Allal, Jelloul and Kaaouachi, Abdelali and Paindaveine, Davy (2001): R-estimation for ARMA models. Published in: Journal of Nonparametric Statistics No. 13 (2001): pp. 815-831.
Preview |
PDF
MPRA_paper_21167.pdf Download (207kB) | Preview |
Abstract
This paper is devoted to the R-estimation problem for the parameter of a stationary ARMA model. The asymptotic uniform linearity of a suitable vector of rank statistics leads to the asymptotic normality of √n-consistent R-estimates resulting from the minimization of the norm of this vector. By using a discretized √n-consistent preliminary estimate, we construct a new class of one-step R-estimators. We compute the asymptotic relative efficiency of the proposed estimators with respect to the LS estimator. Efficiency properties are investigated via a Monte-Carlo study in the particular case of an AR(1) model.
Item Type: | MPRA Paper |
---|---|
Original Title: | R-estimation for ARMA models |
Language: | English |
Keywords: | R-estimation, ARMA models, local asymptotic normality, asymptotic linearity |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General |
Item ID: | 21167 |
Depositing User: | Davy Paindaveine |
Date Deposited: | 07 Mar 2010 04:36 |
Last Modified: | 01 Oct 2019 00:42 |
References: | Adichie, J.N. (1967). Estimation of regression parameters based on rank tests, Ann. Math. Statist. 38, 894-904. Allal, J., (1991). R-estimation dans le mod`ele autor ́egressif d’ordre un, Thèse de Doctorat. Université libre de Bruxelles. Chernoff, H. and Savage, I.R., (1958). Asymptotic normality and efficiency of certain nonparamet- ric tests. Ann. Math. Statist. 29, 972-994. Fuller, W.A., (1976). Introduction to statistical time series, J. Wiley, New York. Ha ́jek, J. and Sˇida ́k, Z., (1967). Theory of rank tests, Academic press, New York. Hallin, M., (1994). On the Pitman-nonadmissibility of correlogram-based methods. Journal of Time Series Analysis 15, 607-612. Hallin M., Ingenbleek, J.F. and Puri M.L., (1985). Linear serial rank tests for randomness against ARMA alternatives, Ann. Statist. 13, 1156-1181. Hallin, M. and Puri, M.L., (1994). Aligned rank tests for linear models with autocorrelated error terms, J. Multivariate Anal. 50, 175-237. Hodges, J.L. and Lehmann, E.L., (1963). Estimates of location based on rank tests, Ann. Math. Statist. 34, 589-611. Jaeckel, L.A., (1972). Estimating regression cœfficients by minimizing the dispersion of the resid- uals, Ann. Math. Statist. 43, 1449-1458. Jureckova, J. (1971). Nonparametric estimate of regression cœfficients, Ann. Math. Statist. 42, 1328-1338. Jureckova, J. and Sen, P.K. (1996), Robust statistical procedures : asymptotics and interrelations. Koul, H.L., (1971). Asymptotic behavior of a class of confidence regions based on ranks in regression, Ann. Math. Statist. 42, 466-476. Koul, H.L. and Saleh, A.K.Md.E., (1993). R-estimation of the parameters of autoregressive AR(p) models, Ann. Statist. 21, 534-551. Kreiss, J.P., (1987-a). On adaptive estimation in stationary ARMA processes, Ann. Statist. 15, 112-133. Kreiss, J.P., (1987-b). A note on M-estimation in stationary ARMA processes, Statistics and Decisions 3, 317-336. Le Cam, L., (1960). Locally asymptotically normal families of distributions. University of California. Publications in Statistics, 3, 37-98. Puri, M.L. and Sen, P.R. (1985), Nonparametric methods in general linear models. Yoshihara, K. I. (1976). Limiting behavior of U-statistics for stationary absolutely regular process, Z. Wahrsch. vew. Gebiete, 35, 237-252. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/21167 |