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Abstract 

To analyze the welfare gain from allowing for differentiated patent protection across 

sectors, this study develops a two-sector quality-ladder growth model in which patent breadth is 

a policy variable and derives the optimal patent breadth under two policy regimes. We show that 

(i) the optimal uniform patent breadth is a weighted average of the optimal sector-specific patent 

breadth, and (ii) the optimal sector-specific patent breadth is larger in the sector that has a larger 

market size and more technological opportunities. To derive the optimal policy, we allow for an 

arbitrary path of patent breadth and derive the optimal path by solving a Stackelberg differential 

game. We find that the optimal path of patent breadth under each regime is stationary, time-

consistent and subgame perfect. Finally, we perform a numerical investigation and find that even 

a moderate degree of asymmetry across sectors can generate a significant welfare cost of uniform 

patent protection. 
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“The economic evidence is overwhelming that innovation works differently in different 

industries, and that the way patents affect innovation also differs enormously by industry. 

The question for patent policy is how to respond to those differences.”  

– Burk and Lemley (2009, p. 4-5) 

 

1. Introduction 

In a recent book, Burk and Lemley (2009) argue that the courts should tailor the unitary patent 

rules through interpretations and applications to suit the different needs of diverse industries.
1
 An 

important shortcoming of the patent system is that diverse industries, such as pharmaceuticals, 

software and semiconductors, are governed by the same set of rules. For example, as a result of 

the TRIPS agreement,
2
 the statutory term of patent in the US is 20 years for inventions across 

almost all fields of technology, and this one-size-fit-all patent policy is unlikely to provide the 

appropriate incentives for innovation in every industry. Fortunately, there are other patent-policy 

instruments that can be adjusted by policymakers. An important example is patent breadth that 

determines the broadness or scope of a patent. When an inventor applies for a patent, she makes 

a number of claims about the invention in her application to be reviewed by a patent examiner. 

The Burk-Lemley proposal implies that the courts should be given the discretion to decide how 

broadly or narrowly these patent claims are to be interpreted on a case-by-case basis tailoring to 

the needs of different industries. 

To analyze the welfare implications of allowing for sector-specific patent protection, this 

study develops a two-sector quality-ladder growth model in which patent breadth is a policy 

                                                 
1 Burk and Lemley (2009) note that the courts already treat innovation across industries differently, but they also 

argue that the current degree of differentiation is insufficient. 
2 The World Trade Organization’s Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS), 

initiated in the 1986-94 Uruguay Round, establishes a minimum level of intellectual property protection that must be 

provided by all member countries. 
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variable. Then, we derive the optimal patent breadth under two policy regimes (i) uniform patent 

breadth across sectors and (ii) sector-specific patent breadth. Finally, we perform a numerical 

investigation on the potential welfare gain from differentiated patent breadth across sectors. 

We extend the quality-ladder model of Grossman and Helpman (1991) by incorporating 

two sectors that are differentiated by market size and technological opportunity. Within this 

framework, we show that (i) the optimal patent breadth is larger in the sector that has a larger 

market size and more technological opportunities, and (ii) the optimal uniform patent breadth is a 

weighted average of the optimal sector-specific patent breadth and the optimal weight is given by 

each sector’s market size. Comparing the differences in economic growth and social welfare 

under the two policy regimes, we find that although the growth-rate differential is zero in this 

model, the welfare difference is generally nonzero and determined by the relative technological 

opportunity and market size across sectors. This finding has an important policy implication that 

even if empirical studies do not find a significant improvement in growth upon implementing 

differentiated patent protection across sectors, the welfare gain can still be significant. In the 

numerical analysis, we find that a moderate degree of asymmetry across sectors can generate a 

significant welfare gain from allowing for sector-specific patent breadth. 

Some interesting recent studies, such as Acemoglu and Akcigit (2009) and Mosel (2009), 

also analyze the implications of differentiated patent protection across sectors. In addition to 

some modeling differences in the growth-theoretic framework, the present study differs from the 

above studies in the following ways. Firstly, these studies model patent protection as a constant 

parameter and numerically compute the parameter value that maximizes growth or welfare. In 

contrast, we allow for an arbitrary path of patent breadth and then analytically derive the optimal 
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path by solving a differential game,
3
 in which policymakers move first by choosing a time path 

of patent breadth and households response by choosing a time path of consumption (i.e., a 

Stackelberg differential game). We find that the optimal path of patent breadth under each policy 

regime is stationary, time-consistent and subgame perfect. Time consistency and subgame 

perfectness imply that policymakers have no incentive to deviate from the optimal path of patent 

breadth under any realization of the state variables along and off the equilibrium path. 

In their seminal study, Kydland and Prescott (1977) consider patent protection as an 

important example of time-inconsistent policies for which they point out the following problem. 

“Given that resources have been allocated to inventive activity which resulted in a new product 

or process, the efficient policy is not to permit patent protection.” To show that optimal patent 

policy is not necessarily time inconsistent, this study adopts a differential-game approach and 

derives time-consistent optimal patent breadth in a modified version of the Grossman-Helpman 

(1991) model,
4
 which is a workhorse model in the R&D growth literature. Time inconsistency 

does not arise in this model because the equilibrium allocation at any point in time depends only 

on the current level of patent breadth and is independent of future patent policies. 

A second difference with Acemoglu and Akcigit (2009) is that while they consider the 

level of patent protection to be differentiated by the technological gap between the leader and the 

follower in an industry, we consider patent breadth to be differentiated by an industry’s market 

size and technological opportunity that drive the observable industry differences in productivity 

growth and R&D intensity according to Klenow (1996). In other words, we examine a different 

set of industry-specific characteristics that are also important features of the economy and hence 

                                                 
3 A differential game is a dynamic game in which the state variables evolve according to differential equations. See, 

for example, Dockner et al. (2000) for a comprehensive textbook treatment on differential games. 
4 It can be shown that the optimal patent breadth is also time consistent in the original Grossman-Helpman model. A 

proof is available upon request from the author. 
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complement the analysis in Acemoglu and Akcigit (2009), who also find a significant welfare 

gain from sector-specific patent protection. Thirdly, while Mosel (2009) considers a related set 

of industry-specific characteristics in a different model, he focuses on the growth effects of 

sector-specific patent protection. Given that growth maximization does not necessarily give rise 

to welfare maximization, it is interesting to consider the welfare effects as well, and the present 

study fills in this gap in the literature. 

The seminal study of the patent-design literature is Nordhaus (1969), who concludes that 

the optimal level of patent protection should tradeoff the static welfare costs against the dynamic 

gains from innovation. A comprehensive review of the subsequent developments in this literature 

can be found in Scotchmer (2004). While most studies in the patent-design literature are based 

on a qualitative partial-equilibrium setting, the macroeconomic literature plays a complementary 

role in providing a dynamic general-equilibrium (DGE) analysis on patent policy. For example, 

Futagami and Iwaisako (2003, 2007) derive the optimal patent length in a version of the Romer 

model and show that it can be finite. Li (2001) extends the Grossman-Helpman (1991) model to 

consider patent breadth and finds that it has a positive effect on R&D and growth. As for 

quantitative DGE analysis, Kwan and Lai (2003) evaluate the quantitative implications of patent 

length in a version of the Romer model and find that extending the effective lifetime of patent 

would lead to a substantial increase in R&D and welfare. Chu (2009) builds on the quality-ladder 

model in O’Donoghue and Zweimuller (2004) to provide a quantitative analysis on the effects of 

blocking patents and finds that reducing the negative effect of blocking patents on R&D would 

lead to a significant increase in welfare. All of these studies are based on R&D-driven growth 



 - 5 -

models that have only one R&D sector.
5
 The present study complements them by analyzing the 

welfare implications of patent policy in a growth model that features multiple R&D sectors. 

The rest of this study is organized as follows. Section 2 presents the model. Section 3 

defines the equilibrium and analyzes its dynamic properties. Section 4 derives the optimal patent 

breadth under the two policy regimes. Section 5 provides a quantitative analysis on welfare. The 

final section concludes, and proofs are relegated to Appendix A. 

 

2. A two-sector quality-ladder growth model with patent breadth 

The quality-ladder model is based on Grossman and Helpman (1991).
6
 We modify their model 

by incorporating (i) patent breadth as a policy variable following the formulation in Li (2001) 

and (ii) two sectors that are differentiated by market size and technological opportunity. Klenow 

(1996) develops a two-sector Romer model with three industry-specific characteristics that are 

commonly discussed in the industrial organization literature, and he finds that market size and 

technological opportunity best explain the empirical differences in productivity growth and R&D 

intensity across industries. As for the third industry-specific characteristic (i.e., appropriablility), 

it is captured in the model by the different rates of endogenous creative destruction across sectors. 

In the following model, patent breadth is allowed to be a time-varying (but deterministic) 

variable. Then, in Section 3, we show that the optimal path of patent breadth under each policy 

regime is stationary, time-consistent and subgame perfect in this modified Grossman-Helpman 

model. Given that the Grossman-Helpman model has been well-studied, the familiar features will 

be briefly described to conserve space while the new features will be described in more details.  

                                                 
5 O’Donoghue and Zweimuller (2004) also analyze the case of two R&D sectors in one of their extensions. However, 

their focus is on the distortionary effect of patent polices on the allocation of R&D across sectors. Therefore, they 

only consider exogenous changes in the uniform level of patent protection. 
6 See, also, Aghion and Howitt (1992) and Segerstrom et al. (1990) for the other pioneering studies on the quality-

ladder growth model. 
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2.1 Households 

There is a unit continuum of identical households, and their lifetime utility is given by 

(1) ∫
∞

−=
0

ln.

t

t CeU ρ . 

tC  denotes consumption at time t, and the parameter 0>ρ  is the subjective discount rate. 

Households maximize utility subject to  

(2) tttttt CPWVRV −+=& . 

tP  denotes the price of consumption at time t. Each household supplies one unit of labor (chosen 

as the numeraire) to earn a wage income tW  that will be normalized to unity. tV  is the value of 

assets owned by households, and tR  is the nominal rate of return. The familiar Euler equation is  

(3) ρ−= ttt rCC /& , 

where tttt PPRr /&−≡  is the real interest rate. 

 

2.2 Consumption 

To consider a two-sector R&D-based growth model, consumption is aggregated from two types 

of final goods }2,1{∈i . This aggregation process can be done by the households themselves or 

by competitive firms, and these two formulations are equivalent. We follow Klenow (1996) to 

consider a Cobb-Douglas aggregator given by  

(4) αα −= 1

,2,1 )()( ttt YYC , 

where )1,0(∈α  is the market-size parameter. We use this Cobb-Douglas aggregator instead of a 

CES aggregator because we want to allow tY ,1  and tY ,2  to grow at different rates. In the case of a 
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CES aggregator, tY ,1  and tY ,2  growing at different rates is incompatible with a balanced-growth 

path. The first-order conditions for tY ,1  and tY ,2  are respectively 

(5) tttt CPYP .,1,1 α= , 

(6) tttt CPYP )1(,2,2 α−= . 

Therefore, α  determines the output share of the two types of final goods (i.e., the market size). 

 

2.3 Final goods 

Final goods }2,1{∈i  are produced by a standard Cobb-Douglas aggregator over a continuum of 

differentiated intermediate goods ]1,0[∈j . 

(7) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫

1

0

,, )(lnexp djjXY titi . 

This sector is perfectly competitive, and final-goods firms take both the output and input prices 

as given. Given (7), the familiar price index for tiY ,  is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫

1

0

,, )(lnexp djjPP titi . 

 

2.4 Intermediate goods 

In each sector }2,1{∈i , there is a continuum of differentiated intermediate goods indexed by 

]1,0[∈j . Each intermediate goods j of sector i is produced by a monopolistic leader, who holds a 

patent on the latest innovation and dominates the market until the next innovation occurs. The 

production function for the leader of intermediate goods j in sector i is  

(8) )()( ,

)(

,
, jLzjX ti

jn

ti
ti= . 
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)(, jL ti  denotes the number of workers producing intermediate goods j of sector i. 1>z  is the 

exogenous step size of productivity improvement from each innovation. )(, jn ti  is the number of 

innovations that have occurred in intermediate goods j of sector i as of time t. The marginal cost 

of production for the leader of intermediate goods j in sector i is  

(9) 
)(

,
,/)(

jn

tti
tizWjMC = . 

As commonly assumed in the literature, the current leader and the former leader engage 

in Bertrand competition. The profit-maximizing price for the current leader is a constant markup 

over the marginal cost.  

(10) )/()(
)(

,,
, jn

ttiti
tizWjP μ= ,  

where tib

ti z ,

, =μ  and ]1,0(, ∈tib  is the level of patent breadth at time t.
7
 Grossman and Helpman 

(1991) assume complete patent protection against imitation (i.e., 1, =tib ). Li (2001) generalizes 

the policy regime to allow for incomplete protection, and we follow Li’s (2001) formulation of 

patent breadth here. Because of incomplete protection, the current leader’s invention enables the 

former leader to increase her productivity by a factor of bz −1  without infringing the current 

leader’s patent. Therefore, the limit-pricing markup for the current leader is bz . A larger patent 

breadth enables the current leader to charge a higher markup, and the resulting increase in profit 

improves the incentives for R&D.
8
 For the rest of this study, we use ),( ,, titi bzμμ ≡  to denote 

patent breadth for convenience and consider changes in ti,μ  coming from changes in tib ,  only. 

 

                                                 
7 When an inventor applies for a patent, she makes a number of claims about the invention to be patented. If these 

claims are narrowly interpreted, then competitors may be able to imitate around them to avoid infringement. 
8 Li (2001) generalizes (7) to a CES production function. In this case, the markup is given by )}1/(,min{ −εεb

z , 

where ),1( ∞∈ε  is the elasticity of substitution between intermediate goods. Therefore, when )1/( −< εεb
z , the 

effect of patent breadth on R&D and growth is the same as in the case of a Cobb-Douglas production function. 
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2.5 R&D 

Denote the value of the latest invention in intermediate goods j of sector i by )(, jV ti .
9
 Because of 

the Cobb-Douglas specification in (7), the amount of profit is the same across industries within a 

sector (i.e., titi j ,, )( ππ =  for ]1,0[∈j ). As a result, titi VjV ,, )( =  for ]1,0[∈j  in a symmetric 

equilibrium in which the arrival rate of innovation is equal across industries within a sector.
10

 

The familiar no-arbitrage condition for tiV ,  is  

(11) tititititit VVVR ,,,,, λπ −+= & .  

The left-hand side of (11) is the nominal return on this asset. The right-hand side of (11) is the 

sum of (a) the profit ti ,π  generated by this asset, (b) the potential capital gain tiV ,
& , and (c) the 

expected capital loss titi V ,,λ  due to creative destruction for which ti,λ  is the aggregate Poisson 

arrival rate of innovation in sector i.  

 There is a unit continuum of R&D entrepreneurs in each sector i. They hire R&D workers 

tiH ,  to create inventions, and the expected profit for R&D in sector i is  

(12) tittititi HWV ,,,,

~
−=Π λ , 

where tiiti H ,,

~ ϕλ =  is the individual Poisson arrival rate of innovation. Following Klenow (1996), 

we allow the technological-opportunity parameter iϕ  to vary across sectors.
11

 Without loss of 

generality, we assume that 21 ϕϕ ≤ . The zero-expected-profit condition for R&D in sector i is  

                                                 
9 It will become clear why we use Vi,t to denote the market value of inventions and Vt to denote the value of assets 

owned by households. 
10 We follow the standard approach in the literature to focus on the symmetric equilibrium. See, for example, Cozzi 

et al. (2007) for a theoretical justification for the symmetric equilibrium to be the unique rational-expectation 

equilibrium in the quality-ladder growth model. 
11 In the literature, the parameter φi is sometimes referred to as R&D efficiency. Because our study relates to Klenow 

(1996), we follow his terminology to refer to φi as technological opportunity. Intuitively, in a sector that has more 

technological opportunities, the chance of discovering an invention is higher for a given amount of R&D input. 
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(13) 1, == ttii WVϕ ,
12

 

where the second equality of (13) follows from choosing labor as the numeraire. 

 The Cobb-Douglas specification in (7) implies that each intermediate goods j of sector i 

employs an equal number of production workers. Substituting (8) into (7) yields tititi LZY ,,, = , 

where the level of technology in sector i is defined as  

(14) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡ ∫∫

t

ititi zdzdjjnZ
0

,

1

0

,, lnexpln)(exp τλ τ , 

where the second equality of (14) uses the law of large numbers. Differentiating the log of (14) 

with respect to time yields the growth rate of total factor productivity (TFP) in sector i given by  

(15) zZZg titititi ln/ ,,,, λ=≡ & , 

where tiititi H ,,,

~ ϕλλ ==  in equilibrium. 

 

3. Decentralized equilibrium 

The equilibrium is a time path of allocations ∞
=0,,,, },),(,,{ ttitititit HLjXYC , a time path of prices 

∞
=0,,, },,,),(,,{ ttittttitit VVRWjPPP , and a time path of polices ∞

=0, }{ ttiμ . Also, at each instant of time,  

(a) households choose }{ tC  to maximize utility taking },,{ ttt RWP  as given; 

(b) competitive firms produce }{ tC  by using }{ ,tiY  as inputs to maximize profit taking ,{ tP  

},tiP  as given; 

(c) competitive final-goods firms in sector i produce }{ ,tiY  by using )}({ , jX ti  as inputs to 

maximize profit taking )}(,{ ,, jPP titi  as given; 

                                                 
12 The sector with a larger φi attracts more R&D and hence has a higher rate of creative destruction that reduces Vi,t. 
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(d) the leader of intermediate goods j of sector i produces )}({ , jX ti  and chooses )}({ , jP ti  to 

maximize profit taking }{ tW  as given; 

(e) competitive R&D entrepreneurs in sector i choose }{ ,tiH  to maximize expected profit 

taking },{ ,tit VW  as given; 

(f) the labor market clears such that 1,2,1,2,1 =+++ tttt HHLL ; 

(g) the market value of inventions adds up to the value of assets owned by households such 

that ttt VVV =+ ,2,1 . 

 

3.1 Balanced-growth path 

In this section, we firstly derive the equilibrium labor allocations for an arbitrary path of patent 

breadth ∞
=0,2,1 },{ ttt μμ . Then, we show that given a stationary path of patent breadth ∞

=021 },{ tμμ , 

the economy is always on a unique and stable balanced-growth path.
13

 

 

Lemma 1: Given an arbitrary path of patent breadth ∞
=0,2,1 },{ ttt μμ , the equilibrium labor 

allocations at time t are  

(16) 
t

tL
,121

,1

1
1

μϕ
ρ

ϕ
ρα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= , 

(17) 
t

tL
,221

,2

1
1)1(

μϕ
ρ

ϕ
ρα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−= , 

                                                 
13 As in Grossman and Helpman (1991), the implicit assumptions behind this result are (i) at any point in time, each 

industry has an existing leader with a competitor one step down the quality ladder and (ii) R&D entrepreneurs 

always implement their inventions immediately (i.e., ruling out endogenous implementation cycles). 
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(18) 
1,1

,1

21

,1

1
1

ϕ
ρ

μ
μ

ϕ
ρ

ϕ
ρα −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

t

t

tH , 

(19) 
2,2

,2

21

,2

1
1)1(

ϕ
ρ

μ
μ

ϕ
ρ

ϕ
ρα −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

t

t

tH . 

The equilibrium labor allocations at time t only depend on the level of patent breadth at time t. 

Furthermore, given a stationary path of patent breadth ∞
=021 },{ tμμ , the economy is always on a 

unique and stable balanced-growth path. 

Proof: See Appendix A.■ 

 

Equations (16) – (19) reveal that in this model, the equilibrium labor allocations are independent 

of future patent policies. This is a property of the Grossman-Helpman model, in which a higher 

level of patent breath ti,μ  at any time t is accompanied by an increase in tiiti H ,, ϕλ =  in such a 

way that tiV ,  remains unchanged.
14

 In the next section, we will use this convenient feature of the 

model to derive a time-consistent path of optimal patent breadth, which turns out to be stationary. 

Given a stationary path of patent breadth, the economy is on a balanced-growth path, and 

the steady-state equilibrium allocations are quite intuitive. A larger α  increases both 1L  and 1H . 

Intuitively, as the market size of final goods 1 increases, the economy devotes more labor to 

production and R&D in sector 1. A larger 1μ  decreases 1L  and increases 1H . A larger patent 

breadth in sector 1 leads to a reallocation of labor from production to R&D within the sector. 

However, note that the sum of 1L  and 1H  is independent of 1μ . In other words, a change in the 

relative level of patent breadth does not lead to a reallocation of labor across sectors. Similar to 

an increase in 1μ , a larger 1ϕ  decreases 1L  and increases 1H . Interestingly, in this case, 2L  and 

                                                 
14 See the proof of Lemma 1. 
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2H  also decrease. In other words, as the technological opportunity of sector 1 improves, the 

economy not only reallocates labor from production to R&D within the sector but also across 

sectors. Finally, the consumption growth rate ttt CCg /&≡  along the balanced-growth path is 

(20) zHHggg ln))1(()1( 221121 .. ϕαϕααα −+=−+= . 

 

4. Optimal patent breadth 

The previous section shows that given a constant level of patent breadth, the economy is always 

on a balanced-growth path. This section shows that the optimal path of patent breadth under each 

regime is indeed stationary. We firstly derive the sector-specific optimal patent breadth and then 

the uniform optimal patent breadth. Finally, we derive the first-best allocation and compare it 

with the equilibrium allocations under the two policy regimes. 

 

4.1 Sector-specific optimal patent breadth 

This section derives the optimal path of sector-specific patent breadth denoted by ∞
=0

*

,2

*

,1 },{ ttt μμ . 

Technically, we are solving a Stackelberg differential game,
15

 in which policymakers move first 

by choosing a time path of ∞
=0,2,1 },{ ttt μμ  and then households respond by choosing a time path of 

consumption. It is well known that this Ramsey approach usually gives rise to time-inconsistent 

policies (i.e., after households make their best response, policymakers have incentives to deviate 

from their chosen policies ex post). Time inconsistency does not arise in this model because the 

equilibrium allocation at any time t depends only on the current level of patent breadth and hence 

is independent of future patent policies. Therefore, policymakers have no incentive to manipulate 

future policies for the purposing of influencing current allocations. 

                                                 
15 See, for example, Xie (1997) and Karp and Lee (2003) for a discussion. 
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Proposition 1: The optimal path of sector-specific patent breadth is stationary, time-consistent, 

subgame perfect and given by 

(21) 
ρ

ϕ
ϕ
ρ

ϕ
ραμμ z

t

ln
1 1

21

*

1

*

,1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++== , 

(22) 
ρ

ϕ
ϕ
ρ

ϕ
ραμμ z

t

ln
1)1( 2

21

*

2

*

,2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−== . 

Proof: See Appendix A.■ 

 

 We impose a parameter restriction z≤},max{ *

2

*

1 μμ  to ensure that the breadth parameter 

ib  is between zero and one for }2,1{∈i . Equations (21) and (22) show that a larger discount rate 

decreases the optimal patent breadth in both sectors. This is because the benefit of a higher 

growth rate on households’ welfare becomes smaller as ρ  increases. The quality step size z  has 

a positive externality effect on the growth rate as shown in (15); therefore, a larger z  increases 

optimal patent breadth in both sectors. An improvement in sector 1’s technological opportunity 

1ϕ  increases the optimal patent breadth in sector 1 and decreases that of sector 2. Similarly, an 

increase in α  (i.e., sector 1’s market size) increases the optimal patent breadth in sector 1 and 

decreases that of sector 2. Substituting (21) and (22) into (16) – (19) yields  

(23) 
z

L
ln

)(
1

*

11 ϕ
ρμ = , 

(24) 
z

L
ln

)(
2

*

22 ϕ
ρμ = , 

(25) 
121

*

11
ln

1
11)(

ϕ
ρ

ϕ
ρ

ϕ
ραμ ⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

z
H , 
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(26) 
221

*

22
ln

1
11)1()(

ϕ
ρ

ϕ
ρ

ϕ
ραμ ⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−=

z
H . 

We will compare (23) – (26) to the first-best labor allocations in Section 4.3. 

 

4.2 Uniform optimal patent breadth 

This section considers the policy regime under uniform patent breadth denoted by ttt ,2,1 μμμ =≡  

and derives the optimal path of uniform patent breadth ∞
=0

*}{ ttμ . As before, we are solving a 

Stackelberg differential game, in which the policymakers move first by choosing a time path of 

∞
=0}{ ttμ  and households respond by choosing a time path of consumption. 

 

Proposition 2: The optimal path of uniform patent breadth is stationary, time-consistent, 

subgame perfect and given by 

(27) 
ρϕ

ρ
ϕ
ρϕαϕαμαμαμμ z

t

ln
1))1(()1(

21

2

2

1

2*

2

*

1

**
. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−+=−+== . 

Proof: See Appendix A.■ 

 

Proposition 2 shows that the optimal uniform patent breadth is a weighted average of the 

optimal sector-specific patent breadth, and the optimal weight is determined by α . The effects of 

ρ  and z  on the optimal patent breadth are the same as before. As for an increase in α , it has a 

positive (negative) effect on *μ  if 1αϕ  is greater (less) than 2)1( ϕα− . Intuitively, a larger α  

increases the optimal patent breadth of sector 1 and decreases that of sector 2. Therefore, when 

the level of patent breadth is constrained to be the same across sectors, whether a larger α  

increases or decreases *μ  depends on the relative magnitude of the above two forces. At a large 
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(small) α , the effect from sector 1 (sector 2) dominates, so that *μ  is an U-shape function in α . 

Similarly, iϕ  has an U-shape effect on *μ , which is initially decreasing in iϕ  and subsequently 

increasing in iϕ , because an increase in iϕ  also leads to opposing effects on the optimal patent 

breadth in the two sectors. Substituting (27) into (16) – (19) yields  

(28) ⎟
⎠
⎞

⎜
⎝
⎛

−+
=

z
L

ln)1(
)(

2

2

1

2

*

1

ρ
ϕαϕα

αμ , 

(29) ⎟
⎠
⎞

⎜
⎝
⎛

−+
−

=
z

L
ln)1(

1
)(

2

2

1

2

*

2

ρ
ϕαϕα

αμ , 

(30) 
12

2

1

2

1

21

*

1
ln

1

)1(
11)(

ϕ
ρ

ϕαϕα
αϕ

ϕ
ρ

ϕ
ραμ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

z
H , 

(31) 
22

2

1

2

2

21

*

2
ln

1

)1(

)1(
11)1()(

ϕ
ρ

ϕαϕα
ϕα

ϕ
ρ

ϕ
ραμ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

−
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−=

z
H . 

 

4.3 First-best allocation 

In this section, we drive the first-best labor allocations by having the social planner chooses a 

time path of ∞
=0,2,1,2,1 },,,{ ttttt HHLL  to maximize (1). The optimization yields a corner solution in 

which either tH ,1  or tH ,2  is equal to zero for all t depending on whether 1αϕ  is greater or less 

than 2)1( ϕα− . For illustrative purposes, we consider 21 )1( ϕααϕ −> , so that 0,2 =tH  for all t. 

 

Lemma 2: The optimal path ∞
=0

*

,2

*

,1

*

,2

*

,1 },,,{ ttttt HHLL  is stationary and given by 

(32) 
z

LL t
ln1

*

1

*

,1 ϕ
ρ

== , 
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(33) 
z

LL t
ln

1

1

*

2

*

,2 ϕ
ρ

α
α
⎟
⎠
⎞

⎜
⎝
⎛ −

== , 

(34) 
z

HH t
ln

1
1

*

1

*

,1 αϕ
ρ

−== , 

(35) 0*

2

*

,2 == HH t . 

Proof: See Appendix A.■ 

 

Comparing (23) – (26) and (32) – (35) shows that *

1

*

11 )( LL =μ   and *

2

*

22 )( LL >μ . In other 

words, compared to the first-best allocations, the equilibrium under },{ *

2

*

1 μμ  devotes too much 

labor to production in sector 2 and too little labor to R&D (i.e., *

2

*

1

*

22

*

11 )()( HHHH +<+ μμ ). 

Also, the first-best allocations (34) and (35) are efficient in terms of allocating R&D labor to the 

sector that has a larger effect on welfare (recall that 21 )1( ϕααϕ −> ). As for the equilibrium 

allocations under },{ *

2

*

1 μμ , we see that *

1

*

11 )( HH <μ  and 0)( *

2

*

22 => HH μ . Therefore, the first-

best optimal growth rate is strictly higher than the equilibrium growth rate under sector-specific 

patent breadth unless 21 )1( ϕααϕ −= , in which case the growth rates are equal.  

Comparing (28) – (31) and (32) – (35) shows that *

1

*

1 )( LL >μ   and *

2

*

2 )( LL >μ . In other 

words, the equilibrium under uniform patent breadth allocates too much labor to production in 

both sectors and too little labor to R&D (i.e., *

2

*

1

*

2

*

1 )()( HHHH +<+ μμ ). As for the allocation 

of R&D labor, we see that *

1

*

1 )( HH <μ  and 0)( *

2

*

2 => HH μ . Therefore, the first-best growth 

rate is also strictly higher than the equilibrium growth rate under uniform patent breadth unless 

21 )1( ϕααϕ −= , in which case the growth rates are equal. 

 



 - 18 -

5. Growth and welfare differences between policy regimes 

In this section, we consider the growth and welfare differences between the two policy regimes. 

We find that although the growth difference is zero, the welfare difference is a function of α  and 

21 /ϕϕ , and the magnitude is generally non-negligible. To compare the growth difference, we 

firstly substitute (25) and (26) into (20) to derive the equilibrium growth rate under sector-

specific optimal patent breadth ),( *

2

*

1 μμg  and then substitute (30) and (31) into (20) to derive the 

equilibrium growth rate under uniform optimal patent breadth )( *μg . In both cases, we find that 

the equilibrium growth rate is  

(36) )ln1(ln1))1(()(),(
21

2

2

1

2**

2

*

1 zzgg +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−+== ρ
ϕ
ρ

ϕ
ρϕαϕαμμμ . 

Therefore, the growth difference between the optimal sector-specific and uniform patent breadth 

is zero in this model. However, the following results show that despite this zero growth-rate 

differential, the welfare difference can be non-negligible. This is because uniform patent breadth 

achieves the same growth rate as sector-specific patent breadth but with a less efficient allocation 

of R&D labor (i.e., )()()()( *

2

*

1

*

22

*

11 μμμμ HHHH +<+ ).
16

 Therefore, under uniform patent 

breadth, there is less labor available for production, which decreases the level of consumption 

and hence social welfare relative to the equilibrium under sector-specific patent breadth. 

Given the balanced-growth behavior of the model under a stationary path of patent 

breadth, the households’ lifetime utility in (1) can be re-expressed as 

(37) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= 2

2
21

1
10

ln
ln)1(

ln
ln

1
ln

1
H

z
LH

z
L

g
CU

ρ
ϕα

ρ
ϕα

ρρρ
, 

                                                 
16 This inequality can be shown by using (25), (26), (30), (31) and a few steps of mathematical manipulation. 
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where the second equality is obtained by dropping the exogenous terms 0,1Z  and 0,2Z . Given (37) 

as a measure of social welfare, we substitute (23) – (26) into (37) to compute the level of social 

welfare under sector-specific patent breadth denoted by ),( *

2

*

1 μμU  and substitute (28) – (31) into 

(37) to compute the level of social welfare under uniform patent breadth denoted by )( *μU . 

 

Proposition 3: The welfare difference )(),( **

2

*

1 μμμ UUU −≡Δ  can be expressed as 

(38) 0)1ln()1(ln)1(ln
1

2

12

2

12 ≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=Δ αα

ϕ
ϕααα

ϕ
ϕα

ρ
U , 

which becomes a strict inequality if 21 )1( ϕααϕ −≠ . 

Proof: See Appendix A.■ 

 

 Given that UΔ.ρ  depends on only two parameters )1,0(∈α  and ]1,0(/ 21 ∈ϕϕ , we can 

numerically evaluate (38) to examine the properties of UΔ.ρ  without loss of generality. Figure 1 

plots the welfare difference against )1,0(∈α  and ]1,2.0[/ .21 ∈ϕϕ .
17

 For the ease of interpretation, 

the welfare difference is re-expressed as δ  denoting the equivalent variation in consumption per 

year defined as )](),()1[()],(),,([ **

0

*

2

*

1

*

2

*

10 μμδμμμμ gCUgCU += . 

[Insert Figure 1 here] 

Figure 1 shows that for a given 21 /ϕϕ , the welfare difference δ  is an M-shape function 

in α . Figure 2 plots δ  against α  for various values of 21 /ϕϕ .  

[Insert Figure 2 here]  

                                                 
17 The welfare difference can be very large when )2.0,0(/

21
∈ϕϕ ; thus, we report the results for ]1,2.0[/ .

21
∈ϕϕ  

only. However, the properties of UΔ.ρ  are the same as in the rest of the parameter space. 
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Suppose 1/ 21 =ϕϕ . In this case, the two sectors are symmetric when 5.0=α . Under symmetry, 

the welfare loss from imposing uniform patent breadth is zero. As α  deviates from 0.5 in either 

direction, the welfare loss becomes positive. This explains the U-shape pattern around 0.5 for 

1/ 21 =ϕϕ . As 1→α , the model becomes a one-sector model in which only sector 1 matters. In 

this case, *

1

* μμ → ; therefore, the welfare loss δ  approaches zero. The same is true for 0→α . 

This explains the M-shape pattern of δ  for 1/ 21 =ϕϕ . As 21 /ϕϕ  decreases, the optimal patent 

breadth of sector 2 increases while that of sector 1 decreases. Therefore, households benefit from 

differentiated patent breadth even when 5.0=α . When 1/ 21 <ϕϕ , a uniform patent breadth is 

optimal only if α  increases above 0.5 to diminish the importance of sector 2. This explains why 

the interior minimum of δ  in Figure 2 shifts to the right as 21 /ϕϕ  decreases. 

[Insert Figures 3 and 4 here]  

Figures 3 and 4 plot δ  against 21 /ϕϕ  for various values of α . Figure 3 shows that when 

]5.0,0(∈α , the welfare loss δ  is always decreasing in 21 /ϕϕ . Intuitively, when ]5.0,0(∈α , the 

optimal patent breadth of sector 1 is smaller than that of sector 2; however, this gap shrinks as 

21 /ϕϕ  increases. Consequently, the welfare loss from imposing a uniform level of patent breadth 

diminishes as 21 /ϕϕ  increases when ]5.0,0(∈α . 

Figure 4 shows that when )1,5.0(∈α , the welfare loss δ  can become non-monotonic in 

21 /ϕϕ . When )1,5.0(∈α , it is not necessarily the case that *

2

*

1 μμ < . Only if 21 /ϕϕ  is small 

enough, then *

2

*

1 μμ < . In this case, as 21 /ϕϕ  increases, the gap between *

1μ  and *

2μ  shrinks, and 

the welfare loss δ  decreases. However, if 21 /ϕϕ  becomes sufficiently large, then *

2

*

1 μμ > . In 

this case, any further increase in 21 /ϕϕ  would widen the gap between *

1μ  and *

2μ ; as a result, the 
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welfare loss δ  becomes increasing in 21 /ϕϕ . This explains the potential U-shape pattern of δ  

when )1,5.0(∈α . In other words, whenever α  is sufficiently large (small) such that *

1μ  is above 

(below) *

2μ  for a given 21 /ϕϕ , an increase (a decrease) in 21 /ϕϕ  would widen the gap between 

*

1μ  and *

2μ  and hence magnify the welfare loss δ . Finally, as 1→α , the welfare difference δ  

approaches zero for any 21 /ϕϕ . The same is true for 0→α . 

 Having understood the qualitative pattern of δ  as a function of α  and 21 /ϕϕ , we now 

consider the magnitude of the welfare loss. Figure 1 shows that the welfare loss ranges from zero 

to as large as 50% of consumption per year. To focus on the effect of asymmetry in technological 

opportunity across sectors, Table 1 summarizes the welfare costs of uniform patent protection for 

5.0=α  from Figure 1. 

φ1/φ2 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

δ 34.2% 18.7% 10.7% 6.1% 3.3% 1.6% 0.6% 0.1% 0.0%

Table 1: Welfare costs of uniform patent breadth for α = 0.5

 

The policy implication from this illustrative numerical exercise is that even a moderate degree of 

asymmetry in technological opportunity across sectors can generate a non-negligible welfare cost 

of one-size-fit-all patent policy. Also, empirical evidence suggests that iϕ  varies significantly 

across sectors. For example, Klenow (1996) finds that although R&D intensity and TFP growth 

at the industry level are positively correlated, R&D explains only a small fraction of the variation 

in industry-level TFP growth implying that technological opportunity differs significantly across 

industries. Furthermore, (15) implies that the log of TFP (level) in sector i can be expressed as 

tiiti SzZ ,, )ln(ln ϕ= , where ∫≡
t

iti dHS
0

,, ττ  denotes the stock of R&D in sector i. A number of 

empirical studies, such as Verspagen (1995), Los and Verspagen (2000) and Cameron (2000), 
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have estimated the effect of R&D stock on the level of TFP/output at the industry level, and they 

also find that the effect of R&D stock varies substantially across industries. 

 

6. Conclusion 

This study has developed a two-sector R&D-based growth model and used the growth-theoretic 

framework to analyze the welfare gain from implementing differentiated patent protection across 

sectors. We find that the welfare gain can be substantial. However, this analysis is based on the 

assumption that policymakers (or the courts in the case of the Burk-Lemley proposal) are well-

informed about the different characteristics across industries. In reality, it could be quite costly to 

acquire this kind of information. Therefore, for real-world policy applications, the welfare gain 

from implementing industry-specific patent protection should be evaluated in conjunction with 

the information-acquisition costs, and the magnitude of these costs remains as an empirical 

question. Finally, the issue of scale effects is set aside by normalizing the supply of labor to unity 

so that it is the share of labor devoted to R&D that determines growth as in the second-

generation R&D-based growth model.
18

 

 

                                                 
18 See Jones (1999) for an excellent discussion on scale effects in R&D-based growth models. 
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Appendix A 

Proof of Lemma 1: Households’ current-value Hamiltonian is 

(A1) )(ln tttttttt CPWVRC −++=Ω ω . 

The first-order conditions are 

(A2) 0
1

=−=
∂
Ω∂

tt

tt

t P
CC

ω , 

(A3) tttt

t

t R
V

ωρωω &−==
∂
Ω∂

, 

(A4) tttttt

t

t VCPWVR &=−+=
∂
Ω∂
ω

. 

The transversality condition is 0lim . =−

∞→ tt

t

t
Ve ωρ . Combining (A3) and (A4) yields  

(A5) ttttttttttt CPWVVV ωωρωωω −+=+ && . 

Given households’ first-order conditions, we use the market equilibrium conditions to solve (A5). 

From (13), ttt VVW ,22,11 ϕϕ == . Combining this condition with ttt VVV =+ ,2,1  yields  

(A6) tt WV ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

21

11

ϕϕ
. 

Substituting (A2) and (A6) into (A5) yields  

(A7) 1
21

21 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=+
ϕϕ
ϕϕρωωω tttttt VVV && . 

(A7) is a one-dimensional differential equation in ttVω , and the dynamic system is characterized 

by saddle-point stability. Therefore, ttVω  must jump to its unique steady state; otherwise, the 

transversality condition would be violated. To see this result, integrating (A7) with respect to 

time yields  
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(A8) 

1

21

21.

−

⎟⎟
⎠

⎞
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⎝

⎛
+

++=
ϕϕ
ϕϕρβω ρ t

tt eV , 

where β  is an integration constant. The transversality condition implies that 0=β . Therefore, 

1

21

21

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=
ϕϕ
ϕϕ

ρω ttV  for all t. Substituting (A6) and 1=tW  into this condition yields  

(A9) 

1

21

1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=
ϕ
ρ

ϕ
ρωt  

for all t. Because tω  is stationary, (A3) implies that ρ=tR  for all t. Also, (A2) implies that  

(A10) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

21

1
ϕ
ρ

ϕ
ρ

ttCP . 

In other words, nominal expenditure on consumption and the nominal interest rate are constant 

regardless of whether the path of patent breadth ∞
=0,2,1 },{ ttt μμ  is stationary or not. 

 The rest of this proof derives the equilibrium labor allocations for an arbitrary path of 

patent breadth. From (5), (6) and (10), the factor payments to production workers in the two 

sectors are respectively 

(A11) tttttttt CPYPLW ,1,1,1,1,1 // . μαμ == , 

(A12) tttttttt CPYPLW ,2,2,2,2,2 /)1(/ μαμ −== . 

Combining (A11) and (A12) yields  

(A13) ⎟
⎠
⎞

⎜
⎝
⎛
−

=
α

α
μ
μ

1,1

,2

,2

,1

t

t

t

t

L

L
. 

The monopolistic profits in the two sectors are respectively 

(A14) tt

t

t

tt

t

t

t CPYP .

,1

,1

,1,1

,1

,1

,1

11
α

μ
μ

μ
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⎜
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= , 
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(A15) tt

t

t

tt

t

t

t CPYP )1(
11

,2

,2

,1,1

,2

,2

,2 α
μ

μ
μ

μ
π −⎟

⎟
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⎞
⎜
⎜
⎝
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⎝
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= . 

(13) implies that 0, =tiV& . Imposing 0, =tiV&  on (11) yields  

(A16) tititi V ,,, )( λρπ += ,  

where we have applied the previously derived result ( ρ=tR  for all t). Substituting (A11), (A14) 

and (A16) into (13) yields  

(A17) 1,1,1,1 /)1( ϕρμ −−= ttt LH . 

Similarly, substituting (A12), (A15) and (A16) into (13) yields  

(A18) 2,2,2,2 /)1( ϕρμ −−= ttt LH . 

To close the model, we use the labor-market clearing condition given by 

(A19) 1,2,1,2,1 =+++ tttt HHLL . 

Solving the four equations (A13), (A17) – (A19) yields (16) – (19).■  

 

Proof of Proposition 1: In general, the households’ Hamiltonian co-state variable tω  should be 

treated as a state variable in the policymakers’ dynamic optimization problem. However, (A9) 

shows that tω  is constant; therefore, we can directly substitute (4) and tititi LZY ,,, =  for }2,1{∈i  

into (1) to derive the policymakers’ current-value Hamiltonian given by 

(A20) tttttttt ZZC ,2,2,1,1,2,1 ln),( && φφμμ ++=Φ , 

where )](ln)[ln1()](ln[lnln ,2,2,2,1,1,1 ttttttt LZLZC μαμα +−++= , )()ln( ,1,11,1,1 tttt HzZZ μϕ=&  and 

)()ln( ,2,22,2,2 tttt HzZZ μϕ=& . The labor allocations )( ,1,1 ttL μ , )( ,2,2 ttL μ , )( ,1,1 ttH μ  and )( ,2,2 ttH μ  

are given by (16) – (19). The first-order conditions are 
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Manipulating (A23) yields αρφφφ −=+ tttttt ZZZ ,1,1,1,1,1,1
&& . As before, this differential equation is 

characterized by saddle-point stability, so that tt Z ,1,1φ  must jump to its unique steady-state value 

given by  

(A25) ραφ /,1,1 =ttZ  

for all t. Substituting (A25) into (A21) yields  
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for all t. Manipulating (A24) yields )1(,2,2,2,2,2,2 αρφφφ −−=+ tttttt ZZZ && , and this differential 

equation is also characterized by saddle-point stability. Therefore, tt Z ,2,2φ  must also jump to its 

unique steady-state value given by  
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for all t. (A26) and (A28) show that the optimal path of sector-specific patent breadth is 

stationary. Given that the equilibrium labor allocations (16) – (19) are independent of future 

policies, the policymakers have no incentive to deviate from their chosen path of patent breadth 

at any point in time along the equilibrium path (i.e., time consistency). Furthermore, given that 

(A26) and (A28) are stationary and independent of the state variables, they are optimal under any 

realization of the state variables along and off the equilibrium path (i.e., subgame perfectness).■ 

 

Proof of Proposition 2: The policymakers’ current-value Hamiltonian in the case of uniform 

patent breadth is 

(A29) ttttttt ZZC ,2,2,1,1ln)( && φφμ ++=Φ , 

where tZ ,1
& , tZ ,2

&  and tCln  can be re-expressed as in Proposition 1. The labor allocations )(,1 ttL μ , 

)(,2 ttL μ , )(,1 ttH μ  and )(,2 ttH μ  are given by (16) – (19) as before. The first-order conditions are 
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Manipulating (A31) and (A32) yields (A25) and (A27). Substituting them into (A30) yields  
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for all t. (A33) shows that the optimal path of uniform patent breadth is stationary. (A33) is time-

consistent and subgame perfect for the same reasons as in Proposition 1.■ 
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Proof of Lemma 2: The social planner’s current-value Hamiltonian is 
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As before, integrating (A39) and (A40) with respect to time and setting the integration constants 

to zero as implied by the transversality conditions yields ραψ /,1,1 =ttZ  and ραψ /)1(,2,2 −=ttZ . 

Substituting these conditions into (A37) and (A38) yields  
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which follows from 21 )1( ϕααϕ −> . Substituting (A41) into (A35) and (A36) yields (32) and 

(33). Combining (32), (33), 0,2 =tH  from (A38) and 1,2,1,2,1 =+++ tttt HHLL  yields (34).■ 
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Proof of Proposition 3: We already know from (36) that the growth difference is zero across the 

two regimes. Therefore, the welfare difference is given by the difference in initial consumption.  
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Substituting (23), (24), (28) and (29) into (A42) yields  
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Applying a few steps of mathematical manipulation to (A43) yields  
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Finally, given that ln(.)  is a concave function, Jensen’s inequality implies that (A44) is weakly 

positive, and a strict inequality emerges if 21 )1( ϕααϕ −≠ .■ 
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Figure 1: Welfare differences between sector-specific and uniform patent breadth

 

Figure 2: Welfare differences as a function of α
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Figure 3: Welfare differences as a function of φ1/φ2
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Figure 4: Welfare differences as a function of φ1/φ2
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