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Abstract

This paper addresses the issue of improving the forecasting performance of vec-

tor autoregressions (VARs) when the set of available predictors is inconveniently

large to handle with methods and diagnostics used in traditional small-scale mod-

els. First, available information from a large dataset is summarized into a consid-

erably smaller set of variables through factors estimated using standard principal

components. However, even in the case of reducing the dimension of the data the

true number of factors may still be large. For that reason I introduce in my analy-

sis simple and efficient Bayesian model selection methods. Model estimation and

selection of predictors is carried out automatically through a stochastic search vari-

able selection (SSVS) algorithm which requires minimal input by the user. I apply

these methods to forecast 8 main U.S. macroeconomic variables using 124 potential

predictors. I find improved out of sample fit in high dimensional specifications that

would otherwise suffer from the proliferation of parameters.
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1. INTRODUCTION

It is common practice today to collect observations on many variables that potentially

help explain economic variables of interest such as inflation and unemployment. Tech-

nological progress has allowed the collection, storage, and exchange of huge amounts of

information without much effort and cost. In turn, this has significantly affected recent

macroeconomic modeling techniques. Current academic research is focused on finding

solutions on how to efficiently handle large amounts of information with, for example,

Stock and Watson (2002) using 215 predictors to forecast 8 major macroeconomic vari-

ables for the U.S. economy. Bernanke and Boivin (2003), among others, argue that this

is also the case nowadays in central banks, where it is customary for researchers and de-

cision makers to monitor hundreds of subsidiary variables during the decision-making

process.

These reasons justify the current trend in applied modeling with large datasets. The

modern econometrician has tools adequate enough to successfully extract information

from hundreds of predictor variables and compute more accurate forecasts than ever

before. It is noteworthy that these tools mainly do not rely on economic theory in

an explicit way; rather they are statistical and consequently atheoretical methods that

are used to cover the unfortunate gap between theoretical models and their empirical

validation. Within the sum of all possible options, two methods in particular have re-

cently gained ground: dimension reduction and model averaging. Among many others,

Bernanke et al (2005), Favero et al (2005), Giannone et al (2004), Stock and Watson

(2002, 2005a, 2005b) and Koop and Potter (2004) show how forecasts can be im-

proved over univariate or multivariate autoregressions, using either dynamic factors or

Bayesian model averaging (BMA), or both techniques, when a rich dataset is in hand.

In this paper I examine empirically the merit of using factors extracted from a large

set of explanatory variables and at the same time implementing Bayesian model aver-

aging/selection in the context of macroeconomic vector autoregressions (VARs). While

factor methods have already been examined thoroughly in multivariate models, the

challenging task of model averaging/selection is implemented with a stochastic search

variable selection algorithm (henceforth SSVS) proposed by George and McCulloch

(1993, 1997) and George et al (2008).

The proposed approach is flexible as its output can easily be used for selection of a

single best model or model averaging. The SSVS adds to a recent and expanding liter-
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ature on different approaches to BMA in VARs (Strachan & van Dijk, 2007; Andersson

& Karlsson, 2008). The innovation of the specific prior formulation is that it is more

appropriate for VAR models compared to previous model selection priors used in mul-

tivariate regressions (Brown et al., 1998, 2002). That is because each right-hand side

variable is allowed to enter in all, some, or none of the VAR equations, and not only

in all or none of them. The additional advantages come from the fact that this class of

restriction search algorithms is extremely simple to use and automated. Furthermore,

certain versions of these algorithms can incorporate variable selection when the number

of predictors is larger than the number of time series observations.

The following section defines the Bayesian VAR model when many variables are

available. Within this “large model approach” the large number of variables is replaced

with a small number of factors and several aspects of this approach are discussed. In

Section 3, the stochastic restriction search is introduced as a means of efficiently se-

lecting a subset of macroeconomic variables or factors that should be restricted from

the VAR specification, based only on the information in the data. The prior specifica-

tion necessary for model selection is analyzed, as well as the interpretation of model

selection probabilities as a special case of BMA. Section 4 outlines the setting of the

empirical section (data, forecasting models, prior hyperparameters, and comparison

statistics), and the results of the forecasting performance of various VAR specifications.

Section 5 concludes the paper with a summary and thoughts for further extension of

the basic framework presented in this paper.

2. METHODOLOGY

Let yt be an m� 1 vector of variables of interest (that we want to forecast) observed for

t = 1; :::; T . Unlike previous univariate studies (Stock & Watson, 2002, Koop and Potter,

2004), m > 1 and I define a forecasting model for y using a general VAR representation

y0t+1 =

p1X

i=0

y0t�iai + w0tc0 + "0t+1 (1)

where the parameter matrices ai and c0 are of dimensions m�m and N�m respectively,

yt�i, i = 1; :::; p1,are lagged values of the dependent variable, wt is a N � 1 vector

containing current and lagged values of some exogenous predictor variables, and the
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errors are iid Gaussian, "t � N (0;�).This model can be estimated both by OLS and

Bayesian methods, provided that the total number of explanatory variables will not

exceed the total number of time series observations T . I propose to adopt a Bayesian

setting which allows for a unified treatment of this model in high dimensions. For a

review of the VAR under standard prior specifications and different sampling methods,

the reader is referred to Kadiyala and Karlsson (1997).

Assume we have available observations xt = (x1t; :::; xnt)
0

on some macroeconomic

quantities, where n is large (in the order of hundreds). A popular and simple method

to incorporate into an econometric model all the information inherent in a large set of

variables, is to reduce their dimension into a lower-dimensional vector of k � n latent

factors and insert these in the VAR model as explanatory variables

x0t = �f 0t + u0t (2)

y0t+1 =

p1X

i=0

y0t�iai +

p2X

j=0

f 0t�jbj + "t+1 (3)

where ft is an k � 1 vector of unobserved factors, � is the matrix of factor loadings

and ut are iid normal errors, ut � N (0;W ). In equation (3) the same assumptions hold

as in the base model in (1), with the only difference that now wt = (ft�1; :::; ft�p2)
0

and N = k � (p2 + 1), and the bj are of appropriate dimensions. For simplicity xt is

demeaned which is equivalent to imposing a constant term in the factor equation, equal

to the sample mean x = 1
T

P
xt (which in this model coincides both with the MLE of the

constant or the mode of its posterior under a diffuse prior). The factors are unobserved

quantities and usually it is assumed that they follow a normal distribution with diagonal

covariance matrix. One more convention in the factor model literature is to impose the

covariance matrix of the innovations, W , to be also diagonal so that (2) reduces to

independent equations. Estimation methods vary from principal component analysis

(PCA) to full likelihood-based approaches. The ultimate goal of using the factor model

is to obtain the factor scores ft as a valid reduced representation of the manifest vector

xt, so that factor identifiability issues play no actual role here and will not be further

discussed.

In terms of the general forecasting VAR model in equation (1), I replace the predic-

tors wt with the principal components (PC) estimates of the factors bFt =
h
bft; bft�1; :::; bft�p2

i
,

i.e., as if they were observed data. Note that this specification is slightly different from
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the dynamic factor model (or factor-augmented VAR) used in Bernanke et al (2005).

From their point of view, the dynamic factor model (DFM) is treated as a state-space

model, which has the advantage of a probably more efficient one-step estimation of the

factors (i.e., along with the parameters of the model) through the Kalman filter algo-

rithm. But this comes at a huge computational cost which makes the application of this

model prohibitive in the recursive forecasting setting adopted in this study. After all,

Stock and Watson (2005a) have already implemented a large-scale forecasting exercise

involving DFMs where they compare several frequentist, full Bayes, and empirical Bayes

approaches.

The factors replace the original variables in order to allow richer dynamics and

subsequently are allowed to have up to p2 + 1 lags. If the original observed series

xt = (x1t; :::; xnt)
0

were included as predictors then – for a typical macroeconomic

dataset with monthly observations on many variables – a degrees of freedom problem

would occur if more than one or two lags were assumed. However, even in the case of

reducing the dimension of our data with factors the fact that we would ideally allow for

many lags does not resolve the problem of overparameterization. For N = k � (p2 + 1)

larger than 20 the number of all possible models will tend virtually to infinity so that

pairwise comparison is practically infeasible using an AIC/BIC-type criterion or prior

predictive (marginal) densities and Bayes factors. A reasonable proposed solution from

a Bayesian point of view is to use shrinkage subjective priors. For example, the Min-

nesota prior imposes restrictions on parameters which correspond to higher order lags

of y, whereas the prior weight (i.e., the prior mean) for the parameter on the first own

lag in each of the m equations is equal to one, and zero on the first lag of the rest

m � 1 dependent variables. While this approach will work well in VARs which include

only lags of the dependent variables, it is difficult to adopt this approach in the models

examined here. This happens because there is no theoretical or empirical justification

for constructing a subjective prior on exogenous predictor variables, especially if these

exogenous variables are latent (constructed) factors.

Introducing any kind of subjective prior information in this model is not an easy

task, anyway. These priors may not be specified concretely because of the lack of prior

information regarding joint distributions or the large amount of models involved in the

analysis. In that respect, subjective prior beliefs require a huge amount of input from

the researcher. It is unrealistic to assume that uncertainty about the true model speci-

fication can be described meaningfully using ones’ own beliefs; hence prior elicitation
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should be based mainly on economic theory. The problem with this approach is that in

many cases economic theory has empirically proven to be bad guidance in proposing

relevant predictors. Stock and Watson (2003) argue that this is the case when forecast-

ing inflation: “the literature does suggest [ . . . ] variables with the clearest theoretical

justification for use as predictors often have scant empirical predictive content.”

The discussion so far has focused on the “large-n” case, avoiding to mention any-

thing about how small or large the dimension m of the dependent variable y should be.

Although macroeconomic VARs typically contain as dependent variables three or four

fundamental quantities that describe the economy, when forecasting, the actual number

of variables of interest can grow large. A decision maker would be interested to forecast

future values of many series, like production, employment/unemployment, short- and

long-term interest rates, consumer and producer price inflation, exchange rates, and

many other nominal or real quantities. This is easily handled with the model selection

algorithm which is the focus of the next section. The methods described below apply

to large VARs in a general sense, that is (i) when the number of predictors n grows

large and the number of dependent variables m is small, (ii) when m grows large and

n is small, or (iii) when both m;n!1, although the empirical application is centered

upon the first case.

3. BAYESIAN MODEL SELECTION AND AVERAGING

As was mentioned in the introductory section, when the number of candidate models is

too large to enumerate, posterior sampling methods are necessary for the computation

of marginal likelihoods for model comparison. Stochastic search algorithms that base

on a Markov chain on model space identify regions of high posterior probability and

can be used for model selection or to obtain posterior weighted estimates for model av-

eraging. When applied to small models, these algorithms have the ability to search the

entire model space, while in large settings only more plausible models are visited. An

indicator (zero/one) variable 
, epitomizes the core of Bayesian model selection using

stochastic search techniques. Let us define the vector 
 = (
1; :::; 
s) as the complete

set of indicators, where s is the maximum number of parameters in the model. Then

we can proceed by defining a prior p (
) which combined with the likelihood p (dataj
),

will give zero or one value for each 
i, i = 1; :::; s, from the (updated based on data)

posterior distribution p (
jdata). This posterior distribution entails all the necessary in-
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formation for model selection and averaging. The main idea is to impose the vector of

parameters, say � = (�1; :::; �s), to have a structure conditional on the values of 
, so that

when 
i = 1 the associated parameter �i will be estimated according to its unrestricted

posterior density, and when 
i = 0 this would imply �i = 0.

There are many ways to implement this general strategy and many alternative meth-

ods exist which involve several prior specifications. An analytical review of model av-

eraging and selection is offered in Hoeting et. al (1998) and Chipman et al. (2001). A

computationally fast restriction search is described in this section which is based on the

SSVS algorithm of George and McCulloch (1993, 1997).

Define zt =
�
y0t; y

0

t�1; :::; y
0

t�p1
; w0t
�
0

, then the VAR model in familiar matrix form is

obtained by stacking the row vectors yt+1, zt and "t for t = 1; :::; T

y = z�+ ", " � N (0;�) (4)

where y =
�
y02; :::; y

0

T+1

�
0

, z = [z01; :::; z
0

T ]
0
, � = [a0; :::; ap1 ; c0], and " =

�
"02; :::; "

0

T+1

�
0

. Note

that when forecasts are projected h-steps ahead, y is the matrix y =
�
y01+h; :::; y

0

T+h

�
0

(see

next section for a definition). Let nu = m � (m� (p1 + 1) + k � (p2 + 1)) be the total

number of elements in ' = vec (�). From these elements the m in total constants are

always included in the models and admit a typical normal prior of the form

('c) � N
�
'c; vIm

�
(5)

where 'c is the block of ' which contains the constant terms. Let 'k be the vector of

the remaining n' = nu �m parameters in ' which are subject to restriction search and

let 
 =
�

1; :::; 
n�

�
be the vector of indicator variables associated with the elements

of 'k. Then each element 'ki conditional on 
i, i = 1; :::; n', follows a scale mixture of

normals prior of the form

�
'ki j
i

�
� (1� 
i)N

�
0; � 20i

�
+ 
iN

�
0; � 21i

�
(6)

The hyperparameters � 0i, � 1i are selected in such a way so that � 20i is small (or even

zero) and � 21i is large. Subsequently each parameter 'ki is restricted with zero prior

mean and very small (or zero) prior variance when 
i = 0, while for 
i = 1 has a large

(locally uninformative) prior variance and in that respect is left unrestricted.

It would not make sense to define the 
i’s if these were defined subjectively and not
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updated by the information in the data. Hence a Bernoulli prior on these variables is

placed, which updated by the likelihood will result in a conditional posterior which is

also Bernoulli. The elements of the vector 
 follow an independent Bernoulli pi 2 (0; 1)

prior of the form

(
) �
Y

p

i
i (1� pi)

(1�
i) , i = 1; :::; n' (7)

This prior choice reduces computational costs and leads to a posterior density which is

easy to derive. In this case p (
i = 1) = pi = 1 � p (
i = 0) so that pi reflects the prior

belief that 'ki is large enough and should be left unrestricted. By selecting pi < 1=2,

models with an unreasonably large number of parameters are downweighted in order

to highlight the significance of parsimonious models. The special case where pi = 1=2 8

i, is equivalent to a constant uniform prior p (
) � 1=2n'. This prior is uninformative in

the sense that it favors each parameter equally; see Section 4.2 in this paper for more

details, and the discussion in Chipman et al. (2001).

The hierarchical mixture prior described above is straightforward to interpret and

can be applied virtually to any model for which a normal prior can be specified3 as

the conjugate prior that leads to easy derivation of the underlying posterior. A differ-

ent version of the SSVS is used in Brown et al. (1998) for a multivariate regression

model used to predict three variables using 160 predictors. Following the suggestions

of George and McCulloch (1997) and Smith and Kohn (1996) they set in equation (6)

� 20i = 0 and � 21i = g �
�
z0
z


�
�1

. This prior implies that the first component of the mix-

ture is a Dirac delta function at zero, i.e., a function that puts point mass at zero and

hence whenever 
i = 0, 'ki will be exactly zero. The second component is Zellner’s

g-prior specification and suggestions for setting uninformative values of g (although in

a univariate context) are given in Fernandez, Ley, and Steel (2001). An updated and

computationally more efficient version of this prior specification appears in Brown et

al. (2002), where more variables than observations can be handled. The shortcoming

of their approach is that it is able to treat each equation in the VAR individually, but

instead is choosing the variables in z which are more probable to be included in all VAR

equations together. Put simply, if, say, z contains only the first lag of the dependent vari-

ables, then the latter approach will allow the yit�1 to be a predictor of the whole vector

yt, while the approach proposed here yit�1to explain the dependent variable in equation

j of the VAR (denoted yjt), but not the dependent variable in the l-th VAR equation

(denoted ylt). Nevertheless, the Brown et al. (2002) implementation of the SSVS algo-

rithm is a valuable complement to the one used here, and undoubtedly a useful tool in
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empirical analysis with focus on prediction.

Smith and Kohn (2002) extend the stochastic search for parameter restrictions to

the covariance matrix of longitudinal data. George et al. (2008) apply their idea to the

covariance matrix of structural VARs: motivated by the fact that identifying restrictions

on the covariance are usually imposed on the elements of a reparametrization of �, they

focus on restricting the elements of the m�m upper triangular matrix 	 satisfying

��1 = 	0	 (8)

They then derive a mixture of normals prior, as in equation (6), for the nondiagonal

elements of 	, while the diagonal is integrated out with a gamma prior. Matrix 	 has

the form

	 =

2
666664

 11  12 � � �  1m

0  22
. . .

...
...

. . .
. . . 0

0 � � � 0  mm

3
777775

(9)

so let  = ( 11; :::;  mm)
0

and � = (�02; :::; �
0

m)
0 =

�
 12;  13;  23; :::;  (m�1)m

�
0

be the vec-

tors of the diagonal and upper diagonal elements respectively, where �j =
�
 1j; :::;  (j�1)j

�
0

for j = 2; :::;m. Let !j =
�
!1j; :::; !(j�1)j

�
0

be a vector of 0-1 variables so that each ele-

ment of �j has prior conditional on !j of the form

�
�ijj!ij

�
� (1� !ij)N

�
0; �20ij

�
+ !ijN

�
0; �21ij

�
(10)

for i = 1; :::; j � 1 and j = 2; :::;m. As in the case of the vector 
, assume that the

elements of the vector ! = (!02; :::; !
0

m)
0

are independent Bernoulli qij 2 (0; 1) random

variables so that

(!) �
Y

i

Y
j
q
!ij
ij (1� qij)

(1�!ij) (11)

For i = 2; :::;m, each  ii has a gamma prior density

�
 2ii
�
� Gamma (�i; �i)

For more information on these priors the reader is referred to the analytical calcula-

tions of George et al. (2008) where it is shown that finding restrictions on the covari-

ance matrix based solely on the data provides an attractive alternative to identifying
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restrictions imposed in structural VARs. It should be clear from the prior specification

that the SSVS is an intuitive extension of the Bayesian conjugate (normal – inverse

Wishart) prior. In the empirical application I adopt a fast sampling scheme (see Section

4.2) to draw from the posteriors of c and x, which makes computation feasible in mul-

tivariate models. The parameter posteriors are given in detail in Appendix A (Technical

Appendix). Although selection of prior hyperparameters seems to be fairly automatic in

this setting, prior elicitation is an important factor in model selection.

4. EMPIRICAL APPLICATION

4.1 Data

I use the Stock and Watson (2005b) dataset which is an updated version of the Stock

and Watson (2002) dataset that is widely used in empirical applications. This version

consists of 132 monthly variables pertaining to the US economy measured from 1960:01

to 2003:12. The 132 predictors can be grouped in 14 categories: real output and in-

come; employment and hours; real retail, manufacturing, and trade sales; consumption;

housing starts and sales; real inventories; orders; stock prices; exchange rates; interest

rates and spreads; money and credit quantity aggregates; price indexes; average hourly

earnings; and miscellaneous. The data were transformed to eliminate trends and non-

stationarities. All the data and transformations are summarized in Appendix B.

4.2 Selection of prior hyperparameters

Implementation of Bayesian model selection requires all the priors to be proper, as

the ones described in Section 3. Noninformative improper priors are not suitable to

calculate Bayes factors and posterior model probabilities. Even though there are certain

methods which overcome this difficulty (BIC approximations, intrinsic, or fractional

Bayes factors), the standard practice in the Bayesian model selection literature is to use

only proper priors. This does not necessarily mean that noninformative proper priors

cannot be specified. It is easy to choose the hyperparameters in such a way that all the

priors are locally noninformative.

Selection of � 0i, � 1i and �0ij, �1ij can be made along the guidelines of Chipman et al.

(2001, p. 86). For instance, given a non-negative scalar threshold �i, higher posterior
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weighting can be allocated to those values of 
 for which
��'ki
�� > �i when 
i = 1, iff � 0i,

� 1i satisfy

log

�
� 1i=� 0i

��10i � ��11i

�
= �2i

A similar argument can be made for the choice of �0ij and �1ij. Alternatives for a

more objective selection of these hyperparameters exist, but at the cost of a substantial

increase in computational calculations. The first one is to use empirical Bayes criteria

in the spirit of George and Foster (2000), while a fully Bayes approach would require

to place an inverted-Gamma hyperprior on each � 0i, � 1i and �0ij, �1ij. Selection based

on the formula above is a simple task which can easily be implemented in large models.

George et al. (2008) argue that even if the restriction search algorithm is not effective

in selecting the correct restrictions on �, the results can still be used to obtain improved

forecasts.

The only source of difficulty may arise in eliciting the hyperparameters of the Bernoulli

random variables 
 (similarly !). The prior structure that appears in equation (7) (sim-

ilarly in equation (11)) is an “independence prior,” in the sense that each element of


 (!) is assumed to be independent of the rest. This simplification makes it difficult

to account for similarities or differences between models when the correlation between

the explanatory variables is high. While priors that “dilute” probability across neighbor-

hoods of similar models (Chipman et al., 2001; Yuan & Lin, 2005) are able to correct

this shortcoming, it is preferable to use an orthogonal transformation of the variables in

z, by applying a singular value decomposition. This allows exploring the model space

in considerably less iterations, which subsequently decreases the computational cost in

multivariate models. Hence, in the forecasting exercise, I apply the restriction search to

the model

yT+h = GT�h + "T+h

where G = zH are orthogonal variables and � = H�1�; see Koop and Potter (2004).

This approach will speed up computations, even though orthogonality does not lead

to posterior independence of elements of 
. The default choice pi = 1=2 in equation

(7) and qij = 1=2 in equation (11) may result in a uniform prior, but this would not

be a noninformative prior about model size. A rule of thumb is that if the researcher

anticipates many (few) restrictions on the model then the choice should be pi; qij < 1=2

(pi; qij > 1=2). Prior sensitivity analysis using real and simulated data showed that

pi = qij = 1=2 is able to identify restrictions quite well and hence is left as the default
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reasonable choice.

Following the suggestions of George et al. (2008) and George and McCulloch

(1997), I adopt a fast sampling scheme for 
 and !, which requires to set � 0i and

�0ij small, but different from 0. According to the preceding discussion in this subsection

and the absence of prior beliefs about specific parameters I set � 0i = � 0 = 0:01, � 1i =

� 1 = 70 for all i = 1; :::; n', and �0ij = �0 = 0:01, �1ij = �1 = 30 for all j = 2; :::;m and

i = 1; :::; j � 1. For the intercept term, the typical normal prior has mean 'c = 1 and

variance v = 100. A default noninformative choice for the parameters of the Gamma

density is �i; �i = 0:01.

4.3 Implementation of Bayesian Model Averaging/Selection

At this point, as it is practically impossible to summarize model selection results from

the recursive forecasting exercise, I summarize the average posterior probability of

some of the variables in the dataset without extracting factors, i.e., replacing wt with

xt = (x1t; :::; xnt)
0

in specification (1), and using the full sample of observations from

1960:1 to 2003:12. I consider a New Keynesian VAR with three variables (unemploy-

ment, consumer price index, and federal funds rate) regressed on an intercept, 14 au-

toregressive lags, and the remaining 129 variables in the dataset which are used as

exogenous predictors. This gives a total of 129 + 13� 3 = 168 right-hand side variables

(excluding the intercept which is always included) to choose from in each equation.

The horizon chosen in this illustration is h = 12. The unemployment and interest rate

are transformed to stationarity by taking first differences. The consumer price index is

transformed by taking the second difference of the logarithm.

A parameter should either be included or excluded, hence the number of all possible

models is 2168 in each VAR equation and 2168�3 = 5:2e+151 in total. The BMA posterior

probabilities are computed for each parameter i = 1; :::; n' as

E (
ijy) =
1

S

SX

s=1



(s)
i

where S is the total number of iterations from the posterior sampler, and 

(s)
i are draws

from the conditional posterior of 
i. This suggests that the average probability is ac-

tually the proportion of models visited by the Gibbs sampler, which contain the corre-

sponding variable. Exactly similar inference and interpretation holds for the parameters
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!, although these index elements of the covariance matrix and not columns of predic-

tors in mean VAR equation.

Tables C1 and C2 summarize the results for those predictor variables and own lags,

respectively, that have the highest probabilities. Variables which had average posterior

probability less than 0:5 in all of the three equations are not included at all in the tables.

Each element in these tables is the BMA posterior probability and can be interpreted

simply as the probability that the corresponding right-hand side variable should be in-

cluded. For this specific application the variables are not orthogonalized in order to

retain the interpretation of the probabilities as the amount of belief that the respective

variable is included in the model. The results are based on 150,000 iterations with a

burn-in period of 50,000, which leaves 100,000 draws to evaluate the posterior of 
.

Elicitation of prior hyperparameters is based on the values described in Section 4.2.

Note that the probabilities ! for 	 are 0.52, 1, and 1 for each of the upper diagonal

elements  12,  13, and  23 respectively. Once all these probabilities are available, it is

straightforward to interpret them. This output can be used to implement BMA if all

variables contribute to the final forecast according to their probability, no matter how

high or low this probability is. Looking for example at Table C1, the spread of the

10-year interest rate from the federal funds rate variable will contribute to the final

forecast of the unemployment rate, the consumer price index, and the interest rate in

100, 86.1, and 100%of the occasions (models visited by the sampler), respectively. In

contrast the same output can be used to select the best single model. Barbieri and

Berger (2004) show that in the context of Bayesian model selection the optimal model

is the median probability model. According to this result, only the variables which

have average probability larger than 0.5 in each equation will be unrestricted. These

probabilities are presented in Tables C1 and C2. Hence, in this “best” model, the 1,

5, and 10-year interest rate spreads should be included in all three equations, while

capacity utilization should enter only the unemployment equation.

The results presented in Table C1 are also subject to economic interpretation. Space

restrictions, however, do not allow further analysis in this study. Structural interpreta-

tion is not the main focus, but forecast improvement is. This is an issue examined in the

following section.
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4.4 Forecasting in Large VAR Models

The first estimation period is set to 1960:1 and a simulated real-time forecasting of yt+h

is done from 1983:1 through 2003:12-h, for horizons h = 1; 6; and 12. Each VAR model

has eight dependent variables of interest (with their short mnemonic from the dataset in

parentheses): Personal Income (A0M052), Industrial Production (IPS10), Employment

Rate (CES002), Unemployment Rate (LHUR), 3-month Treasury Bill Rate (FY GM3),

Producer Price Index (PWFSA), Consumer Price Index (PUNEW ), and PCE Deflator

(GMDC). This leaves a total of 124 variables to explore their predictive content. As

mentioned earlier, all the variables are transformed to stationarity, a fact that implies

a specific transformation of the variable yt+h proper for forecasting. Let vit denote the

untransformed value of yit for each of the eight monthly dependent variables i, then

yit+h = (1200=h) log (vit+h=vit) for i = (A0M052; IPS10; CES002), yit+h = vit+h � vit

for i = (LHUR;FY GM3), and yit+h = (1200=h) flog (vit+h=vit)� h� log (vit)g for i =

(PWFSA;PUNEW;GMDC).

The principal components are estimated from the 124 variables in the dataset using

the same sample period as the VAR. Several multivariate forecasting exercises in the

literature (cf. Stock & Watson, 2002) focus on finding the best performing model. In

contrast, here the main challenge is to improve forecasts when the number of predic-

tors grows large and the researcher has no prior information about which is the correct

model size. Thus, the maximum potential number of factors and lags is deliberately set

to large, “uninformative” values. In particular, 10 principal components (k = 10) are

extracted from the factor model in equation (2), while the VAR specification in equa-

tion (3) contains an intercept, 13 autoregressive lags (p1 = 12), and 13 lagged factors

(p2 = 12). This gives a maximum of 221 (plus the intercepts, which are unrestricted)

potential predictors of each of the 8 dependent variables. For the purpose of the empir-

ical application forecasts are computed from: (i) VAR with SSVS and model averaging,

(ii) VAR with SSVS and model selection, and (iii) VAR estimated using OLS with selec-

tion of predictors with the Bayesian information criterion (which has a larger penalty

for less parsimonious models relative to the Akaike information criterion, and is a rough

approximation to the Bayes factors). The predictors in the latter method are orthogo-

nalized and the total number of possible models considered is equal to the maximum

number of right-hand side variables and subsequently selection of the best model is

implemented in a finite number of calculations.
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An appropriate common way to quantify out-of-sample forecasting performance is to

compute the root mean square forecast error (RMSFE) statistic for each forecast horizon

h:

RMSFEhij =

vuut
2003:12�hX

t=1982:12

�
y�i;t+h � eyi;t+h;j

�2
(12)

where y�i;t+h is the realized (observed) value of y at time t + h for the i-th series, and

eyi;t+h;j is the mean of the posterior predictive density at time t + h, for the i-th series,

from the j-th forecasting model. The RMSFE of each model is reported relative to the

RMSFE of a benchmark VAR with an intercept and seven lags of the dependent variables,

estimated with OLS

rRMSFEhij =
RMSFEhij

RMSFEh
iV AR(7)

(13)

This VAR(7) model is not chosen because of its higher forecasting ability compared

to other alternatives. Following the standard convention in the literature an AR(2)

model would be a better candidate to serve as the benchmark model. But note that the

VAR(7) is nested to the VAR with factors, which will give a better picture of whether the

restrictions found by the SSVS are actually the ones that will lead to reduced RMSFE

statistics, compared to a more parsimonious alternative. The forecasting performance

of the models based on the relative RMSFE for horizons h = 1; 6; 12, is summarized in

Table C3. These are the averaged values of the RMSFEs over the forecast period, 1983:1

through 2003:12-h.

The results are encouraging about the application of the restriction search algorithm

in large models. In most occasions the BMA and Bayesian model selection give improved

results compared to the BIC selection. Note that the improvement is not only due to the

fact that the models of interest contain more predictors than the benchmark model. It

is noteworthy that in some occasions only lags of the dependent variable are selected

from the restriction search, while for most samples the number of important lagged

factors, for each dependent variable, is not more than five. This is supported by the fact

that the average RMSFE (results not reported here) of the large VAR with factors but

without selection of predictors (i.e., a heavily overparametrized model) is, as expected,

extremely high relative to the VAR(7). An important feature of the restriction search

algorithm applied to the specific VAR is that the forecasts from Bayesian model selection

are better than the forecasts from BMA. The practical difference of the two approaches

is that BMA shrinks the posterior means of the parameter with low probability toward
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zero, while Bayesian model selection imposes that these parameters (with probability

less than 0.5) will be exactly zero.

5. CONCLUSIONS

This paper addresses the forecasting performance of Bayesian VAR models with many

predictors using a flexible prior structure which leads to output that can be used for

model selection and model averaging. For eight U.S. monthly macroeconomic variables

of interest forecasting accuracy is improved over least squares estimation and selection

of predictors using the Bayesian information criterion. Without arguing that the choice

of prior hyperparameters was the best possible and done with a strict “objective” cri-

terion (like in other BMA applications, see Fernandez et al., 2001), the gains from the

standard automated choices are appreciable. As already mentioned, there are many

proposals in the Bayesian literature for efficient elicitation of prior hyperparameters for

model selection and some of them were discussed in the paper. Nevertheless, the merit

of the SSVS for VAR models lies in its simplicity and intuitive interpretation.

With regard to other macroeconometric specifications, the flexibility of the restric-

tion search algorithm suggests many interesting extensions. Firstly, note that it is

straightforward to adopt it in general piecewise-linear multivariate regressions that al-

low for thresholds, Markov switching or structural breaks; an interesting area for future

research. Secondly, I only considered the case where the number of dependent vari-

ables, m, is small and the number of predictors grows large. But as already mentioned

the restriction search algorithm may also be used when the number of dependent vari-

ables grows large. Banbura, Giannone, and Reichlin (2007) examine this case using

shrinkage priors and find huge gains from this large VAR specification. Lastly, an inter-

esting direction for future research would be the empirical application of the restriction

search algorithm in the Bayesian dynamic factor model. This approach will probably

improve forecasting performance and impulse response analysis in DFMs that lack par-

simony (cf. Bernanke et al., 2005 and Stock & Watson, 2005b).
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APPENDICES

A TECHNICAL APPENDIX – A GIBBS SAMPLER FOR SSVS

IN VAR MODELS

The priors described in Section 3 combined with the likelihood function of a VAR model,

will allow us to derive and draw from the full conditional distributions. The likelihood

of the VAR model y = z�+ ", " � N (0;�) with ��1 = 	0	, is

L (yj�;	) / j	j�T exp

�
�
1

2
tr
�
	0 (y � z�)0 (y � z�)	

��

= j	j�T exp

�
�
1

2

�
�� b�

�
0

[		0 
 (z0z)]
�
�� b�

�

�
1

2
tr

��
y � zb�

�
0

	0	
�
y � zb�

���

where b� is the MLE of �. This form of the likelihood function allows to derive the

posterior of the � parameters. In order to derive the posterior of the elements of 	

we need to first rewrite the likelihood function in convenient form. Define S (�) =

(y � z�)0 (y � z�) and write S (�) = sij. For j = 2; :::;m define the (m� 1) vectors

sj =
�
s1j; :::; s(j�1)j

�
0

containing the upper diagonal elements of S (�), and the (m� 1)

matrices Sj containing the upper left j � j submatrix of S (�). Define also �1 = s11 and

�i = jSij = jSi�1j = sii � s0iS
�1
i�1si for i = 2; :::;m. The likelihood function now cam take

the following form

L (yj�;	) /

mY

i=1

( ii)
T exp

(
�
1

2

"
mX

i=1

 2ii�i +
mX

j=2

�
�j +  jjS

�1
j�1sj

�
0

Sj�1
�
�j +  jjS

�1
j�1sj

�
#)

Now define D = diag
�
h1; :::; hn'

	
with

hi =

(
� 0i, if 
i = 0

� 1i, if 
i = 1
, for i = 1; :::; n'
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and, similarly, define Dj = diag
�
h1j; :::; h(j�1)j

	
with

hij =

(
�0ij, if !ij = 0

�1ij, if !ij = 1

for i = 1; :::; j and j = 2; :::;m. Then we can rewrite equations (6) and (10) in the main

text, as

�
'ki j


�
� N (0; DD)

�
�jj!j

� iid
� Nj�1 (0; DjDj)

respectively. Denote the combined prior of the unrestricted coefficients 'c and the re-

stricted coefficients 'k as ' � N
�
'; V

�
. Given starting values, model parameters are

drawn from their conditionals for r = 1; :::; R iterations:

1. Draw
�
 (r)j�(r�1); !(r�1); 
(r�1); '(r�1); data

�
by sampling each element from the

Gamma distribution

 2ii � Gamma

�
�i +

1

2
T;Bi

�

where

Bi =

(
�1 +

1
2
s11 for i = 1

�i +
1
2

h
sii � s0i

�
Si�1 + (DiDi)

�1��1 si
i

for i = 2; :::;m

2. Draw
�
�(r)j (r); 
(r�1); '(r�1); !(r�1); data

�
by sampling each element from the Nor-

mal distribution �
�j
�
� Nj�1

�
�j;�j

�

where for j = 2; :::;m.

�j = � jj
�
Sj�1 + (DjDj)

�1	�1 sj
�j =

�
Sj�1 + (DjDj)

�1	�1

3. Draw
�
!(r)j�(r);  (r); 
(r�1); '(r�1); data

�
by sampling each element from the Bernoulli
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distribution

(!ij) � Bernoulli

�
1;

u1ij
u1ij + u2ij

�

where for j = 2; :::;m and i = 1; :::; j � 1

u1ij =
1

�0ij
exp

 
�
 2ij
2�20ij

!
qij

u2ij =
1

�1ij
exp

 
�
 2ij
2�21ij

!
(1� qij)

4. Draw
�
'(r)j�(r);  (r); !(r); 
(r�1); data

�
by sampling ' = vec (�) from the Normal

distribution

(') � Nnu (�;�)

where

� =
�
(		0)
 (z0z) + V �1

	
�1 �

((		0)
 (z0z)) b'+ V �1'
	

� =
�
(		0)
 (z0z) + V �1

	
�1

where b' is the vector occuring from stacking the elements of the matrix of MLE

coefficients, i.e. b' = vec
�
b�
�
= vec

�
(z0z)�1 z0y

�
.

5. Draw
�

(r)j�(r);  (r); !(r); '(r); data

�
by sampling each element from the Bernoulli

density

(
i) � Bernoulli

�
1;

u1i
u1i + u2i

�

1. where for i = 1; :::; nu

u1i =
1

� 0i
exp

�
�
'2i
2� 20i

�
pi

u2i =
1

� 1i
exp

�
�
'2i
2� 21i

�
(1� pi) :
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B DESCRIPTION OF DATA

This table lists the 132 variables in the dataset used. The third column indexes the

respective transformation applied to each of the variables to ensure stationarity (at

least approximately). Let vt and xt be the untransformed value and transformed values

respectively, then there are five cases:(1) lv: xt = vt (level), (2) ln: xt = log(vt) (log-

arithm), (3) �lv: xt = vt � vt�1 (first difference), (4) � ln: xt = log (vt=vt�1) (growth

rate), and (5) �2 ln: xt = � log (vt=vt�1) :This table is from Stock and Watson (2005b)

and the reader should seek in this reference the original source of the data.

# Mnemonic Trans Description

1 A0M052 � ln Personal income (ar, bil. chain 2000 $)

2 A0M051 � ln Personal income less transfer payments (ar, bil.

chain 2000 $)

3 A0M224 � ln Real consumption (A0M224=GMDC)

4 A0M057 � ln Manufacturing and trade sales (mil. chain 1996 $)

5 A0M059 � ln Sales of retail stores (mil. chain 2000 $)

6 IPS10 � ln Industrial production index - total index

7 IPS11 � ln Industrial production index - products, total

8 IPS299 � ln Industrial production index - final products

9 IPS12 � ln Industrial production index - consumer goods

10 IPS13 � ln Industrial production index - durable consumer

goods

11 IPS18 � ln Industrial production index - nondurable consumer

goods

12 IPS25 � ln Industrial production index - business equipment

13 IPS32 � ln Industrial production index - materials

14 IPS34 � ln Industrial production index - durable goods materi-

als

15 IPS38 � ln Industrial production index - nondurable goods ma-

terials

16 IPS43 � ln Industrial production index - manufacturing17

17 IPS307 � ln Industrial production index - residential utilities

18 IPS306 � ln Industrial production index - fuels

19 PMP lv NAPM production index (percent)
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# Mnemonic Trans Description

20 A0M082 �lv Capacity utilization (mfg)

21 LHEL �lv Index of help-wanted advertising in newspapers

(1967=100;sa)

22 LHELX �lv Employment: ratio; help-wanted ads/ no. unem-

ployed clf

23 LHEM �lv Civilian labor force: employed, total (thous.)

24 LHNAG �lv Civilian labor force: employed, nonagricultural in-

dustries (thous.)

25 LHUR �lv Unemployment rate: all workers, 16 years & over

(%)

26 LHU680 �lv Unemployment by duration: average (mean) dura-

tion in weeks

27 LHU5 � ln Unemployment by duration: persons unemployed

less than 5 wks (thous.)

28 LHU14 � ln Unemployment by duration: persons unemployed 5

to 14 wks (thous.)

29 LHU15 � ln Unemployment by duration: persons unemployed

15 wks + (thous.)

30 LHU26 � ln Unemployment by duration: persons unemployed

15 to 26 wks (thous.)

31 LHU27 � ln Unemployment by duration: persons unemployed

27 wks + (thous.)

32 A0M005 � ln Average weekly initial claims, unemployment insur-

ance (thous.)

33 CES002 � ln Employees on nonfarm payrolls - total private

34 CES003 � ln Employees on nonfarm payrolls - goods-producing

35 CES006 � ln Employees on nonfarm payrolls - mining

36 CES011 � ln Employees on nonfarm payrolls - construction37

38 CES017 � ln Employees on nonfarm payrolls - durable goods

39 CES033 � ln Employees on nonfarm payrolls - nondurable goods

40 CES046 � ln Employees on nonfarm payrolls - service-providing

41 CES048 � ln Employees on nonfarm payrolls - trade, transporta-

tion, and utilities
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# Mnemonic Trans Description

42 CES049 � ln Employees on nonfarm payrolls - wholesale trade

43 CES053 � ln Employees on nonfarm payrolls - retail trade

44 CES088 � ln Employees on nonfarm payrolls - financial activities

45 CES140 � ln Employees on nonfarm payrolls - government

46 A0M048 � ln Employee hours in nonagricultural establishments

(ar, bil. hours)

47 CES151 lv Average weekly hours of production or nonsupervi-

sory workers on private nonfarm payrolls

48 CES155 �lv Average weekly hours of production or nonsupervi-

sory workers on private nonfarm payrolls

49 AOM001 lv Average weekly hours: manufacturing (hours)

50 PMEMP lv NAPM employment index (percent)

51 HSFR ln Housing starts: nonfarm (1947-58); total farm

52 HSNE ln Housing starts: Northeast (thousands of units)

53 HSMW ln Housing starts: Midwest (thousands of units)

54 HSSOU ln Housing starts: South (thousands of units)55

56 HSBR ln Housing authorized: total new priv housing units

(thousands)

57 HSBNE ln Houses authorized by build. permits: Northeast

(thousands of units)

58 HSBMW ln Houses authorized by build. permits: Midwest

(thousands of units)

59 HSBSOU ln Houses authorized by build. permits: South (thou-

sands of units)

60 HSBWST ln Houses authorized by build. permits: West (thou-

sands of units)

61 PMI lv Purchasing managers’ index (sa)

62 PMNO lv NAPM new orders index (percent)

63 PMDEL lv NAPM vendor deliveries index (percent)

64 PMNV lv NAPM inventories index (percent)

65 A0M008 � ln Mfrs’ new orders, consumer goods and materials

(bil. chain 1982 $)
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# Mnemonic Trans Description

66 A0M007 � ln Mfrs’ new orders, durable goods industries (bil.

chain 2000 $)

67 A0M027 � ln Mfrs’ new orders, nondefense capital goods (mil.

chain 1982 $)

68 A1M092 � ln Mfrs’ unfilled orders, durable goods indus. (bil.

chain 2000 $)

69 A0M070 � ln Manufacturing and trade inventories (bil. chain

2000 $)

70 A0M077 �lv Ratio, mfg. and trade inventories to sales (based on

chain 2000 $)

71 FM1 �2 ln Money stock: M1 (bil$,sa)

72 FM2 �2 ln Money stock: M2 (bil$,sa)

73 FM3 �2 ln Money stock: M3 (bil$,sa)

74 FM2DQ � ln Money supply - M2 in 1996 dollars (bci)

75 FMFBA �2 ln Monetary base, adjusted for reserve requirement

changes(mil$,sa)

76 FMRRA �2 ln Depository inst. reserves: total, adjusted for reserve

req changes (mil$,sa)

77 FMRNBA �2 ln Depository inst. reserves: non-borrowed, adj re-

serve req changes (mil$,sa)

78 FCLNQ �2 ln Commercial & industrial loans outstanding in 1996

dollars (bci)

79 FCLBMC lv Wkly rp lg com’l banks:net change com’l & indus

loans (bil$,saar)

80 CCINRV �2 ln Consumer credit outstanding – non-revolving

81 A0M095 �lv Ratio, consumer installment credit to personal in-

come (pct.)

82 FSPCOM � ln S&P’s common stock price index: composite (1941-

43=10)

83 FSPIN � ln S&P’s common stock price index: industrials (1941-

43=10)

84 FSDXP �lv S&P’s composite common stock: dividend yield (%

per annum)
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# Mnemonic Trans Description

85 FSPXE � ln S&P’s composite common stock: price-earnings ra-

tio (%)

86 FYFF �lv Interest rate: Federal funds (effective) (% per an-

num)87

88 FYGM3 �lv Interest rate: u.s. Treasury bills, sec market, 3-

mo.(% per annum)

89 FYGM6 �lv Interest rate: u.s. Treasury bills, sec market, 6-

mo.(% per annum)

90 FYGT1 �lv Interest rate: u.s. Treasury const maturities, 1-yr.(%

per annum)

91 FYGT5 �lv Interest rate: u.s. Treasury const maturities, 5-yr.(%

per annum)

92 FYGT10 �lv Interest rate: u.s. Treasury const maturities, 10-

yr.(% per annum)

93 FYAAAC �lv Bond yield: Moody’s AAA corporate (% per annum)

94 FYBAAC �lv Bond yield: Moody’s BAA corporate (% per annum)

95 SCP90 lv CP90 – FYFF (spread)

96 SFYGM3 lv FYGM3 – FYFF (spread)

97 SFYGM6 lv FYGM6 – FYFF (spread)

98 SFYGT1 lv FYGT1 – FYFF (spread)

99 SFYGT5 lv FYGT5 – FYFF (spread)

100 SFYGT10 lv FYGT10 – FYFF (spread)

101 SFYAAAC lv FYAAAC – FYFF (spread)

102 SFYBAAC lv FYBAAC – FYFF (spread)

103 EXRUS � ln United States; effective exchange rate (merm) (in-

dex no.)

104 EXRSW � ln Foreign exchange rate: Switzerland (Swiss franc per

U.S.$)

105 EXRJAN � ln Foreign exchange rate: Japan (yen per U.S.$)

106 EXRUK � ln Foreign exchange rate: United Kingdom (cents per

pound)

107 EXRCAN � ln Foreign exchange rate: Canada (Canadian$ per

U.S.$)
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# Mnemonic Trans Description

108 PWFSA �2 ln Producer price index: finished goods (82=100,sa)

109 PWFCSA �2 ln Producer price index: finished consumer goods

(82=100,sa)

110 PWIMSA �2 ln Producer price index: intermed mat. supplies &

components (82=100,sa)

111 PWCMSA �2 ln Producer price index: crude materials (82=100,sa)

112 PSCCOM �2 ln Spot market price index: bls & crb: all commodi-

ties(1967=100)

113 PSM99Q �2 ln Index of sensitive materials prices (1990=100)(bci-

99a)

114 PMCP lv NAPM commodity prices index (percent)

115 PUNEW �2 ln CPI-u: all items (82-84=100,sa)116

117 PU84 �2 ln CPI-u: transportation (82-84=100,sa)

118 PU85 �2 ln CPI-u: medical care (82-84=100,sa)

119 PUC �2 ln CPI-u: commodities (82-84=100,sa)

120 PUCD �2 ln CPI-u: durables (82-84=100,sa)

121 PUS �2 ln CPI-u: services (82-84=100,sa)

122 PUXF �2 ln CPI-u: all items less food (82-84=100,sa)

123 PUXHS �2 ln CPI-u: all items less shelter (82-84=100,sa)

124 PUXM �2 ln CPI-u: all items less medical care (82-84=100,sa)

125 GMDC �2 ln PCE, impl price deflator (1987=100)

126 GMDCD �2 ln PCE, impl price deflator: Durables (1987=100)

127 GMDCN �2 ln PCE, impl price deflator: Nondurables (1996=100)

128 GMDCS �2 ln PCE, impl price deflator: Services (1987=100)

129 CES275 �2 ln Average hourly earnings of production or nonsuper-

visory workers on private nonfarm payrolls: goods

130 CES277 �2 ln Average hourly earnings of production or nonsuper-

visory workers on private nonfarm payrolls: con-

struction

131 CES278 �2 ln Average hourly earnings of production or nonsuper-

visory workers on private nonfarm payrolls: manu-

facturing

132 HHSNTN �lv U. of Michigan index of consumer expectations
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Table C1. Average Posterior Probabilities of Explanatory Variables in the 3-variable VAR

Explanatory variables ut+12 cpit+12 rt+12

Personal income 0.141 0.001 0.949

IP index - Final products 0.251 0.003 0.564

IP index - Manufacturing 0.593 0.016 0.17

Capacity Utilization 1 0.124 0.032

Employment ratio 0.011 0.002 0.992

Civilian labor force: Total employed 0.428 0.003 0.652

Employees on nonfarm payrolls - Total private 0.811 0.018 0.317

Employees on nonfarm payrolls - Manufacturing 0.5 0.014 0.33

Employees on nonfarm payrolls - Service-providing 1 0.023 0.826

Employees on nfm prl - Trade, transportation and utilities 0.878 0.003 0.682

Employees on nonfarm payrolls - Wholesale trade 0.296 0.003 1

Employees on nonfarm payrolls - Financial activities 0.687 0.008 0.697

Average weekly hours of production 0.001 0.082 0.941

Housing starts: Total 0.879 0.001 0.04

Housing authorized: Total 1 0.001 1

Houses authorized by building permits: Northeast 1 0.105 0.003

Houses authorized by building permits: Midwest 1 0.025 0.018

Houses authorized by building permits: South 1 0.001 0.006

Houses authorized by building permits: West 1 0 1

Consumer installment credit to Personal income (ratio) 0.013 0.001 1

S&P’S common stock price index: Composite 0.962 0.132 0.004

S&P’s composite common stock: Dividend yield 0.092 0.001 0.937

Commercial paper rate (spread from Fed Funds Rate) 0.028 0.7452 0.851

3-month interest rate (spread from FFR) 0.002 0.087 1

6-month interest rate (spread from FFR) 0.005 0.002 1

1-year interest rate (spread from FFR) 0.941 0.752 0.992

5-year interest rate (spread from FFR) 1 0.982 1

10-year interest rate (spread from FFR) 1 0.861 1

Bond yield: Moody’s BAA corporate (spread from FFR) 0.001 0 0.978

NAPM commodity prices index 0.0012 0.867 0.857

CPI-U: Durables 0.172 0.002 0.543

CPI-U: All items less shelter 0.246 0.006 0.692
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Table C2. Average Posterior Probabilities of AR-lags in the 3-variable VAR

Dependent

Variable

Most important lags

(probability>0.5)
Average posterior probability

ut+12 rt�7 0:56

cpit+12

rt�7

Own lags 1 to 7 (i.e. cpit to cpit�6)

cpit�7

0:74

1

0:83

rt+12 rt�6 1

Table C3. Forecast Comparison - relative RMSFE

PI IP EMP UR TBILL PPI CPI PCED

BVAR with factors (Bayesian Model Averaging)

h = 1 0.94 1 0.9 0.96 1.08 0.88 0.95 1.09

h = 4 1.06 0.96 0.93 0.94 0.95 0.92 1.05 0.94

h = 12 0.97 0.92 0.99 1.02 0.98 0.92 0.95 0.96

BVAR with factors (Model Selection)

h = 1 0.86 0.98 0.87 0.96 1.06 0.91 0.93 0.91

h = 4 0.9 0.97 0.85 0.92 0.94 0.94 0.98 0.93

h = 12 0.87 0.99 0.91 0.98 0.89 0.87 0.99 0.96

VAR with factors (BIC Selection)

h = 1 0.92 0.99 0.94 0.99 1.22 0.99 1.01 0.97

h = 4 0.93 0.97 0.94 0.94 1.12 0.97 1.06 0.94

h = 12 0.97 1.04 0.98 1.05 0.99 0.9 1.1 0.95

Note: The variables of interest are: PI: Personal Income (A0M052), IP: Industrial Production(IPS10), EMP:Employment Rate

(CES002), UR: Unemployment Rate (LHUR), TBILL: 3-month Treasury Bill Rate (FYGM3), PPI: Producer Price Index (PWFSA),

CPI: Consumer Price Index (PUNEW), andPCED: PCE Deflator (GMDC)
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