®(z)

b
(b— a)d(z) = f dyfely), =€ [a,bl. (3.3)
For a sequence of functions
F= {Fn}g‘j:—oo
deline " »
Br(t) = Y (Fu(1)) — Y. (2(a) — B(Fult)) - £). (3.4)
n=1 n=—0o

Theorem 3.1. Under Al there exisis a unique solution
F={F)}Z
of the problem (3.1), (3.2). For all t > 0 one has
F.(t) +a, asn— —oo,
Fu(t) = b, asn — +co,
Bx(t) = B£(0);
Fo(t) = Faca(t) for all n, if Fu(0) 2 Fua(0) for all n.
In accordance to theorem 3.1 the problem (3.1), (3.2) has a nontrivial first inte-
gral Br(t).
It is not surprisingly but impertant that the equation saves the property to be a
distribution.
A special solution of (3.1) is called a wave train if
Fu(t) = F(=), z=n—ct—d,
where speed ¢ of the wave depends on asymplotic values limys - Flz) = &

litys 400 F() = b, and d is an arbitrary shill, paramcter.
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For wave trains the equation (3.1) can be written in the following form

c%‘; — o(F)(F(z) - Plz —1)). (3.5)

Our second assumption plays the decisive role in this section.

A2. y is nonincreasing, ¢(a) > ¢(b), @ satislies the Lipshitz condition.

In the economic interpretation described above the monotonicity of ¢ means that
the “intensity” of the imitation process increases as the share 1 — F, of more advanced

firms increases (see (2.3) as an example).
Theorem 3.2. Let Al, A2 be valid. Then a wave lrain Fl(z) exists iff
b .
c=1/0(a), @)= [ dufey) [ ¢~ a).

Every wave lrain has the form F(z — d), where d is a constant. There exist posilive

numbers Ao, A1, Ag, T > 0 such that

e > F’(.c) —a> M, forallz < -7, (3.6)

=% > b— Flz), forall z > T. (3.7)

For applications it is useful to have condilions ensuring that the distribution density

is unimodal.

Theorem 3.3. Let Al, A2 be fulfilled, @ be twice differentiable and 1/¢ be convez.

Then the wave lrain density dF/dz has a unigque local mazimum point.
Note that 1/¢ is convex for positive and concave .

Theorem 3.4. Let A1, A2, and F be a wave train. Then for every solulion F = {Fy,}

=3,

of the problem (3.1), (3.2) one can find a constant d such that
sup | Fa(t) — F(n —ct —d)| = 0

11



as t — co.

The constant d is the solution of the cquation
0

BA0) = 3 (8(F(n—d)— 6(0)) + 3. &(F(n - ).

n=—oo n=1

Theorem 3.4 shows that as a result of the interaction of imitation and innovation
processes the form of the efficiency distribution stabilizes with time; this curve moves
with almost constant velocity along the abscissa axis; in asymptotics neither the form
nor the velocity depends on initial conditions. Thus the model explains the stability of
the form of observed distribution curves.

This kind of behavior is typical for some classes of physical and biological systems
being studied in non-linear wave theory (see, for example, Whitham (1974)).

Theorems 3.1-3.4 were proved in Henkin, Polterovich (1991). The proof of the
central Theorem 4 uses substantially some ideas contained in Iljin, Olejnic (1960) where
generalized Burgers equation was studied. The existence of wave solutions and the

stability result hold under much weaker assumptions (see Section 7).

4. Applications and variations of the model

The model considered above is very stylized. In more concrete situations one needs
to deal with its modilications and searches for a way to apply the results of previous

sections. Below we describe three simple applications.

A . Evolitionary model of economic growth

We describe a simple model taking into account qualitative improvement of production
capacilies in the processes ol imitation and innovation as well as quantitative growth.
Let consider some industry and let M, be the volume of production capacities which

bring the prolit A, per unit of capacities per unit of time. The quantity A, 1s considered

12

as a measure of efficiency ol the level n. The [unction of capacity distribution on
cfficiency levels is defined by the formula

n (==} =1
F,= (ZF\/[L) (XG: J’W;;) 5 n=0,1,... (41)

0

It is supposed that the profit A, M,, of the level n is divided onto lwo streams of invest-
ment. The share @o(F,) of this profit creates new capacities of the next level n + 1, and
the quantity (1—g(F,))AuM, is spent on the expansion of the capacities of the level n.
For simplicity, consumption of the produced good is not taken into account. Thus we

receive the following equation of economic growth

dM,,/dt = (1 — @o(Fa)) MM + @o( Fpt ) Anos Mo (4.2)

under boundary and initial conditions

N
Mo(t) =0, Ma(0)>0, > Mi(0)>0, M,0)=0 ifn>N.  (4.3)
1

If X\, = const = A then (4.2) can be rewritten as (3.1) under ¢ = Ay, If num-
bers A,, are dilferent then equation (4.2) turns out to be a perturbation of (3.1). Using

Theorem 3.4 one can prove the following statement.

Theorem 4.1 (Polterovich, Henkin, 1989). Let @q satisfy A1, A2 and ), be a pos-

ilive increasing sequence convergent to some A fast enough such that
(e o]
E k(A — M) < co.
1

Then for every solution {F,} of the problem (4.1), (4.2), (4.3) there exists a constant d
such thatl

sup [Fu(t) — F(n — et — d)| = 0, t — oo,

where £ is the solution of equation (3.5) under ¢ = Ay and
1
et = [ dy/ely).
0

13



It is naturally to assume that efficiency is bounded and converges to a limit. The

most restrictive i i
ost restrictive assumption of Theorem 4.1 requires convergency to be fast enough. The

il i N_: ; P
sult shows that stable wave train behavior can arise 1 a process of economic growth

B. Belenky’ model

An interesting modification of the basic model (3.1), (3.2) was proposed by Belen]
bl . > Ky

1900 5 b o |
(1990a). He assumes that the speed of transition W from efficiency level n to level n 1
depends on a proportion of more advanced firms among all firms that are not wo

i rse

than the firms of level n. This assumption entails the following equation

n

= $(0n/00) (Bt — 0,), (4.4)

where 8, = 1 — F,. Let us denote

Pl — L— Fln
Sl (4.5)
Then (4.4) might be rewritten as follows
dlné,
g = Yra), (4.6)

where W(r) = ¢(r) (} - 1). From (4.6) one has

dlnr,
e U(ra) — U(rn—1). (4.7)

Let @ be the following function
2(Y,) =In ¥-U(y,), (4.8)

where ¥, = W(r,), and let —(Y)=1/9'(

Y). Then we obtain from (4.7), (4.8)
2 = PR)(Ya —Y,)
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that is the equation (3.1).

Il W is positive, strictly decreasing and continuously differentiable then  is posilive,
continuous and [ulfills conditions of a generalized theorem 3.1 (see Theorem 8.1 of Sec-
tion 8). Assume that the initial equations (3.2) are valid with a = 0, b =1, and there
exists

Jim 7,,(0) = lim (1 — Fa(0))/(1 = Fuza(0)) =T, el
Then the original problem (4.4), (3.2) is equivalent to (3.1), (3.2) with overfall [0, ¥(7)],
and stability Theorem 8.1 is applicable. Thus in this case overfall and speed of the wave

train depend on parameter ¥ of initial conditions.

C. A model with depreciation

In the models considered above capacities can improve but not diminish their efficiency
levels. In reality capacities can depreciate, and it means their movement to the left

along the efficiency axe. For this case one gets the following generalization of (3.1)

an

dt = u‘lo(Fll){Fﬂ — Fn-—]) + #(F,;+1 = ,,).‘ (49)

where p is depreciation velocity. Equation (4.9) was introduced in Polterovich, Henkin
(1988a) but was not studied theoretically. In Gelman and oth. (1993) a discrete version
of (4.9) was used as a model to describe the development of ferrous metallurgy in
USSR during 1976-1988. A group ol 35 enlerprises was considered that produced more
than 90% of total output of the industry. Profit per unit of material expenditure was
used as an elliciency indicator. The [unction ¢ was supposed to be linear: @(F) =
a+B(1— F). Three coefficients e, B, p were calculated to reach the best coincidence of
the real evolution and the output of the model. The result turns out to be quite well for

subperiods 1976-1982 and 1982-1988 when prices were constant. Note that the industry



declined during the period considered, therefore the distribution function moved to the

left due to depreciation.

D. A difference-differential analogue of Kolmogoroff-

Petrovsky—Piskunoff equation

It was assumed above that capacities can transite from an efficiency level to the next one
only. If jumps on two or several levels are permitted we get a number of generalizations
of (3.1). For example if capacities can transite from levels n — 1 and n—2 to level n one

has the [ollowing equation

dF, & =
W = {Wl (El) I ()92(1[;:,3))(["""1 = F‘u) + ‘P?(El—l)(ﬂl—? = Jyn—l)a (4°1U)

where @1(F,), wa(F,) are speeds of transition from level n to the level n + 1 and the
level n + 2, correspondingly.

The most simple model arises if it is possible to transite from a level to any other
level with larger efficiency, and the probabilities of all transitions due to imitation are

equal (see Twai (1984b)). If the innovation speed is constant we obtain the following
equaftion

dF, .

Tﬂ" = _Q(Fn_ Pn—l)_ﬂﬁ‘n(l—Fn)- (’-1-.11)
It looks like an analogue of an equation studied by Kolmogoroff, Petrovsky, Piskunoff

(1938) and Fisher (1938). Equations (4.10) and (4.11) are not studied yet.

9. Evolutionary equation for efficiency
distributions under several efficiency indicators

The assumpiion that in the process of development firms orient themselves at the unique

elliciency indicator seems to be rather restrictive. A firm can prefer to pay particular

16

attention to profit maximization, to increasing its market share, ete. If efficiency is
characterized by a sel of indicators, then we should consider innovation and imitation
processes aimed al improving cach of them.

For simplicily we consider a situation with two efficiency parameters m and n.

We accept the following postulates.

(I). The transition from the state (m,n) can take place into one of two neighboring
higher levels: (m + 1,n) and (m,n +1).

(II). The proportion of firms per unit of time moving from the state (m,n) to the
state (m+1,n) is proportional to the share of firms in the state (m, n) and the proportion
coefficient is positive and non-decreasing in the share of firms which are more advanced
according Lo the first indicator. A similar hypothesis is admitted for the transition from
(m,n) to (m,n+1).

By assumption (I) transitions under which one of the efficiency indicators decreases
are not admitted. Moreover, it is postulated that it is possible to represent a process
of development as a union of elementary acts of improving one of the indicators under
constancy of the other.

The assumplions are restrictive enough. Real economic actions often increase some
parameters while decreasing others.

Let m, n be the levels of two efficiency parameters
m,n=01,...,

and fyn be the proportion of firms at level (m,n): Fiun = it Tiey Jir bea distribution

function.

PO =3 fur EP =Y fin

k=1 r=1 k=1r=1

17



In accordance to axioms (I), (II) we have the following two-dimensional equation:

Lo o oA (F) i — s ) i+ 01 P it + 03 E) oy
m,n=0,1,...
It can be rewritten by the [ollowing way:
dFn 2
— = PUER) Fontyn = Fnn) + 03 EP) Frninor) = Fn)s (5.1)
under Fo,(t) =0, Fno(t) = 0.
Frn(0) = ;émm, S0 20, Fpu(0)=1, (5.2)

m 2 mg, n 2> ng for some given my, ng.

We would like to note that the relation (5.2) is not local since functions F{¥) are not
defined by values Fjy in a vicinity of (m,n). The equation could be an analogue of an
integro-differential equation.

It turns out that the two-dimensional motion (5.1) approaches to Cartesian prod-
uct of two one-dimensional motions studied above. Equation (5.1) was introduced in
Polterovich, Henkin (1989). A proof of the following theorem is contained in Henkin,

Polterovich (1991).

Theorem 5.1. Let ¢y salisfy Al, A2, and FO), i = 1,2, are one-dimensional wave

trains, and ¢; are their speeds. Then

L Fun(t,d) = [T, FO(ni — et — di) is a “wave solution” of lhe two-dimensional

problem (5.1), (5.2) under every d = (dy, dy).
2. For every solution {Fynn(t)} of the problem (5.1), (5.2) there erists d such that

sup |Fun(t) — Fra(t,d)] =0, ¢t = oo,

m,n
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6. The case of nondecreasing ¢: diffusion

It seems Lo be natural to suppose that the imitation speed decreases when the relative
elficiency of a firm grows. But as regards innovation, opinions vary. If the innovation
speed increases quickly with F,, our assumption A2 may turn oul Lo be not realistic:
the function ¢ could be not decreasing.

If s0, the asymptotic behavior of solutions can be very different [rom studied above.
The next sections are devoted to exploration of this more general case. Most results pre-
sented below are new. We still have no complete description of asymptotic behavior for
general case of p, bul have a hope that the results are important steps in understanding
of this problem.

As a first step let us consider the case of nondecreasing .

We begin with two simple statements about the diffusion case.

If 3 = 0 the equation (2.1) is linear

dFy,

== o Faca — Fu). (6.1)

Let us consider initial conditions F,(0) that are positive for n > 0 and equal to zero

for n < 0. Then the equation (6.1) has the following solution

n—1
Fo(t) = e 3 (o) Fo_i(0)/ k! (6.2)
k=0

Proposition 6.1. Let Fy_y(0) < Fy(0); Fa(0) = 1, n = co. Then fu(t) < Fu(t) —
Fuc1(t) = O(1/\/T), where, by definition, O(z) is a function such thal |O(z)| < const -z.

Proof. From (6.2) we have

wp  (URO) 2 (at) (et
e” fu= =1 +EZ=E] A Juz1(0) < const-m;:_"xx o
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It follows from Stirling formulae that

(at)*
!

max

< consh -e"t/\/f,

The proposition is proved.
If  has a positive derivative then the speed of diffusion is larger,

In the rest of this section we assume to be valid the following conditions.
(i) Function @ and its derivatives ¢, " are bounded,

(ii) ¢ positive on [0,1],

(iii) Fu(t) is a solution of equation (3.1), (3.2) with a =0, b = 1, F.(0) =0 for n <0,

Fn—l(ﬂ) < El(o) for n > 1.
Theorem 6.1. Let ¢'(y) > £>0 Vye [0,1]. Then
Falt) = Fa(t) — Paca(8) S 1/(€E+1)  for all n, 1.

Proof of Theorem 6.1. The equation (3.1) may be rewritten in the terms of the

density
dfa/dt = —p(Fa) fn + ¢(Fac1) fuer.
Let wu(t) = (€t + 1) fu(t). Then
dvy/dt = —@(Fy)vn +@(Foot)vnog + €(Et + 1) 1w, (6.3)
We mustlshow that v, < 1. Suppose the contrary. Then for some constant s > 1
to = inf{t{v,(t) = 2 for some n} < co.

Obviously £y > 0. Since va(tg) — 0 as n — Feo there is a number k such that

vk(to) = 3¢ > vp_1(tp), dvk(to)/dt > 0. But using (6.3) we come to contradiction
~€(68+ 1)V S —(@(Fhor + Ji) — @(Fam))e < —E(€lg + 1) 522
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The theorem is proved.

Let us introduce the following function

0, n < @(0)t,
Fi(O) =97 (n/t),  (0)t <n< (1)t (6.4)
1, n 2z @(l)t.

The next theorem is the main result of this section.
Theorem 6.2. There erisis a constant K such thal
sup | Fu(t) = Fa(t)| < K/VE, t21 (6.5)

It means that with time all solutions of equation (3.1), (3.2) approach to F;(t)
independently on initial conditions.
The proof of Theorem 6.2 is not very short but its basic idea is simple and is contained

in the following statement.

Lemma 6.1. Let A(y) be a continuously differentiable function on ¢([0,1]), and

H(y. )= 7(0) + Th(0). (65)

Then the function H,(t) = H(n/t,t) satisfies the following inequalily

_Lfﬁ;(i) — @(Hu(£)(Ha-1(t) — Ha(1))| < K/, (6.7)

where the constant K depends on ¢ and h.



Proof of Lemma 6.1. Let g(y) = v~ (y). One has from (6.6) under y = n/t

dH 1
T = 2w - LR ) - a0, (638)
e(H(y, 1)) = plg) + @h(y) +0(1/t%), (6.9)

i (2 l,t) 8 (1) = By~ 14,0~ B, b)
= —H)(5.0) + O(1/1%)
= —=lg') + K(u)/t] + O(1/2)
= —2d/(y) + O(U/8%). (6.10)
Having in mind that H,(¢) = H(n/t,t) we get from (6.8), (6.9), (6.10)

dH, 1
g~ PHn)(Hooy — Ha) = ;[—yg’(y) +e(g(w))g' (W)l + O(1/1) = O(1/¢%),

since w(g(y)) = y. Lemma 6.1 is proved.

To prove theorem 6.2 we need several other lemmas.

Lemma 6.2. Let p(or @) be a nondecreasing function, and P(F) < B(F) forall F €
[0,1]. Suppose that {G,}, {(;‘,,} fulfill the following inequalities

dG,
' W 2 ‘P(Gn)(Gn—l = Gn)) (611)
déﬂ ~ -~ P
? S ?(Gn)(Gu—l i, Gn), (6-12)
Ga(t) 2 Gasy(t) (6.13)

Jor all yat > n > mit, where o0 > 99 > v > 0. Let us assume that the following
conditions hold
Vi) = Gu(t) = Gu(®) 20 if —1<n—mt<0
orn—yt =10, {>Tp>0, (6.14)

ValTo) 20 if 7Ty >n > 31T, (6.15)
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Ld

where by definilion vt = oc if 7o = 0o and Vo () = lim,, o, Va(t). Then
Vi(#) =0 for all n, | such that yot > n>yt, t>T.

Proof. From (6.11), (6.12) one has

dV,
dt

> (G ) (Vo — Vi) + (9(Gn) — B(Ga)) (Gt — ). (6.16)
Let us fix T' > T}, and denote
Gn= mtin Vi(t) under t€ E,=[nfv,n/n]N[T,T).

If £, is empty we take g, = +co.

We prove that g, > 0 for all n. By contradiction, suppose that the set A = {n :
gn < 0} is not empty. Lel r = minpean, and V(1) = g < 0. Due to monotonicity of
we have

©(G, (1)) < ©(Gr(7)) < B(G.(7)). (6.17)

(If  is nondecreasing then o(G,) < ¢(G,) < @(G,).) Obviously, the choice of r, 7 and
(6.14) entail V,._((7) = 0, therefore V,_;(7) > Vi(7). Hence g%t@« > 0 due Lo (6.16),
(6.17), (6.13). Due to (6.15), 7 > Ty, and (6.14) entails 7 > r/72. Since 7 is a minimal
point of V,({) on the segment E, we obtain % < 0. It is a contradiction. Lemma 6.2
is proved.

Remark 1. Let I' = {(n,t)|yat > n > 7t} and G (t), Gu(t) € [61,82] € [0,1]. Then -
the statement of Lemma 6.2 is valid if inequality @(F) < @(F) and the monotonicity
of v (or @) are [ulfilled for ' € [6,0].

Remark 2. [t is substantial in the proof of Lemma 6.2 thal v (or @) is a nonde-

creasing [unction but its smoothness is not used.

Denote
W(z) = glﬁ(z S, (6.18)
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where 3, b are some positive numbers, and

Falt) = \—%w (i—\_ﬁ“—i) i (6.19)
Fot) = ‘:lf;q’ (ﬂi—;g—”) . (6.20)

Lemma 6.3. Assumc that ¢ fulfills (i) from Section 6, and 0 < £ < mingep1)0'(F)
e =¢(1), cg = ¢(0). Then

dF,

2

i S eE)Eaei = B for alln, ¢, (6.21)
dF, —_— A
o = O(Fa)(Foo1 — F,)  for alln, t. (6.22)

Proof. It is simple to check that

A dv d*
= ———W‘-:, E'>0, E{O (623)

For z = "=2t we have

TR T iy - P

dF, 1 1 d¥ (_1

§t_3/2(n —cit) — clt-”?)

e 1 1 d¥ [ = c
= 2t3/2'~}! - %d_z (ﬁ + %) . (6.24)

Obviously, Fo_y < By, o(F) < w(1)—B(1— F), and ¥ is a concave function. Therefore
@(F)(Faet = Fo) 2 (9(1) = B(1 — F))( Bt — F)
; ! 1
= (e + U V(U ~ VD) - 0(2))
> —(e1 + BY/VE)(1/t) dT /dz. (6.25)

In view of (6.23) the right hand sides of (6.24) and (6.25) are equal. It gives (6.21). The

inequality (6.22) can be proved by similar considerations,
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Lemma 6.4. Let the assumptions (1), (ii) of Section 6 be fulfilled. Then for cvery ag, ay

there exist constants 7o, 11 such that

Fy(t) < 0/VE ifn< et +ag, £ 20, (6.26)

F)21—m/Vt ifn>at—a, t>0, (6.27)
where ¢g = ©(0), ¢1 = ¢(1).

Proof. Let f, be defined by (6.19). It is straightforward to check that 2¥(z) +

% — 0 under = — oo, ¥(z) — z/F — 0 under = - —oo, ¥(z) < 0 for all z. Let

B < mingep@'(F). In view of (3.2) and (iii) for every e > 0 F,(0) > 1 — £ if n is

large enough. Al other hand F,(1) < 1— 5]3{:7_:1) for large n. Therefore one can find b
such that

F,(1) < F,(0) for all n, and F,l(l) <0 undern <0. (6.28)

Let us show that b can be chosen to fulfill the inequality
E(t+1) < Fy(t) foralln<0,¢>0. (6.29)
One can check that
J_l}rg :::;[3 Falt) < tlhl}r‘ralo Bt)=1—-a/p.

Since (1) — ©(0) > 8 = mingepy¥'(f7) we obtain: Fu(t) < const < 0 for ¢ large
enough and n < 0. Therefore (6.29) follows. Let Go(1) = Fo(t + 1), Gal(t) = Fu(t).
Then due to (6.28), (6.29) and Lemmas 6.2, 6.3 we have Fn(t +1) < Fu(t) for all n and
all ¢t > 0.

Hence

Fult) A4, g=roalitl)

1 .
S
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If n > ¢;t — a; then

b
Fu(t)>1- Lol
28[—a; — e + \/b($+1)+(a1 + )] & Vi

for some constant ;. The inequality (6.27) is proved. The inequality (6.26) can be
proved by a similar way.

Let us introduce functions

B(t) = F() +9/VA, (6.30)

Fu(t) = F3(1) =/ V4, (6.30a)
where F; is defined in (6.4). Let {F,(t)} be a solution of (3.1), (3.2), ecv = (D),
er ='(1).

Lemma 6.5. There ezisty > 0 and T > 0 such that the following inequalities are valid

di‘f” 2@(B)Far—F), at<n<ctt>T; (6.31)
Fa®) = Fu(t), -1<n—ct<0,n—ct>0, t>T: (6.32)
Fu(T) 2 Fu(T), T <n<el. (6.33)

dF"(t) < CE W E =P, eab <wSat 1> (6.31a)
F,,(t} SE(t), -1Sn-ct<0,n—ct>0, t>T; (6.32a)
F(TYS FuT), aT<n<aT. (6.33a)

Proof. To fulfill (6.31) let us note that

(PN — )= f'n“".’/‘-f)(}'n— = n)
=‘P(E1)(Ez-—~1*ﬁu)_ (An)( n—1 = n)'T/\/E: (6‘34)

where 4, = A,(t) [ulfills the inequalities
o (n/t) —p/VE < Au(t) < 07 (n/t), oot <n < gl
Besides
Foy— Fy = —1/t'(By), (6.35)

where 7! (22) < Bu(t) < ¢7H(2), @i <n < ot
Hence A, — B, — 0 under { — oo uniformly in n. Therefore and due to (i) one can

find T such that
@ (An(8))/e(Bal(t)) 2 3/4 forallt > T and eot < n < eyt

Combining this inequality with (6.34), (6.35) we get

S

S (6.36)

@ ER)(Froy — F7) 2 @(Fa)(Fur — Fa) + =

Let us check now (6.31). In view of Lemma 6.1

dF, dF;
dt — dt

LY e o Bt
— S =R EREL, — B+ 00/ F) = som.

Due to (6.36)

dF, Lo 1
Z ‘P(bn)(Fyn—l = F }+

m/z +0(1/6%),

and (6.31) is valid if y = v/T, ¢ > T, T is large enough. Due to the choice of v

Fu(t) = F:(t) + \/? 2 1" under [ = T=

hence (6.33) is fulfilled. The lirst condition (6.32) is also valid due to Lemma 6.4 if
7 =T > 44, where 79 is a constant from (6.26). The validity of the second condition
(6.32) is obvious since F(1) =1 for n = eil.

We omil the proofl of {6.31a)-(6.33a) since it is completely similar.
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Proof of Theorem 6.2. Forn < ¢yt and n > ¢i the statement of Theorem follows
from Lemma 6.4. From (6.30)~(6.33), (6.30a)-(6.33a) and from Lemmas 6.5 and 6.2 one
has

|Fu(t) = Fp(I S 9/VE,  t2T, at<n<qt.

Hence (6.5) is valid as well. It completes the proof.

7. Wave-trains for nonmonotonic ¢

We say that F(z) is a wave train if F(z) is nondecreasing, fulfills (3.5) and F(—cc) = a,
F(4c0) = b.

It follows from the definition that F(z) < b.

The nonmonotonic case was considered in Henkin, Polterovich (1991, 1994), and in

Belenky (1990). Denote

N(e) = (1/(=—a)) [ da/o(z), N2V

and let ® be defined by (3.3).

Below we will use Al from Section 3 jointly with some of the following assumptions.

A3. ¢ is larger than a positive constant.

Ad, (Ady). v is continuous at a (at b).

A5, (A%). #/(a) 0 (¢/(b) £ 0).

Ab, (Aﬁa.)- ¢ has continuous second derivative in a neighborhood of the point a
(point b).

The results by Belenky (1990) entail the following necessary and sufficient conditions

of wave-train existence.

Theorem 7.1. Let ¢ satisfy Al, A3. Then a wave-train L?"v'(:r:) exists if and only if
¢ =1/®(a) = 1/I'(b) and I'(z) < T'(b) for all = € (a,b). Any other solution of (3.5)
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takes a form F(z — d) for some constant d. If moreover Ady, Ady are fulfilled then
IH;_nQQ l/mln(ﬁ(x) —a) = A, mkffm ~1/zIn(b— F(z)) = Ay, (7.2)

where Ay, Ay are roots of the equations

(a)2(a)(1 - ™), (7.3)
(b)®(a)(e™ ~ 1). (7.4)

At

Az

Remark 7.1. If a wave train exists then
w(a) = ¢ 2 p(b).

To see it we note that due to T'(z) < T'(b) the following inequalities hold

1 % de 1 de
Z_GL ;(?)<r(b)_1/c<m/2 =

Under z — a and z — b they entail the inequalities above.

Remark 7.2. Let Al be fulfilled. If I'(zg) = I'(b) for some zy € (a,b) and I'(z) <
[(b) for all z € (a,b), = # zp, then there are no wave trains on [a,b] but for segments
la, z0], [20.b] there are wave trains moving with equal speeds ¢; = ¢z = 1/I'(b).

Indeed, let

; 1 #
()= — [ dafy(a).
Z2=Udy
It is simple to check that [ (b) = [(b) > ' (z) for 2 € (0,b). Hence the statement
follows from Theorem 7.1.
Obviously (see (7.3), (7.4))
AM>0 0 A p(a)®(a) > 1, (7.5)
A>0 i @(b)d(a) < 1. (7.6)
These conditions jointly with ['(z) < ['(b), z € (a, b) were used in Henkin, Polterovich
(1991) to prove wave-train existence for Lipshitz-continuous . I (7.5), (7.6) are valid
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then, due to (7.2), the wave train F(z) approaches to 0 under z — —oo and to 1 under
& — +cc not slowly than some exponential functions. But if A; = 0 or Ay = 0 then
(7.2) gives rather crude estimates of wave train asymptotics. To study the stability of
wave firains for nonmonotonic ¢ we need more precise asymptotic estimates.

Remark 7.3. Let a € [aj,as] and let ¢ fulfill A1, A3, Ad,, A4y for all [a,b),
a € [a,as]. Suppose w(a}®(a) > 1. Then

1/z1n(F(z) - a) - A1(a), T — —co.
Uniformly with respect to a, where A; is the root of the equation
At = p(a)®(a)(1— ™),

One can check that this statement is entailed by the proof of the existence of the

wave-train given in Henkin, Polterovich (1991).

Theorem 7.2. Let ¢ fulfill A1, A3 and F be a wave train. 1) Assume that Ay, A6,

are valid and
w(b)®(a) = 1.
Then
Jlim (1 - Fa))e = o(1)/(1). (7.7)

2) Assume that A5., A6, are valid, and
w(a)®(a) = 1.
Then

lim_ Fz)z = —p(0)/¢(0

T——co )

(7.8)

To prove Theorem 7.2 we need the following Lemma.
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Lemma 7.1. Suppose that Al, A3 are valid and there exists a wave train with limits
a, b. If Ady, A6y, and @(b)®(a) = 1 then @'(b) = 0. If Ady, Ab., and p(a)®(a) = 1
then ¢'(a) > 0.

Proof. Let w(b)®(a) = 1. It follows from Theorem 7.1 that ['(z) reaches its

maximum on [a,b] at the point b. Since
(b—a)l'(b) = —B(a) + 1/ip(b) =0

one should have
¢'(b)

——g b— fl):
so“(b)(

0 > (b— a)’["(b) = 20(a) — 2/s2(b) — £ (B)/*(b)(b — @) =

and the [irst statement follows.
Let ¢(a)®(a) = 1 and deline ['(a) = 1/p(a). Then I'(z) is continuous on [a, b] and

has continuous derivalive such that ["(a) = lim,, ['(z), where

i —b—jﬂﬁ fa (99(1") ¥ 90(12)) A

Hence
@'(a)
w*(a)’

In view of the condition of the second stalement and by definitions we have

[M(a) = —

I'(a) = 1/w(a) = ®(a) = ['(b) > ['(z), 2 € (a,b).

[t means that a is the second maximum ol ['(z), hence [Y(a) < 0. Therefore ¢'(a) = 0,
and Lemma 7.1 is proved.

Due to Theorem 7.1 there exists a wave train F(z), and F(z) — 1 under = — co.
Since F(z + d) is also a wave train for arbitrary d one can think that the values of F(z)
belong to a small neighborhood of 1 for all z > 0 so that second derivative ga”{f?(:c))

exists and @'(F()) # 0 for all = > 0. In view of Lemma 7.1, ©'(F(z)) > 0 for all « > 0.
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Let us introduce a function

Fi(z) = @7 (@(b)(1 — I/(z + 4)),

where [ is an arbitrary positive number, and A is a constant.

(7.9)

Lemma 7.2. Let @ fulfill A1, A3, A5,, ABy. There exists Ay = Ay(l,a,b) such that

F(z)> F(z) forallz>0,1>b

and for all A < A;.

If moreover w(b)®(a) = 1 then there exists Ay = As(l, a,b) such that

F(z) < FS(z) forallz>0,1<b

and for all A > As.
The functions Ai(l,a,b), As(l,a,b) are continuos.

Proof. We assume b = 1.

Denote V(z) = F3(z) — F(z). One has from (3.5)

W _ oF@) iy v

dz il 1))

+ﬂ_@(z«ﬂ°( )= Fi(=-1)),

dz
&~ e y(a) _ iz -1)) + Ria),

where

dFY  o(F(z))
de T p(D)

Let us prove that if A is negative enough then

R(z) =

F(z) > F§(z), z>0.
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(FA(®) - Fi(z —1)).

(7.10)

(7.11)

(7.12)

(7.13)

Firstly, one can chose Ag such that for A < A,
F(z) > Fi(z), ezel0,1]. (7.14)

Let us consider V* = sup,;(V(z), and prove that V= < 0. By contradiction,
suppose V™ > 0. Since V(oo) =0 and V(z) <0, z € [0,1] there exists z* > 1 such that
Pl

V* = V(z*). Then &) = 0_and in view of (7.11
dz ?

< — Vet — 5 Pl _—
Viz*—1) = V(z™) + go(F(m‘))R('E ) (7.15)

We will come to contradiction by demonstration that RB(z*) > 01f 4 is negative enough.
Since F9(z*) > F(z*) and since FY, ¢ are increasing functions

0 0( o=
R(z%) 2 Ro(e”) = dﬂ% - —“"(Fff' ))(Fg(z*) — FR(z" - 1)). (7.16)

Let y =z + A. One can check that

dF8/ds = () (F(), (717)
o(F3(e)) = (1)1 — /), (7.18)
Flfa)e Fjfaapadaltl o SE e, (7.19)
wherez — 1 <7 < 7.
FPE) 201 () e
T 23 R P o Ty

It follows from (? 16)—(7.19) that

y ¢

70
+ (1 - M) 4FL (7om)
¢ dz
Since @'(F(z)) > 0 one can find A, < Ag such that ¢'(F3(z*)) > § > 0. Since ¢,
@', ¢" are bounded one has from (7.9), (7.17), (7.20) under A - —co and y~ =z~ + 4
dFS(z*) ¥ (1) 2 Fl(z) o 2e(1)i
dr @ (LDy=*’ dz? ©'(1)y=%"

:
Yo~

1
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Due to (7.21) one has
o L)l —1)e(1) 1 1)l
R et o — S PV Ly e)) ()t
T Ty ¢ )Ly 2
Since [ > 1 and ¢(1) < ¢ (see Theorem 7.1 and Remark 7.2) the value Ry(z™) is

positive under large negative A. Thus (7.13) is proved which is the first statement of
Lemma 7.2.1
To prove the second statement one could consider V** = inf,»o V(z) and take into

account that (1) = c. The considerations are very similar to the arguments given

above and we omit them. Lemma 7.2 is proved.
Proof of Theorem 7.2. The first statement is a strict consequence of Lemma 7.2.

We omit the proof of the second statement of Theorem 7.2 since it can be proved by

the similar arguments if we take

Fi(z) = ¢ (so{a) (1 Bz i I))

instead of (7.9).
Remark T.4. Let a € [a1,a3], az < b. One can check that the same constants

A1, Az of Lemma 7.2 can be chosen for all segment [a;, ay].

8 Stability problem

Theorem 3.4 about stability of wave trains can be generalized on nonmonotonic case

Theorem 8.1. Let ¢ satisfy A1, A3, A4, and I'(z) < ['(b), = € (a,b).
Suppose that
w(a)®(a) > 1, w(b)®(a) < 1. (8.1)

1
If ¢(1)®(a) < 1 then the first statement of Lemma 7.2 is valid for arbitrary | > 0. It follows

from (7.22).
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Then for every solution F = {Fu} of the problem (3.1), (3.2) there exisls a constant d
such that ‘
sup |Fu(t) = F(n —ct —d)| = 0 as t — ca.

Here F is a wave train which exists and is unique up fo translation due to Theo-

rem 7.1.

Theorem 8.1 was proved as Theorem 4 in Henkin, Polterovich (1991) under an ad-

ditional assumption of Lipshitz-continuity of ¢. But this assumption was used only to

guarantee existence of a wave train. The formulation above takes into account that the

wave train existence Theorem 7.1 by Belenky does not demand Lipshitz condition.

The next statement shows that the conditions (8.1) can not be omitted.

Theorem 8.2. Let o fulfill A1, A3, A5y, ABy and a Lipshitz condition, and let I'(z) <
I'(b), z € (a,b). Suppose that

f@B@)>1,  e(b)o(a)=1 (8:2)

If F is a wave train and F,(t) is a solution of (3.1), (3.2) such that F,(0) = 0 under
n < 0, then for every d the following relation holds

Tim sup | Fu(t) — F(n—ct—d)|>0. (8.3)

To prove Theorem 8.2 we need the following statement about comparison of solutions.

It has an independent interest.

Lemma 8.1. Let ¢ be a Lipshitz-continuous function on [0,1], z(t) be a continuous

function on [0,00), z(t) > 1. Suppose that {GA}5, {G.}& fulfill the inequalities

dj;n 2 ‘P(Gn)(Gn—i = Gn)‘n nz 13 t2 U; (8'4}
dffn st ‘P(Gn)(éﬂ—l 3 @")1 nzl, t20 (8'5)
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where Gy, Gy R, = [0,1]. If

Ga(0) > Gu(0),  z(0)2n>1, (8.6)
o) 2 Go(t), t>0, (8.7)
Gt > Gpe(t), >0, (8.8)

then Gu(t) > Gu(t) for alln > 1, n < z(t).

Here [z] means inleger part of x.

Proof. Denote V, = G, — G,,. From (8.4), (8.5) we have the following inequality

dV,,
dt —

> o(Ga) (Va1 — Vo) + (9(Gu) — @(Gn)) (Gt — Ga). (8.9)

Let us consider

t"=sup{t: Vo(t) >0 VYn>1, n<az(t)}
Due to (8.6), t* > 0. We prove that t* = cc. By contradiction, let £* < co. Then due
to continuity of x(¢) and V() one can find r > 1, r < &(¢*) such that V,(t*) = 0. Due
to (8.8), r < xz(t). Let 0 < ¢! < ¢ and r < z(t)-for all ¢ € [t',¢*]. In view of (8.7)
Vioi(t) = 0 under ¢ € [t',¢7]. Therefore and due to Lipshitz condition one has from (8.9)
taking into account that G,(2) € [0,1]

dv, :
I = V( r) - L) 2 hV,, te [tlrt.L (810)

where L is a Lipshitz constant for @, and A < —(G,) — L for ¢ € [t',¢*]. It follows
from (8.10) ‘that
Vo(8) = Va(t)e") 5 0 for £ € [0, 47,
a confradiction. Thus {* = co, and Lemma 8.1 is proved.
Proof of Theorem 8.2. Without losses of generality we take a =0, b= 1. Let us

introduce notations

F(t,z)= F,(t) undern—1<z<n.
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ct4+M 0
V(t, M, F) =f0 B(F(t,2)) dz — /_m[tb{o} — B(F(t,z))]dz — ¢, (8.11)
where ¢ =1/®(a), M is a constant;
ct+M o
Wi(t, M) = /ct [(F(z — ct — d)) — ®(F(z, 1)) da,

where d is a constant. The second integral in (8.11) converges due to Theorem 3.1. The
same is true for V (¢, M, F) in view of Theorem 7.1 because of (8.2) and (7.5).

We have
W(t, M) =V(t, M, F) — V(t, M, F) — V(¢,0, F) + V(t,0, F). (8.12)

In view of Theorem 3.1 the problem (3.1), (3.2) has a first integral Br(t) (see (3.4)),
therefore

V(t, M, F) < Bx(t) = Bx(0). (8.13)
Let us take z = y + et in (8.11). We have
M
V(t, M, F) = fo O(F(t,y + ct)) dy — f [©(0) — O(F(t,y+ct)]dy.  (8.14)
Since F(z — ct — d) = F(y — d) we get
V(M F) = [" o(F(y—d)dy

~ [ 190) - o(F(y - d))ay
=V(0,M, F). (8.15)

Let us fix z+ > 0. Due to Theorem 7.2 there exists § > 0 such that

1— F(z) > g for all z > z*+. (8.16)
Besides
®(F(z)) = f;{x) dy/e(y) = +(1 - F(z)), (8.17)
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where v = minyep,(1/¢(¥))-
It follows from (8:15)—(8.17) that

M e 5 11’[ =
Ve, M, F) > f LA V(0,0, F) = y6ln — — V(0,0, F). (8.18)
o I E T
Due to (8.12), (8.13), (8.15) one has
M "
Wi, M) > q’&in;i — B#(0) + V(£,0,F)— 2V(0,0, F'). (8.19)

Let us suppose that (8.3) is not correct, and there exist d, T'(e) such that
sup |Fa(t) = F(n —ct —d)| < ¢ for t = T(e). (8.20)
Then W (i, M) < Memax,e(o,1) 1/e(y). It contradicts (8.19) if
V(t,0,F) =7, 20 (8.21)

for some constant . Thus the proof will be finished if we show that (8.20) entails (8.21).

Let us apply Lemma 8.1 under Gn= Fa, z(t) =ct+1 and Gu(t) = F(n —ct+ D),
where constant D will be chosen below. Since Fy(t) = 0 the conditions (8.7) is valid.
Due to (3.1) 2B < 0 if F(t) > 0, hence Fi(t) < 1 for all ¢ > 0. Therefore without
losses of generality we can assume that F1(0) < 1. Since F(14 D) — 1 under D — oo,

(8.6) holds for all D large enough.

Since F is nondecreasing and ﬁ'(m) < 1 the inequality (8.20) entails
Faun(t) < F(1 —d) +e <1 (8.22)

for all & small enough. Let D be so large that F‘(—l + D) > F(l —d) + e Since
F(lz(t)] —ct+ D) > F(=1+ D) the inequality (8.22) entails (8.8). Thus all assumptions

of Lemma 8.1 are [ullilled, hence
Fp=F(n—ct+D)> Fy(t) foralln>1,n<ct
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It follows from (8.11) and (3.3) that V/(¢,0,F) is a nonincreasing function of F,

therefore

V(t,0,F) > V(t,0, Fp) = V(0,0, Fp),

and (8.21) is valid for v = V/(0,0, Fp) = — [°_[®(0) — @(F(y + D))] dy (see (8.15)).
Theorem 8.2 is proved.

One could think that the condition ¢(b)®(a) = 1 of Theorem 8.2 holds only for excep-
tional cases. But it is not so. Similar conditions arise for a broad class of nonmonotonic ¢
if one tries to investigate asymptotic behavior of the solutions of (3.1), (3.2).

This behavior can be more complicated than in the case of monotonic @. General
results are unknown, but taking into account Theorems 7.1, 8.1, 6.2 one could suppose
that the following picture takes place.

Let us consider a function

U(z) = f & sy -a(z), e (8.23)
0 ¢(z)
and let Wq(z) be the upper boundary of the convex hull of the set

W = {(zv):e<¥2), 0<z51});
ConvW = {(z,v):v< Yp(z), 0<z<1}. (8.24)
The set
E={z:9(z2) <¥y(z), 0<£2z<1} (8.25)

is open in [0, 1] and can be represented as a union of intervals of the form [0, 6), (a, b;),

(a,1], or [0,1]. Let & be the set of these intervals and I(c) be the length of interval
age .

We assume that conditions Al, A3 are fulfilled.
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Proposition 8.1. For every o € S there exists a wave train with overfall [(c). Besides

p0)2e=pb) fo=[0.b),0<b<];
ola)=c=p(b) fo=(ab),0<a<bly
pla)=c2 () fo=(a1),0<a<]

W(U)ZPE‘PU) if(T:[U,l],

[fz¢ E=U,exo then @'(z) 2 0.
Here ¢ is a speed of the wave train (see (3.5)), © eprraold Sun fon M BT
Proof. Let (a,b) € ¥. By definition
* dz b—=z z—a
\D Z =f — < Palz) = i3 b %
=y o of2)=7— (a) + — %) (8.26)

for all z € (a,b) (see Fig. 1). It follows from (8.26) that

1 z dr
(a,2) = :4&] i < b) for all z € (a,b).

Thereflore Theorem 7.1 entails the existence of a wave-train with overfall b— a. Further-

more in view of (8.25) the function

has its local maximaat z = a and at z = b. One has

and o/(a) <0, w'(b) =0 with equalities for ¢ € (0,1), b € (0,1). It proves the second

)
part ol the proposition. The third part immediately follows [rom the formulae

V(=) = —¢(2) (2.
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Indeed if ¢'(z) < 0 then ¥(z) is convex in a vicinity of z and therefore = should belong
to an interval from X. The Proposition 8.1 is proved

Remark 8.1. It may be checked that an interval o with endpoints a, b belongs to 2

if and only if the following inequalities hold

I'(a,z) < I'(a,b) < (y,b) forallz>a,y<b,
['(a,z) > (a,b), z<a,

I'(y,b) < ['(a,b), y>b

emark 8.2. Assume that ¢ is a piecewise continuous differentiable function with
finite number of discontinuity points which are jumps of .
Lot & o p i y
et z ¢ J,ex 0. Then ¢'(z) > 0 if z is a continuity point and w(z +0) > @(z — 0) if

218 a jump point,



Tndeed il @(z +0) < @(z — 0) then
1 1

DN e

V(2 +0) - V(- 0)

It means that z does not belong to the boundary of the convex hull W.

Proposition 8.1 gives a hint for a general picture of asymptotic behavior. It seems to
be plausible that solutions of (3.1), (3.2) approach to a sum of wave trains and diffusion
curves moving by a consistent way.

Let us describe this picture as a hypothesis.

Let the set £ (see 8.25) consists of a finite number of intervals. We assume that ¢ is
posilive, differentiable on [0,1] and ¢'(2) > 0 for z ¢ E.

In view of Proposition 8.1 the last assumption is generically fulfilled.

The set £’ = [0, 1]\ £ is a union of finite set of segments. We assume that E” does not
contain interior isolated points. Let bg =0, by =1 and b, i =1,...,N—1be endpoints
of our intervals inside [0,1]. Obviously if o; = (b, bis1) C E then giyy = [biy1, biga] C E".

For every a; = [bi, biy1] C E' we define a function

b; for n < @(bi)t,
Yi(nft) = o Y n/t) for o(b:)i < n < (bt
bisq for n > @(biy1)t.

Due to Proposition 8.1, for every o; C E there exists a corresponding wave train [

with a speed ¢;. If N > 1 and ¢ > 1 then ¢; = o(bi),

A A f’-‘ﬂ dF
oy (e

Our hypothesis is that asymptotic behavior of solutions of (3.1), (3.2) looks like a

wave-train for the sets

{(n, ")‘Fn(t) € oi}

il 0; € E and like a diffusion or ¥;(n,t) il o; € E'.

Let us define the following family of functions

- ) N-1
Fu(tydyy...,dy) = ¥ Fitn—ct +d)+ 3 Wn/t) — 3 b (8.27)
i=1

o CE o CE!
Hypothesis. IT F, is a solution of (3.1), (3.2) with a = 0, b = 1, then there exist
di(t), 1=1,..., N such that d;(t)/t — 0 as ¢t — oo, and

sup | Fa(t) — Fu(tydi(t),...,dn())| » 0 ast — co.

The following result shows that the statement of the hypothesis can be valid even if
the assumptions of differentiability of ¢ and absence of interior isolated points in E' do

not hold.

Let o have the special form (see Fig. 2)

‘pl{F)7 st:
p(F) =
‘:‘92(F): F>Z,U<M<l,

where 1, g satisly A1, A2 in [0, 3] and in [, 1] respectively.
Let us denote

L pipee il il 1 dF
et = 1 ]

e - &;—i L Lk

_—; 0 1,01(}"1)’ * (192(F)

The values ¢y, c; are velocities of wave trains F'', F* for oy, @y and with overfalls s,

S

1 — 2. In this case E consists of two intervals (0, ) and (s, 1) and B’ = {0;5;1}, x is
the interior isolated point. The second term in (8.27) disappears, and every solution of
(3.1), (3.2) converges to a function F(,dy, dz) = F'(c— eyt —dy) + F*(n — et — dy) — ¢
for some constant d;, dy uniformly in n (see Henkin, Polterovich (1994)). Specifics of
this example is the absence of difTusion segments.

The following statement is some step to prove the Hypothesis formulated above. It
shows that the Hypothesis is valid outside of an arbitrary linearly increasing neighbor-

hood of wave trains.



s

Iig. 2. Piecewise decreasing ¢

Let 8> 0and ¢, i = 1,... , N be speeds of wave trains F; from (8.27). We introduce

the following subset of the set R of real numbers
Zy(t) = R\ Us[eit — BvE, it + BVE].

Theorem 8.3. Let @ be positive, @', ¢’ be bounded, ©'(z) > 0 forz ¢ E. Let us assume
also that

Fa(0)=0 Yn<0, Fu(0)> Fay(0) Yn>0.
Then for every B large enough

sup |Fu(t) — Falt, di(t), ... ,dN(t))i —0 as t >0
neZp(t)

for arbitrary d;(t) such thal d;(i)/t'/* — 0.

This Theorem is an analogue of the result received by Weinberger (1990) for Burgers
equation.

We describe a plan of the proof of Theorem 8.3 and then give a complete proof for
a particular case.

Let us assume that oy € £, then o; € E for even ¢ and a; € E'if i is odd. We expect
that wave-wise behavior prevails for 1; = {(n,1)|F(t) € o:} il o; € E and diffusion-wise
behavior takes place if o; € £'. Theorem 8.3 asserts that if (n,2) € n;, 0: € E, then n is
located in a segment [e;t — Bv/2, it + Gv/7) for 3 large enough (see Fig. 3).

by l
by |
Eu(1) : :
oy | |
| |
| |
by [ ] ]
| I |
| | I
bom(t) = {nf(n, ) €} | '
by = ' n
leit — AVE leyt + 31 leat — B/t lest + Bv/E
: ! : L Falt) = Faa ()
| | | |
| | | |
: — i st
0 ct—-pvE et + Byt et — BT ot + By/E
Fig. 3.
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The proof includes two types of statement. We show that
Fagy(t) = bi + O(1/V2) (*)

ifet+BVE—1<n(t) < et 4 B, A= 138,00 ct— Bvt—1 < n(t) < ¢t — B/,
i=0,2,4,..., where by = 0, co = c1 = @(b), & = o(b;). Besides we demonstrate that

for segments oy = [by, biy1] € E' the relations () entail
Fu(t) — Wiln/t) = O(1/V1), (nyt) € m:. (%)

Particularly the density Fu(t) — Fu-1(t) vanishes in n;, ai € E'.

We proceed the proof inductively by the number N of segments, N > 2.

Let N =2 (sec Fig. 4).

We define FP1#2l(2) as the solution of (3.1) with initial conditions
s < | O B RO 2D,

by, Fa(0) < by.

One can show that Fvtal(t) > Fy(t) for all n,t and use Theorem 6.2 to estimate
E(t)—bi,n= [clH-,B\/f] from above as O(1/+/%).

To gel an estimation from below we use a wave train F'(n — et — dy) for overfall
[bg, by] with a constant d; and prove that Fu(t) > Fl(n— et —dy) forn = ct + BvE. It
entails the relation Fy(£) — by = O(1/v/1), n = [ert + BV/1] due to Theorem 7.2. So we
gel (%) fori=1, N =2.

To reccive (*) for i = 2 we consider a solution Fa(t) of (3.1) for @(F) = (F) +
o1 — F), @ > 0 with initial conditions
F(0) = Fa(0) il by < Fo(0) < by,

by otherwise.

46

by

by

wave-train F'(n — ¢t — d;)
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Fig. 4.

Fz(ngczt—a'z)




The relation (*) for i = 2 follows from comparison of Fj, and F. and from Theo-
rem 6.2.

The relation (#) lor 1 = 0 [ollows from comparison Fy, and wave-train FYn —cit -+
BVT).

To prove (+x) we use the inequality Fubal(t) > F,(t) received above. We can prove

also thal

Fal) 2 EP0) -

for v large enough and n € (eit + B/, cat — By/E) using (=) and Lemma 6.2. The prool
is completed due to Theorem 6.2 about diffusion.

Let us describe the next step of induction considering N = 3. To prove (x) for i = 2
we compare Fy, with Fltotal and F*(n — et + dy) where F? is the wave-train for overfall
[bz, bs] and Flobl is the solution of (3.1) under initial conditions

F‘[‘ﬁn,h] (0) o | F;‘(D)1 F“(O) S bg,

by, Fa(0) > by
(see Fig. 5).

Then one can use Lemma 8.1 to compare Fy(t) and FlPob2l(¢) + % for n < cot — B/
Since the statement (#x) is valid for Flobal it is valid also for F),. The statement (%)
is also true for i = 0,1. To finish the proof of Theorem 8.3 for NV = 3 one needs to
show () fm:i — 3. Tt can be done by comparison of F;, and F(n — eot — BV1).

Now we give the detailed proof of Theorem 8.3 for a particular case when £ = [0, 6],
9 <1, and E' = [8,1] (see Fig. 6). In this case (8.27) contains one wave train. Let co
be its velocily.

Let us remind that @ is defined by the following equality

1p0) = (/9) [ dufe). (5:29)
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Lemma 8.2. Lel F,(t) be a solution of (3.1), (3.2) witha =0, b=1 and let 3 be an
arbitrary positive number, and et + Bv/1—1 < n(t) < ct+ 8V Then

Fyn(t) = 0+ O(1/V),
where %ﬂ is bounded in a vicinity of z = 0.
We need the [ollowing statement that will be useful later as well.

Lemma 8.3. Let us define = = arg mingep, g @ F)

F.0), 1> F; o
Ga(0) = O 12502, (8.29)
o, 0 < Fu(0) < 6%,

and lel Gy (t) be the solution of equation (3.1) under initial data G,(0). Then

Gou(t) = Fyt) for all n,t. (8.30)
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To prove this statement one can apply Lemma 6.2 for Gy = Fy,72 =00, 1 =0,
Tp=0.

Proof of Lemma 8.2. The relation (8.30) gives an estimation of F,(t) from above.
Let us apply now Lemma 8.1 to get an estimation of F,(¢) from below.

Let us extend the function @(F) for negative values of F as a smooth decreasing
function. For a fixed € € [0,1] let us consider a wave-train solution of (3.1) Fe(t) =

F#(n — ¢t — dg) with overfall [~e, 6], speed ¢; and shift parameter d.. For any € > 0 we

can choose a shift parameter &; such that
Fa(0) > F5(0), n21;  Fyt) 2 F5(t), t=0. (8.31)

By Proposition 8.1 and Theorem 3.2 for the speed c; we have the following equality

11 0 dy 10 dy 0 1
c5_9+€f—stp(y)_9+sf—esa(y)+9+ecﬂ’

where ¢y is the speed of the wave-train FO(n — cot — do) with the overfall [0,].

For small &€ we have the equality
¢ = ¢o(1 + Ofe)). (8.32)
Let us show that, lo satisfy (8.31), we can take a shift parameter d; in the form

dy = lln é (8.33)

where [ is a positive constant large enough.

It follows from continuous dependence of the values of F£(£) on parameter € € [0,1]

and [rom the properties
F0) =15 n — 400,
Fén) = 0<1, n— oo,

F&(—d) = —¢, d = +oo
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that there exists a constant iy = O(1) such that the first inequality in (8.31) is [ulfilled
lor any d. > .

To satisly the second inequality (8.31) let us choose d. such that
F§(t) = F*(~ct —d.) <0 forall ¢ > 0. (8.34)
Estimation (7.2) entails
1 re
- In(F(z)+€) = M, z— —co, (8.35)
where A; is the solution of the equation
M = p(=e)0(=e)(1 — ).

Inequalities (8.34) and (8.31) are satisfied due to (8.35) if we take d, = (InL, where  is
o

large enough. Due to Remark 7.3 number { can be chosen independently on &

Let us choose a continuous function z(t), t € [0,00), such that
2(t) 21 and  Fr(t) > 6. (8.36)

The inequalities (8.31), (8.36) together with inequality Fet) <@ forany n>0,(> 0
give us conditions for applying Lemma 8.1. From this Lemma and (8.33) we obtain the

following inequality

Fu(t) > F* (n —cd—Iln l) (8.97)

£
foralln,20,£>0aud0<6§1.

Let us choose, further, & = &(t) and n = n(t) in the form
&(t) = exp(—1"%) and n(t) = [ct + V] + 1. (8.38)
Using these & = &(f) and n = n(t) we get from (8.37) and (8.32)
Fu)(#) 2 FOBVI 4 et — ot — 11113), ¢, = o(1 + Olexp(—t"*))), > 0. (8.39)
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Due to Lemma 7.2 and Remark 7.4 we obtain the following: uniformly for ¢ € [0, 1], for forn=1,...,[s(T)], # > 2.
every | > 1 there exists A > 0 large enough such that Secondly, we have the inequality

A { "
P ((P(y) (1 L )) " (8.40) dGy (. B\ dF

From (8.39) and (8.40) it follows the existence of 7' = T'(A, 1) such that

0) (L+1) '
Fnu)(t)zﬂ—:%(el)(ﬂﬂ for t>T. (8.41)

Besides, using (8.30) and Theorem 6.2 we obtain

= 6(Ga)(Goet = Ga) + 7 (0= a4+ V)

2 LP(GH)(GTI—I = Gn)-

n(t) Let us show, at last, that if B is large enough, then

D (ip(8) + O(1/vD) + O(1/VT) < 8+ O(1/V1). (8.42) Gla)(t) < Gra)(t) for ¢ >T,8 > 28. (8.43)

1Té i1 ollow 8 II ) al’](l (8.42). i ) ‘( ) e t'h.:’ 5 ( * ) B . da.ta “(. J) deﬁn d bV (8 r)g)
d & OIUtlon Oi 3 1 undﬂ[ ) @ ar (] niti F

Lel na 8. f 1]0 § lrom ( ( e

Lemma 8-4. Lci 1 "(t) bﬁ a 30‘”“0“ Of (3.1}1 ‘3.4.‘;) ’wiih a= 0, b = 1 ﬂﬂd [et F(n i Ct)

be a wave lrain of (3.1) with overfall [0,8]. Then there czist T >0 and B > 0 such thal

Theorem 6.2 and (8.30) entail the following inequalities for ¢ > T’ and some >0

Fla_psylt) < F‘[ct—B\/Hl](t)

Fu(t) S F(n—ct+8V1) for n<ct— BVt t2T i ot ;
n 2y S 2 - BVI+1) 7
: Vi
[ 2B. i -
forall B> =gl 1}(9(9)_ﬁ+5)+lﬁ
Proof. For proving Lemnma 8.4 it is sufficient to check the conditions of Lemma 8.1 e e JI(T))E . g
for G, = F,, Gn = F(n—et+ BV1), z(t) = ct — BT +1 and apply this lemma. Ei ——W,w) e
Firstly, we have the inequality i 9 ({1 - &(1))B ) 1
=TVl oY 8.44
& Vi ©'(8) Vit ( )
Fol(t) = =0< Go(t)= F(—ct + BVt
8 S ( v ) where 4, (T) >0and &(T) - 0as T — co.
for every 3 and d. Due to Lemma 7.2 and Remark 7.4 there exists 7' = T(l), | > 1 such that
So. we can choose B large enough to have also inequalities ] ) B4
| Clete) 2 Fleerp-nyivg 2 0~ Z0) 6= BT’ cET (8.45)
Gu(T) = Fa(T) < Gu(T) = F(n — T + BVT)
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Let 3 > 2B. In view of (8.44), (8.45), to satisfy (8.43) it is sufficient to have the

inequality:

((1,_6_@)27) L epoglifish

2(0) Vi @) BV

The last inequality is fulfilled for every B large enough. Hence, all conditions of Lemma
8.1 are valid, and Lemma 8.4 is proved.
Proof of Theorem 8.3 (for the case E = [0,6], § < 1). For this case the func-
tion (8.27) takes the following form
F(t,d) = F(n—ct+d)+¥(n/t) -6 (8.46)
where F is a wave train of (3.1) with overfall [0, 0], ¢ = ¢(8),
0 for n < ¢,
U(nft) =3 Y (n/t) forect <n < (1),
1 for n. > (1)t

Let d(t) be such that d(t)/v/t = 0, t = co. Due to Lemma 8.4 one can find B and 1
such that

Fu(t) € F(n—ct + 2BVt + d(t)) forn <ct— BVi, t>T. (8.47)

To prove Theorem 8.3 we will show that

sup | Fa(t) — Fa(t,d(t))] = 0, (8.48)
nS::t—SB\/E
and )
sup  |Fu(t) — Falt, d())| =0 (8.49)
n2ct+38v1
as L — co.

Ifn < ¢ — 3B+t then F,,(t,d) = F(n —¢t+d) and n —ct + 2BVE +d(t) <
—B+/t+d(t) - —oo as L — co. Since F(z) = 0 as ¢ — —oo the relation (8.48) follows

from (8.47).

Ifn > et + 3BT then n—et+d(t) > 3BVE+d(t) = 4ooas i — co. Since F(ur) —+ 6

as T — +oo we have

sup  |Fu(4d(E)) — W(n/t)] = 0 as { — oc. (8.50)
ant-{-{!B\ﬁ

The proof of Theorem 8.3 will be completed if we show that

sup  [Fu(8)—¥(n/t)] = 0 ast— co. (8.51)
n>ct+381

Due to Lemma 8.3 the inequality (8.30) holds. Let us define

o= for n < g(67)t,
Yo(n/t) = Y g71(nft) for g(67)t < n < g(1)t,
1 for n 2 g(1)¢,

where g is defined by (8.29). It follows from (8.30) and Theorem 6.2 that

Bult) < Galt) S Wy (/1) +

Since § > 6" and g(F) = @(F) for F > 6 one gets Uy(n/t) = ¥(n/t) for n > ct.
Therelore

Fu(t) < W(n/t) + %, n> . (8.52)

Lel us introduce lunctions

‘, Fu(t) = W(n/t) - %.

Due to Lemma 6.5 there exist v > 0, 7' > 0 such that
Ta_ S @(B)(Fae = Fy) for (8)t < n < (1), ¢ > T. (8.53)

If 5 =4(T) is large enough then the following inequalities obvieusly hold
Fu(T) € Fu(T) for o(0)T < n < (1)T. (8.54)
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I p(0)t < m < p(0)¢+ BV then Fu(t) < o (1(0) + BVE) — 7/ = 8+ O(1//T) —
/1. Since Fy(t) = 0+0(1/V1) for p(0)t+8vE-1 < n < @(8)t 4BVt (see Lemma 8.2)

one can choose ¥ large enough so that

Fal) S Fu(8), —1<n—o@)t—pvVi<o, t>T. (8.55)
Let us prove now that

FAt) S Fult), n>p()t, i>T. (8.56)
By definition of £}, the inequality (8.56) is equivalent to the following relation
Fat) 2 1—9/Vt, n2e(l), t>T. (8.57)

Let @ = o(F) + (1 = F), F € [0 —¢,1], where @ > 0, & > 0, ¢ is small enough.

Consider a solution of the equation

dF,

di TE -(El)(pn—l = Fn)

with initial conditions

R F.(0) iff—e< F (0)<1.
A(0) = (0) < Fu(0) <1,

8 —¢e, otherwise.

Due to Lemma 8.2 and since ¢(8) < @(6 — €) one has
Fat) 20+ 0(1/v1), n>@(0—e)t—1.
Using Theorem 6.2 we have
But)=0-e+0Q/VD), n<@@-el.
Therelore there exists T > 0 such that i) > Fyt), -1 < n—g(f—e)t <0,t>T.
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Using Lemma 6.2 we get Fn(t) > Fy(¢t) for all n € [(§—e)t, oc). Due to Theorem 6.2

Fn(i)z l_l"s n>@(1)t=5‘9(1)t1

Vit
therefore (8.57) is proved.
The inequalities (8.53)~(8.57) permit to use Lemma 6.2 again to compare F, and £,
on [0(8)t + B, 0(1)i], B = 3B. We get

i s

Fau(t) > ¥ (n/t .58
(t) = W(n/t) w: (8.58)
for t > T, n > ()t + BV/I.
From Lemma 8.3 and Theorem 6.2 it follows also that
Fa(t) < Galt) < W(n/t) + % (8.59)

fort > T, n > @(0)t+ 3v1.
Now the inequality (8.51) and the statement of Theorem 8.3 for the case £ = [0, 4],

8 < 1 follows from (8.58) and (8.59).

9. Comparison with Burgers equation

Al first sight equation (3.1) looks like a discretization (in space variable) of the following
shock wave equation
r)F(z,l) = W(F)
at

that was studied in many works (see for example Lax (1973), Whitham (1984)). But

dF(z,t)

dx

(9.1)

solutions of (3.1) do not reveal shock wave behavior. The dynamics of (3.1) for mono-
tonic case reminds the wave train or diffusion behavior studied by Hopf (1950) and [ljin
and Olejnic (1960) for Burgers equation
F i dF
aF W(F

—_— == —_— 9.2
it c a* ( )C).'L" {8:4)

a7



where W is a monotonic function, € is a constant. The analogy holds not only for results
but for schemes of some proofs. The first term in (9.2) is called as dissipative term
with viscosily &. One could remark that the difference Fj, — Fi_; (see (3.1)) “contains”
a dissipative term in a sense due to Tailor expansion, but the same is true for terms
with third and forth derivatives, and it is not clear what is the nature of the analogue
between (3.1) and (9.2).

Lel us compare Lhese two equations in greater detail (see Henkin, Polterovich (1991)).
Cousider a variant of equation (3.1) with an arbitrary “step of discretization” 4

dF (z,t)

F(z,t)— F(z—d,t)
dt )

3 3 (9‘3)

= —p(F)

and compare (9.2) with (9.3) for ¢(F) = a + B(1 — F)) = —W(F). Wave trains of both

equations are logistic curves that have the form
Fe(a,1) = 1/(1 + ),

where p = p' = (1/8) In(/a), ¢ = ¢ = Bln(u/a) for (93), p = a+ f, and p = p' =
B/20, ¢ = ¢" = a+ 3/2 in the case (9.2). It is simple to check that if ¢ = ad/2,
@>0,and 8~ ¢ — 0, then the differences p' —p", & — ¢" have the order 8% as well as
the difference of the right-hand sides of both the equations. Thus under these artificial
conditions, one can consider equation (9.3) as an approximation of (9.2). But if A/« is
not small, then the distinction between (9.3) and (9.2) is substantial. The formulas of p
and ¢ show that solutions of (9.3) do not converge to feasible solutions of (9.1) as & — 0.

Nevertheless all main facts of the theory of the Burgers equation have their counter-
parts for the equation studied above.

We believe that this analogy will be expanded for the nonmonotonic case as well and

similar general results will be received for both problems.
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