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FORWARD DYNAMIC UTILITIES : A NEW MODEL AND

NEW RESULTS

ABSTRACT. We present a new model of forward dynamic utilities. In
doing so, we provide unique (viscosity) solutions. In addition, we introduce

Hausdorff-continuous viscosity solutions to the portfolio model.



1 Introduction

The forward dynamic utility functions are a new development in stochastic
finance. It was introduced by Musiela and Zariphopoulou (2005) in response
to the limitations of the backward dynamic utilities, such as the investor’s
inability to revise his or her risk preferences. The forward utility allows the
revision of risk preferences and it is normalized at the present time t.

The existing literature defines a forward dynamic (exponential) utility u

(normalized at t) as

u(z), s=t
uf (z) = , (1)
supF (u(Xr) /Fs) =v(s,x), s >t
A
where X7 is the terminal wealth, x is the initial wealth, A is the set of

admissible portfolios, F, is the filtration, and v is the value function. In

contrast, the backward dynamic utility is defined as

, u(z), s=T
ug (z;T) = - (2
sipE(u(XT)/fs):v(s,x;T),tSSST

Thus similar to its backward counterpart, the forward utility function is self-



generating and indifferent among the subhorizons. But, unlike the backward
utility, its uniqueness is not established.

In this paper, drawing on Musiela and Zariphopoulou’s concepts, we de-
velop a new model of forward dynamic utilities. In so doing, we provide
unique solutions for a general utility function and we show that the assump-
tions needed for such solutions are similar to those under the backward for-
mulation. In addition, we show that the traditional viscosity solutions are
applicable to the new forward utilities. Moreover, we introduce Hausdorfi-

continuous viscosity solutions to the portfolio model.

2 The model

We consider an investment model, which includes a risky asset, a risk-
free asset and an exogenous stochastic economic factor Y;. We adopt a
three-dimensional standard Brownian motion {Wi,, Wa,, W, Fs},o .o 0D

the probability space (€2, P, F;), where {F}, o is the augmentation of

T
. . . . [ r(Ys)ds
filtration. The risk-free asset price process is S° = et , where r (Y;) €

C? (R) is the rate of return and Y is the stochastic economic factor.

The dynamics of the risky asset price are given by



dS, = Sy {p (Ys) ds + oy (V) dWh} | (3)

where p (Y;) and o (Y;) are the rate of return and the volatility, respectively.

The economic factor process dynamics are given by

dYs =b(Ys)ds + 02 (Ys) dWas, Yy =y, (4)

where all the coefficients p (Y;), o (Y;), and b(Y;) are CZ (R) functions and
satisfy the linear growth equation |f (y)| < c¢(1+ |y|).

Thus the wealth process is given by

Xp=u+t / (r (V) X7+ (u(Ya) — v (Ya) 7)) ds + / 70y (Vo) dWa, (5)

t

where z is the initial wealth, {ms, Fs},. ., is the portfolio process with
T

E [0} (V) mids < 0o .
t

We express the forward nature of the utility function (normalized at t) as



u(z,e), s=t
Us (.7:,}/5,£S> = 7§t =&, (6)
supEl (u (X7) /Fs) = v (s, 2,Y,6,), s >
A

where ¢ is a stochastic variable that determines the form of the utility. That
is, utilities with different £, have different forms. £, might depend on Y;. The

dynamics of ¢ are given by
d¢, = asds + 03,dWss, (7)
where £, a, and o3, are C? (R) functions. Thus £, is the unique solution to

(7). If d¢, # 0, then £, # &, and the form of the utility changes over time.

The investor’s objective is to maximize the expected utility of the terminal

wealth

v (t’ T, Y, 5) = supk [u (X?) | E] )

s

where u (.) is a continuous, bounded and strictly concave utility function.

The value function satisfies the Hamilton-Jacobi-Bellman PDE



1 1
v+ 1 (y) 20 + b (y) vy + azv: + 503 (y) vyy + aagtvaa + Po301 (V) 03Uy +

1
Sup {57@0% (¥) Vez + 7o [ (y) = 7 (Y)] vz + 1201 (Y) 02 (Y) Tevay + Tip1301 () agtvm} =0,

v(t,x,y,e) =u(z,e), (8)

where p;; is the correlation coefficient between the Brownian motions. Hence,

the optimal solution is

- :013‘71_1 (y) oz (9)

Since ¢ is known at time ¢t and it is unique, the form of v is unique and thus
(under regular assumptions) (8) has a unique solution. This is illustrated in

the next section.

3  Special cases: CARA and CRRA

In this section, we consider the special cases of constant absolute risk aversion

CARA and constant relative risk aversion CRRA. The respective utilities are



z! P

18>

given by u (t,x) = —e~** and u (z,t) = where a and [ are the coef-

ficients of the absolute risk aversion and relative risk aversion, respectively.

As before we define the dynamics of a and (3, respectively, as
dog = agds + 03,dWag; ap = A, (10)
dB, = [.ds + 035dWss; 3, = 7. (11)

For an exponential utility

v(t,z,y,\) = supE [—e "7 | 7],

Tt

The value function satisfies the HJIB PDE

1 1
v+ 7 (y) xv, + b (y) vy + ave + 50% (y) vyy + §0§tv,\A + o301 (Y) T310yA+

1
Sup { 5202 4 v+ 71 4) = D]V + 91301 () 02.4) ey + sy () 7t | =0

Tt

v(t,z,y, \) =u(x, ), (12)



Thus the optimal solution is

. b)) -1 _ P1202 Y (Y) Vay (X) .
a3 (y) A o1 (Y) Ve (N) p1301 (Y) 5. (13)

Since A is known at time t and it is unique, thus (12) has a unique solu-
tion under regularity assumptions. The solution under CRRA is similar and
thus it is omitted. It is established that a verification theorem exists for
exponential and power preferences.

Moreover, since v (¢, x,€) is unique, the traditional viscosity solutions are
directly applicable to (8) under the assumptions of the degenerate ellipticity

and monotonicity of the HJB. This is discussed in the next section.

4 Viscosity solutions

4.1 Continuous viscosity solutions

If we assume that the HJB is degenerate elliptic and monotone increasing in
v, we can apply the traditional constrained continuous viscosity solutions to

(8) ; see, for example, Duffie and Zariphopoulou (1993).



Consider this Dirichlet problem

H(ZL",’U(I’),’U:C (ZL") ) Uz ($)) = 071: S Q,

v(z) = g(z),r €0,

where () is a bounded open set.

(14)

Definition 1. A continuous function v (x) is a viscosity subsolution of

(14) if

H(z,v(z),P,X) <0,VP € D"v(z),VX € Jtv(x),Vz € Q.

A continuous function v (z) is a viscosity supersolution of (14) if

H(z,v(z),P,X)>0,YP e D v(z),VX € Jv(z), Vo e,

where

D*v (z)

(P i sy L 0D Py ) )|

y— ly -

L)v@):{P:hmiﬁ“@”_vcw_<Ry_z>zo},

y— ly -

(15)

(16)



JHU(@:{(P’X) hmwsupv(y)—v(:ﬂ)—<P,y—m>—%(X(y—x),y—ﬂﬁ §0},

y— ly — x|

P () = {(P,X) i i P W) 0@ = (Py—) -5 (X (y—a) y— ) . 0}’
y—e ly — =
(20)
A function v (z) is a viscosity solution if its both a viscosity subsolution and
a viscosity supersolution.
Proposition 1.v () is the unique constrained viscosity solution of (8).
Proof. Let v € C(09) and let s(v) and ¢ (v) be the upper and lower
semicontinuous envelopes of v (defined in the next subsection), respectively.
So that s(v) € USC (©2) and i (v) € LSC (Q2) are a viscosity subsolution
and supersolution, respectively. At the boundary we have v (x) = s(v) =
i (v); thus the comparison principle yields s (v) < 7 (v) in €. By definition

s(v) >i(v) and thus v (z) = s (v) =i (v) in Q is the unique solution.M

4.2 Discontinuous envelope viscosity solutions

If v is discontinuous, then we have a two-function solution; see, for example,
Bardi and Capuzzi-Dolcetta (1997)).

10



Definition 2. Let u; and uy be a viscosity subsolution and supersolution
of (14), respectively. Then
(1) v = sup {u(x) 1 u; <u<ug} =s(u)

(1) vo = inf {u(x) : uy <u < wug} =1i(u)

are discontinuous viscosity solutions of (14).

It is worth noting that these discontinuous solutions are not unique.

4.3 Hausdorff-continuous viscosity solutions

Hausdorff-continuous functions may assume interval values. For the purpose
of obtaining viscosity solution, it is sufficient to assume interval values only
at the points of discontinuity. It is worth noting that continuity implies
Hausdorff-continuity, but the converse is not true. A detailed disscussion of
Hausdorff-continuous viscosity solutions is provided by Manini (2007).
Definition 3. Let v and v be a lower semicontinuous and upper semi-
continuous functions, respectively, and define a segment-continuous interval-
valued function v as v =[v (), v ()] on the topological space X'. Then v is
hausdorff-continuous iff the Hausdorff-distance between v and v p (v (z) , v (z))

0; or alternatively iff v =[v (x), v (2)] = {v(z), v ()} .

11



The following theorem establishes the existence of a Hausdorff-continuous
viscosity solution.

Definition 4. A Hausdorff-continuous function v =[v, V] € H () is a
Hausdorff-continuous viscosity subsolution of (14) if v is a viscosity subso-
lution. v is is a Hausdorff-continuous viscosity supersolution of (14) if v
is a viscosity supersolution. v is a Hausdorff-continuous viscosity solution
if it is both a Hausdorff-continuous viscosity subsolution and a Hausdorff-

continuous viscosity supersolution of (14).

Theorem 1. Let v; =[vy, ¥;] € H and vy =[v,, V,] € H be a Hausdorff-
continuous viscosity subsolution and a Hausdorff-continuous viscosity super-
solution, respectively, and v; < wvs, then there exists a Hausdorff-continuous

viscosity solution v such that v; < v <vs.

Manini (2007) provided a proof of this theorem. The following lemma
provides a comparison principle for Hausdorff-continuous viscosity solutions.

Lemma 1. Assuming that

H (z,v1,p, X)—H (x,v9,p, X) > a(v; — v2) when v; > ve and o > 0, (21)

12



and

H(yv,n—y)—H@uvne—y)<whlz—y*+lz—y), (22

where w is the modulus of continuity (w (0) = 0) and 7 > 0. Let v; =[vy, V4]
and vy =[v,, V5| be a Hausdorff-continuous viscosity subsolution and a Hausdorff-

continuous viscosity supersolution, respectively, in €2 and

V1 < v, on 012,

then v; < vy in Q.

Proof. If v; > vo, there exists T € () such that

Vi (Z) —v(z) =sup (v —wvy) =6 > 0. (23)

We introduce the smooth function

¢=(2) —vy(y) — —|z—yl".

13



Let ¢ (xy,y,) = sup ¢, then

@ (g, Yy) > 0, (25)

and thus

ad < o (V1 (zy) — Vo () (26)

By the definition of subsolutions and supersolutions

H (zy,v1 (29) 1 (27 — ) <0, (27)

H (2, v2 (z) ;1 (27 — yy)) > 0. (28)

Using the assumptions, we obtain

ab < a(Vi(z,) — vy (yy))
< H (xna U1 (5577) T (5577 - yn)) - H (xmvl (xn) T (xn - yn))

< w(n‘xn_yn|2+‘xn_yn‘>' (29)

Letting 7 — oo, we obtain the contradiction 6 < 0.1

The following proposition establishes the uniqueness of the Hausdorff-

14



continuous viscosity solutions.

Proposition 2. Let v; = [v;, V;] € H and vy =[vy, V5] € H be a
Hausdorff-continuous viscosity subsolution and a Hausdorff-continuous vis-
cosity supersolution, respectively, then v is the unique Hausdorff-continuous
viscosity solution of (8) if v is a Hausdorff-continuous function.

Proof. By Hausdorff-continuity and Theorem 1

vy = v =wvy =g, on 0. (30)

By the comparison principle

v1 < g, in €. (31)

since v € H,then

v = vy = v, in , (32)

and thus v is the unique solution of (8).H
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