On the Determinants of Organizational Forgetting

Brachet, Tanguy and David, Guy

University of Pennsylvania

2009

Online at https://mpra.ub.uni-muenchen.de/21464/
MPRA Paper No. 21464, posted 19 Mar 2010 09:25 UTC
On the Determinants of Organizational Forgetting

October 2009

Tanguy Brachet
The School of Medicine
University of Pennsylvania

Guy David
The Wharton School
University of Pennsylvania

Abstract
Studies of organizational learning and forgetting identify potential channels through which the firm’s production experience is lost. While the ability to distinguish between these channels has implications for efficient resource allocation within the firm, to date, their relative importance has been ignored. This paper develops a framework for eliciting the contributions of labor turnover and human capital depreciation to organizational forgetting. We apply our framework to a novel dataset of ambulance companies and their workforce. We find evidence of organizational forgetting, which results from sizable skill decay and turnover effects, with the latter having twice the magnitude of the former.

Keywords: Organizational Forgetting, Labor Turnover, Skill Decay, Learning-by-Doing

JEL Classifications: L23, J24, I11

We are grateful to Avi Dor, David Card, Gary Dushnitsky, Liran Einav, Fernando Ferreira, Gautam Gowrisankaran, Steve Lehrer, Mark Pauly, Melinda Pitts, Manuel Trajtenberg, Kevin Volpp and workshop participants at the University of Pennsylvania, the University of California–Berkeley, Queen’s University, George Washington University, IHEA, NBER, and SHESG for helpful comments. Special thanks to Suzy Wheeler, Bill Thomas, Donna Smith, and Mark Allen from the Bureau of Emergency Medical Services at the Mississippi Department of Health and to Jim Pollard, Business Development Director at American Medical Response for their endless patience and support. Arthur Chiang, Ben Kowitt, and Robert Medina provided exceptional research assistance. Financial support from the Leonard Davis Institute of Health Economics at the University of Pennsylvania is gratefully acknowledged.
I. Introduction

As part of a growing literature on organizational learning and forgetting, several recent studies have estimated organizational forgetting rates for firms by focusing on specific industries (Argote et al., 1990; Darr et al., 1995; Epple et al., 1996; Benkard, 2000; Thompson, 2007; Gowrisankaran et al. 2006). Organizational forgetting occurs when the firm’s stock of production experience depreciates over time (Argote et al., 1990). While the depreciation of organizational knowledge may involve many factors, there are two broad channels through which forgetting at the firm level may occur: the decay of individual skills (Arthur et al., 1998) and labor turnover, whereby experienced employees are replaced by new ones.¹ Distinguishing between these two channels is important for industrial policy and resource allocation within firms. However, since existing studies have relied solely on organizational level data, they have been unable to make this distinction.

There is an extensive social science literature on skill decay and skill retention among individuals (Arthur et al., 1998; Argote, 1999). Most broadly, skill decay refers to the deterioration of acquired skills over time, with the amount learned and the passage of time being the two most important determinants of skill decay (Bailey, 1989). Individual competence is commonly measured in terms of either speed or accuracy, with speed being more susceptible to depreciation over time (Bodilly et al., 1986). This distinction is important since studies of organizational forgetting focus largely on industries in which production processes are characterized by fixed-sequence tasks (e.g. following a protocol), for which skill decay has been shown to be most pronounced (Hagman and Rose, 1983).

¹ Proposed sources of organizational forgetting include technological change and failure to record firm experience (Argote, 1999). When human capital is imperfectly transferrable across technologies, technological change lowers the value of individual experience and subsequently leads to smaller negative turnover effects, as new technologies render existing human capital obsolete. Similar to the case of technological change, failure to record firm experience may serve to exacerbate both skill decay (existing workers lacking records to refresh their memories) and turnover effects (new workers not having access to an organizational body of knowledge). But as long as technology and records interact with labor, the two sources will operate through either skill decay or labor turnover, or both.
The empirical evidence on the effect of labor turnover on organizational forgetting is mixed (Argote et al., 1990; Argote, 1999; Thompson, 2007). Theoretically, labor turnover effects are potentially important when the human capital acquired by workers no longer in the firm is less valuable to current performance than that of current members of the firm. However, lacking data on the full employment histories of workers, previous studies resorted to measuring the firm’s experience stock as the accumulated experiences of all workers, whether currently involved in production or not.

A combination of task, market, and industry-specific characteristics govern the relative importance of skill decay and labor turnover in shaping organizational forgetting. The two channels imply potentially different actions and strategies to mitigate organizational forgetting, which compete for the same company resources. For instance, retention policies to mitigate labor turnover may include improved compensation packages, safe working environments, etc. On the other hand, measures designed to slow skill decay may include limiting periods of inactivity, frequent refreshers, etc.

Most studies of organizational learning and forgetting have focused on large scale industrial settings, with little attention paid to the service sector which encompasses the bulk of economic activity in developed countries. This paper is the first to provide a framework for studying the relative contributions of labor turnover effects and skill decay to organizational forgetting and applies it to the universe of trauma-related ambulance runs in Mississippi between 1991 and 2005. As in many other services, the nature of emergency medical services (EMS) provision allows for attributing performance to individual paramedics, and thus measure individual forgetting in a profession in which individual skills are subject to decay and in an industry with high labor turnover rates. Indeed, we find both skill decay and turnover effects to contribute to organizational forgetting, with turnover effects having twice the magnitude of individual skill decay.
In addition, our data allows us to study individual human capital depreciation directly and consider the contributions of individual production inactivity and the scope of tasks (interference), two mechanisms commonly associated with skill decay.\(^2\)

When tasks are prone to skill decay and the industry is subject to high turnover rates, firms could take measures to mitigate the two effects. However, actions such as refreshers to slow skill decay or improved compensation packages to reinforce retention, ultimately compete for the same company resources. As a limiting case, the different channels may require the opposite action. For example, higher flexibility in scheduling may be desirable to workers and thus lessen turnover rates, while strict scheduling designed to reduce periods of inactivity may slow skill decay. Therefore, identifying the source of organizational forgetting is potentially important for efficient production.

The paper is organized as follows: Section II establishes our framework for measuring skill decay and labor turnover effects in the context of organizational forgetting. In Section III, we adapt the framework to the EMS setting. In Section IV, we describe the data and potential confounders of performance. In Section V, we discuss our results. Section VI concludes the paper.

II. Framework

In its simplest form, the human capital of individual \(i\) can be defined as the total stock of past production experiences, \(e_{i,t} = e_{i,t-1} + \phi_{i,t}\) where \(\phi_{i,t}\) is the experience accrued solely between \(t-1\) and \(t\). However, this formulation does not allow for forgetting, nor for the greater salience (or, perhaps, relevance) of recent experiences. The considerable drawback of this approach is that it treats an experience from the distant past and a recent one as perfect substitutes.

\(^2\) Individual level data is not sufficient for studying individual skill decay. One needs an application that allows for attributing performance to individuals, as in the case of EMS.
In a more flexible definition of human capital, referred to as the forgetting model (Argote et al., 1990; Benkard, 2000; Gowrisankaran et al., 2006; Thompson, 2007), the experience of individual \(i \) entering period \(t \) is given by

\[
e_{i,t} = \lambda \cdot e_{i,t-1} + \phi_{i,t} .
\]

The introduction of the parameter \(\lambda \) allows for forgetting (i.e. \(\lambda < 1 \)) and captures the intuition that more temporally distant experiences may be less relevant for today’s performance. It represents the proportion of the worker’s human capital that is retained from the previous period. Alternatively, \((1-\lambda) \) can be viewed as the rate of human capital depreciation.

To study forgetting at the firm level, define \(N_t \) to be the number of employees in the firm in period \(t \), such that \(N_t = N_{t-1} - m_t + n_t \), where \(m_t \) and \(n_t \) are the number of employees exiting and entering the firm between \(t-1 \) and \(t \), respectively.

We partition the firm’s experience in period \(t \) into three mutually exclusive groups:

\[
\left[\lambda \cdot \sum_{i=1}^{N_{t-1} - m_t} e_{i,t-1} + \sum_{i=1}^{N_{t-1} - m_t} \phi_{i,t} \right]
\]

is the human capital of the \(N_{t-1} - m_t \) stayers, corresponding to equation [1];

\[
\mu \cdot \sum_{i=N_{t-1} - m_t + 1}^{N_t} \phi_{i,t}
\]

is the recent experience accumulated by the \(n_t \) entrants, where the parameter \(\mu \) represents the value to the firm of new employee experience; and

\[
\gamma \cdot \sum_{j=1}^{t-1} \sum_{k=1}^{m_j} \hat{e}_{k,t-1}
\]

is the value of past experience of all exitors, allowing the firm to retain a different proportion, \(\gamma \), of exitors’ human capital, where \(j \) indexes the exit period of individual \(k \), and the law of motion for \(k \)'s experience is

\[
\hat{e}_{k,t} = \gamma \cdot \hat{e}_{k,t-1}.
\]

\[3 \] Note that for simplicity, we assume no employee reentry to the firm.
The sum of the three components, presented in equation [2], is the value of the firm’s cumulative experience in period t,

$$E_t = \left[\lambda \cdot \sum_{i=1}^{N_{t-1}-m_t} e_{i,t-1} + \sum_{i=1}^{N_{t-1}-m_t} \phi_{i,t} \right] + \left[\gamma \cdot \sum_{j=1}^{t-1} \sum_{k=1}^{m_j} \hat{e}_{k,t-1} \right] + \left[\mu \cdot \sum_{i=N_{t-1}-m_t+1}^{N_t} \phi_{i,t} \right]$$

When employee-level data is unavailable, as in Benkard (2000), Gowrisankaran et al. (2006), and Thompson (2007), stayers and exitors are indistinguishable. Hence, forgetting is measured from the firm’s stock of experience in period t, and under the following law of motion for the organization’s experience stock:

$$\tilde{E}_t = \lambda \cdot \tilde{E}_{t-1} + q_t$$

where \tilde{E}_t is the value of aggregate experience of all current and past employees in period t, q_t is experience accrued solely in period $t-1$, and $(1-\lambda)$ is the rate of depreciation of the firm’s experience stock, i.e. the (reduced form) parameter of organizational forgetting.

Individual worker identifiers, as in equation [1], are essential for decomposing organizational forgetting into individual forgetting and turnover effects. In the absence of individual level data, the distinction between forgetting through the loss of human capital accumulated by individuals who left the firm and human capital depreciation of workers still employed by the firm cannot be made. Similarly, the distinction between the contribution of recent experience of veterans and that of new employees cannot be made.

These limitations impose strong assumptions on human capital depreciation. Specifically, it assumes perfect exchangeability of past experience on current performance across all employees, including those who are no longer in the firm.
Under the definition of aggregate experience in [3], we can write the cumulative experience profiles for the firm as:

\[
\tilde{E}_t = \lambda \cdot \left[\sum_{i=1}^{N_t} e_{i,t-1}^* + \sum_{j=1}^{m_t} \sum_{k=1}^{m_t} \hat{e}_{k,t-1}^* \right] + \left[\sum_{i=1}^{N_t} \phi_{i,t} + \sum_{i=N_t-m_t+1}^{N_t} \phi_{i,t} \right] + E_{t-1}^\prime \\
\]

The first bracketed term on the right hand-side of equation [4], \(\tilde{E}_{t-1} \), is the sum of experience accumulated by individuals up to (and including) period \(t-1 \). \(\tilde{E}_{t-1} \) is further broken up by individuals who are still employed by the firm in period \(t \) and those who were no longer with the firm as of \(t-1 \), terms that are impossible to separately construct without individual level data.\(^4\) The second bracketed term, \(\phi_{i,t} \), is the sum of the recent experiences accumulated between \(t-1 \) and \(t \) by individuals who joined the firm prior to \(t-1 \) and by new employees who joined the firm between \(t-1 \) and \(t \). Similarly, lacking individual level data, equation [4] imbeds the assumption that the value of recent experiences of both new employees and veterans are identical from the firm’s perspective.

Equation [4] highlights the implicit restrictions on the parameters of equation [2] when individual level data is unavailable. Specifically, equations [2] and [4] coincide when the human capital of exiting workers is as valuable for current production as that of current employees (i.e. \(\lambda = \gamma \)) and when new employees’ current experience is as valuable for production as that of established workers (i.e. \(\mu = 1 \)).

Figure 1 depicts the evolution of a hypothetical firm’s accumulated experience over time. The solid line tracks the evolution of all experience ever accumulated by the firm (\(\tilde{E}_t \)), with the underlying assumption that past experiences of individuals currently in the firm and those of individuals who left it are equally valuable to current production (i.e. \(\lambda = \gamma \)). The dotted line

\(^4\) Note that \(\tilde{E}_t \neq E_t \) in part since \(\sum_{j=1}^{m_t} \sum_{k=1}^{m_t} \hat{e}_{k,j} = \sum_{j=1}^{m_t} \hat{e}_{j,k} \), while \(\sum_{j=1}^{m_t} \hat{e}_{j} = \sum_{j=1}^{m_t} \hat{e}_{j,k} \), where \(j \) is the exit period for individual \(k \).
tracks the aggregate human capital of the firm’s current employees \((E_t)\) in each period \(t\),
restricting the human capital accumulated by individuals who left the firm to have zero value in
current firm production (i.e. \(\gamma=0\), such that \(E_t = \sum_{i=1}^{N_{t-1}} e_{i,t} \)). The magnitude of the discrete drops in
the dotted line reflects the human capital lost (instantaneously) when workers exit. When
\(0<\gamma<\lambda\) the evolution of the firm’s accumulated experience over time would fall between the solid
and the dotted lines, with the magnitude of the drops depending on \(\gamma\). When \(\mu<1\), the dotted
line becomes flatter as current employees represent a mixture of new and seasoned workers.
The gap between the two contours would therefore increase the smaller \(\mu\) and \(\gamma\) are.

The ability to successfully elicit the magnitude of skill decay from firm level data depends on
the extent of turnover as well as its cost to the firm. Equation [5] highlights the effects that are
confounded in equation [3] when studying skill decay, expressed in the form of an omitted variable.\(^5\)

\[
E_t = \lambda \cdot \tilde{E}_{t-1} + q_t - \left[\sum_{j=1}^{m_j} \sum_{k=1}^{m_k} (\lambda^{t-j} - \gamma^{t-j}) \cdot \hat{e}_{k,j} + (1 - \mu) \cdot \sum_{i=N_{t-1}-m_j+1}^{N_t} \phi_{i,t} \right]
\]

As made explicit in equation [4], the term \(\sum_{j=1}^{m_j} \sum_{k=1}^{m_k} \hat{e}_{k,j}^\gamma\) is a component of \(\tilde{E}_{t-1}\), and is therefore
highly correlated with it. Empirically, omitting this term from a regression model will bias the
coefficient on \(\tilde{E}_{t-1}\) (towards zero when \(\lambda>\gamma\)). The gap between the contours in Figure 1
corresponds to the bracketed term in equation [5] and illustrates the loss of information when
only aggregate firm data are available.

\(^5\) To derive the first term in the bracketed expression in [5], note that since \(\hat{e}_{k,j} = \hat{e}_{k,j}^\lambda\) at the time of exit, where \(j\)
marks individual \(k\)’s date of exit, the difference between the value of exitors’ human capital retained at rate \(\lambda\) relative
to rate \(\gamma\) is

\[
\lambda \sum_{k=1}^{m_k} \hat{e}_{k,j-1}^\lambda - \gamma \sum_{k=1}^{m_k} \hat{e}_{k,j-1}^\lambda = \sum_{j=1}^{m_j} \sum_{k=1}^{m_k} (\lambda^{t-j} - \gamma^{t-j}) \cdot \hat{e}_{k,j}.
\]
Define ϕ_t and \bar{e}_{t-1} as the current and past experience of the average employee at time t. When evaluating the cost of skill decay between $t-1$ and t, the benchmark is the case of no forgetting. Therefore, the contribution of the average employee’s skill decay to organizational forgetting is $\bar{e}_{t-1}(1 - \lambda)$, where $(1 - \lambda)$ is the rate of human capital depreciation. The effect of turnover on organizational forgetting is a combination of two components; the first is the cost to the firm of losing an experienced employee relative to retaining that experience inside the firm, $\bar{e}_{t-1}(\lambda - \gamma)$, and the second is the cost to the firm of hiring a new employee relative to an experienced one, $\phi_t(1 - \mu)$.

Conceptually, the joint effect of skill decay and turnover for the average employee, measured in performance terms, is $\bar{e}_{t-1}(1 - \gamma) + \phi_t(1 - \mu) = \left[\bar{e}_{t-1}(1 - \lambda)\right] + \left[\bar{e}_{t-1}(\lambda - \gamma) + \phi_t(1 - \mu)\right]$. The relative contribution of turnover to organizational forgetting is then $\frac{\bar{e}_{t-1}(\lambda - \gamma) + \phi_t(1 - \mu)}{\bar{e}_{t-1}(1 - \gamma) + \phi_t(1 - \mu)}$, while that of employee skill decay is $\frac{\bar{e}_{t-1}(1 - \lambda)}{\bar{e}_{t-1}(1 - \gamma) + \phi_t(1 - \mu)}$. When $\mu = 1$, new employees contribute as much to firm experience as established ones. In this case, the relative contributions of turnover and skill obsolescence to firm forgetting are constant at $\frac{\lambda - \gamma}{1 - \gamma}$ and $\frac{1 - \lambda}{1 - \gamma}$ respectively. However, when μ is different than 1, the relative importance of each channel is determined by the average experience of exiting employees and therefore by the speed of turnover within the firm. The greater the turnover rate, the lower is \bar{e}_{t-1}, and the lesser the importance of skill decay in organizational forgetting. This confirms the intuition that human capital depreciation looses its relative importance when employment spells are short and the scope for individual forgetting is limited.

III. Empirical Application
We apply our framework to the universe of trauma-related ambulance runs in Mississippi between 1991 and 2005. Trauma patients, who are involved in such incidents as automobile
accidents, injuries from falls, and criminal violence, are stabilized, treated, and transported to definitive care by EMS providers.

Demand conditions are important in EMS. Specifically, the unpredictable nature of emergencies and the importance of speed require ambulance units to be dispatched based on proximity and availability. This limits the firm’s ability to match task and talent, which weakens the role of organizational capital in mitigating forgetting (Prescott and Visscher, 1980).

Previous studies of organizations, due to either data limitations or problems isolating individuals’ contributions to firm product, could not study forgetting at the individual level. The nature of emergency medical services provision allows for attributing performance to individual paramedics, and thus measure individual forgetting. The focus on the individual’s experience may be important in EMS due to the dependence on acquired skills (e.g. closed-loop tasks), which are subject to skill decay. For EMS companies, retention of paramedics is important due to concerns regarding personal safety, stressful working conditions, irregular hours, excessive training and requirements, limited mobility, and low wages (Institute of Medicine, 2007).

The medical literature provides little guidance as to the right approach for managing out-of-hospital trauma victims. Yet, conditional on the characteristics of patients, paramedics, injury, medical interventions performed, and of the scene, and since care provided in the field by emergency medical technicians is not definitive, there is no dispute that a shorter pre-hospital interval is preferred to a longer one. In the case where care is rendered on-scene, better diagnostic and therapeutic expertise is essential in reducing out-of-hospital time. In this application, we define additional experience as participation in additional ambulance runs and performance as the total out-of-hospital time for a trauma incident, which is considered a key marker of EMS performance (Carr et al., 2006). The importance of getting the patient to

6 Total out-of-hospital time is defined as the time (in minutes) from the moment the unit is alerted to its arrival at the hospital/trauma center.
definitive care as soon as possible, allowing only for the performance of essential procedures, is widely accepted, as shorter out-of-hospital EMS time intervals represent an important factor in survival (Feero et al., 1995). Therefore, contracts between municipalities and EMS organizations almost universally specify standards for pre-hospital duration. In many cases, these are the only standards mentioned and enforced (Institute of Medicine, 2007; Delbridge et al., 1998).

As paramedics become more proficient in identifying faster routes, diagnosing patient acuity, identifying the appropriate procedures, mastering protocols and techniques, and exercising better judgment in crisis situations, the shorter is the out-of-hospital time. Moreover, skilled paramedics require less outside communication and medical oversight, which in turn contribute to lowering out-of-hospital time.

We develop models linking the human capital accumulated by paramedics to out-of-hospital time. The input of interest is the human capital of paramedics, as measured by their recent and past experiences as of the date of the incident.

Formally, consider a trauma scene at date \(t \) in which injured patient \(k \) requires some prehospital intervention(s) by paramedic \(i \). The log of out-of-hospital time may be written as

\[
\ln OHT_{ikt} = \beta_i \ln e_{it} + \beta_X X_{it} + \beta_W W_{it} + \varphi_i + \eta_i + \varepsilon_{ikt}
\]

where \(OHT_{ikt} \) is the out-of-hospital time for patient \(k \) attended by paramedic \(i \). \(e_{it} \) is paramedic \(i \)'s experience as of date \(t \). \(X_{it} \) capture the characteristics of the patient, such as her age, gender, race, and all interactions of injury type and injured body part. It also captures characteristics of the incident, such as type and location of trauma. In addition to paramedic experience, \(W_{it} \) includes paramedic characteristics, such as their certification level, the certification level and experience of the driver that is paired with them, the team’s joint experience, and the type of

\[7\] Mississippi does not systematically collect patient discharge data, rendering it impossible to match EMS incidents to mortality or other patient health outcomes.
firm they work for. \(\varphi_i \) is a vector of indicators for hour of day, day of the week, month and year. \(\eta_i \) are individual paramedic fixed effects and \(e_{ikt} \) is a random disturbance. The parameter \(\beta_k \) measures the degree of paramedic learning.

The law of motion in [1] calls for estimating equation [6] by nonlinear least squares according to the following specification:

\[
\ln OHT_{ikt} = \beta_v \ln(\lambda \cdot e_{i,t-1} + \phi_i) + \beta_x X_{ikt} + \beta_w W_{it} + \phi_i + \eta_i + e_{ikt}
\]

Our measure of recent paramedic experience, \(\phi_i,t \), accumulates experience over running 3-month windows, recording paramedic volume at a given date as the number of trauma runs accumulated during the prior 91 days.\(^8\) This measure is more precise than fixed calendar quarters, used extensively in the learning literature applied to health care providers, as it responds instantaneously to any changes in the recent experience profile.\(^9\) We construct similar measures of experience for drivers and driver-paramedic pairs.

Individual paramedic fixed effects mitigate concerns that the relationship between experience and performance observed in the cross-section is driven by composition effects. For example, low quality paramedics might participate in fewer runs whereas more able paramedics may accumulate more experience by working more intensely and/or staying in the profession longer. Paramedic fixed effects therefore ensure that the experience parameters in [7] are identified from improvements in performance within paramedic.

The study of human capital accumulation among paramedics is particularly well suited for studying learning and forgetting as the unpredictable nature of emergencies does not lend itself to the type of selection on unobserved quality that exists whenever the choice of producers is

\(^8\) For each incident, we look back 91 days, tallying up the number of trauma incidents attended by the paramedic sent to that particular scene (\(\phi_i \)). Similarly, we count the trauma incidents attended in the 91-day window starting 182 days ago (\(\phi_i,1 \)), then 273 days ago (\(\phi_i,2 \)), then 364 days ago (\(\phi_i,3 \)), and so on.

\(^9\) Experience accumulation with moving windows can be viewed as smoothing the calendar quarter step function and alleviating the imprecision which increases the further incidents are from the beginning of the quarter.
driven by the quality of their products or services. Ambulance units are dispatched based on proximity and not on reputation, and trauma victims do not choose the providers of emergency prehospital care.\(^ {10} \)

Specifically, conditional on observables and on paramedic fixed effects, \(\varepsilon_{ikt} \) is unlikely to be related to paramedic characteristics, be they quality, ability or, importantly, experience as selection on such unobservables is unlikely to occur given the current design of the EMS system. This is a major benefit of studying learning and forgetting in the context of emergency medical services, and as a result, the parameters in [7] can be consistently estimated by (nonlinear) least squares.

In turn, organizational forgetting is estimated using the definition of firm experience in [3], which ignores the availability of individual level data.

\[\text{[8]} \quad \ln OHT_{kt} = \beta_{E} \ln (\lambda_{\tilde{E}} \cdot \tilde{E}_{t-1} + q_{t}) + \beta_{X} X_{kt} + \varphi_{t} + \varepsilon_{kt}\]

Our measure of recent firm experience, \(q_{t} \), accumulates trauma incidents served by the responding firm over the 91 days preceding each incident. Thus, we ignore the detail in our data about which paramedic and driver were sent to which scene, and aggregate the firm’s quarterly volume over the set of paramedics it employs, counting each incident as one experience.

Following Thompson (2007) we estimate [8] including and excluding hiring and separation rates. Additional information on hiring and separation rates creates an intermediate case between having no ability to track individuals and having an individual-level panel, as it tracks

\(^{10}\) While in Table 3 we provide evidence in support of random assignment, matching scene acuity to paramedic experience will lead to conservative estimates of the effect of experience on performance, as it will bias our results towards zero.
turnover-related dynamics in addition to firm-level experience accumulation.11 The measure of firm experience, represented by the solid line in Figure 1, ignores any information on individual providers and therefore excludes time varying paramedic characteristics such as certification level and experience as well as paramedic fixed effects.

Finally, we estimate organizational forgetting using the definition of firm experience in [5]. For comparability, we use the same set of controls as in [8].

\[\ln OHT_{kt} = \beta_E \ln \left(\frac{\lambda_E \cdot \tilde{E}_{t-1} + q_t}{\sum_{j=1}^{m} (\lambda_{E}^{-j} - \gamma^{-j}) \cdot \hat{e}_{k,j} + (1 - \mu) \cdot \sum_{j=N_{t-1} - m_{t-1}}^{N_t} \phi_{t,j}} \right) + \beta_X X_{kt} + \varphi_t + \epsilon_{kt} \]

In [9], we exploit the unique paramedic identifiers in our data to define hiring and separation dates using each paramedic’s first and last ambulance run, respectively. Using these definitions, we construct measures that track the experience of paramedics in their first quarter on the job, as well as that of paramedics no longer in the firm.

The variation originating from the drops in the dotted line (in Figure 1) allows us to disentangle γ from λ_E. It is important to note that the coefficient estimate of organizational forgetting, λ_E, obtained from estimating equation [8] is a weighted average of λ_E and γ as the overall effect of organizational forgetting depends on both the rate of turnover and the magnitude of human capital lost to it.

IV. Data

Our data were obtained from the Office of Emergency Planning and Response at the Mississippi Department of Health. Since 1991, this office has systematically collected incident-level EMS data through the Mississippi Emergency Medical Services Information System (MEMSIS). The raw

11 Technically, even if data on exit dates of employees were available, introducing dummies to mark the date of an employee’s exit will not recover λ_E, as $\sum_{j=1}^{m_t} \hat{e}_{t,j}$ is time varying by virtue of human capital depreciation.
data are recorded at the individual patient level by local EMS providers such that each observation corresponds to a separate victim.

We limit our attention to emergency incidents for which the initial call was related to trauma (defined as motor vehicle crashes, motorcycle crashes, pedestrian injuries, stabbings, assaults, gunshots, or falls).12 To focus on EMS runs where time to definitive care is most likely to be important, we exclude cases of death on arrival and limit the sample to calls involving at least one patient injury and ending in transport to hospitals by ground transportation.13

Detailed data on medical interventions and procedures are available only for the 2001-2005 period. While we restrict our analysis to this latter period, we use data for all years (1991-2005) to construct the history of paramedics’ and firms’ experiences, encompassing approximately 613,000 trauma runs. Our data allows us to follow 1,740 uncensored paramedics (85\% of paramedics in our data) from their entry into the profession and construct measures of their tenure and cumulative experience. The final sample includes approximately 177,000 observations (or 146,000 observations, excluding censored paramedics).

With the Emergency Medical Services Systems Act of 1973, Congress delegated the responsibility for overseeing EMS provision, financing, and organization to municipalities (Delbridge et al., 1998). Local governments can provide these services in-house, usually through their fire department or, alternatively, contract with local hospital-based or other ambulance companies (David and Chiang, 2008). Mississippi encompasses 86 contracting municipalities (82

12 Given the highly skewed nature of reported interval times and the possibility of extreme values due to miscoding, we exclude calls for which either the reported time from dispatch to arrival at the scene or the reported time from leaving the scene to arrival to a hospital exceeds 60 minutes. This criterion excluded less than one percent of trauma observations.

13 A number of companies in Mississippi provide air ambulance services. We exclude less than 400 such observations, in which helicopters and fixed wings were dispatched. Therefore, all runs in our data involve ground transportation.
counties and four cities). Each contracting area corresponds to a single EMS provider, with some serving multiple contracting areas.14

Local and national guidelines require advanced life support teams responding to trauma calls to be composed, at a minimum, of one driver and one paramedic (EMT-P).15 Paramedics can engage in advanced airway management, cardiac monitoring, drug therapy and/or advanced techniques that exceed the level provided by technicians with lower certification levels. Team composition may therefore affect total out-of-hospital time through the quantity and complexity of procedures performed on scene. In addition to the experience of the paramedic, we control for the driver’s experience and certification level as well as for the experience accumulated jointly by the paramedic-driver pair (i.e. the team).

To proxy for the underlying severity, we control for the number and types of procedures, the type of trauma and patient characteristics. In addition, our data includes detailed information on the injured body part (i.e. arm, leg, chest, hip, back, neck, head, face, abdomen, and eye) and the type of injury (i.e. pain, burn, laceration, soft tissue, blunt, fracture or dislocation, penetrating trauma, and amputation). We control for all possible combinations of these indicators, as they are likely to be correlated with the severity of the injury which, in turn, is likely to be an important determinant of total out-of-hospital time.

While we are interested in the effect of firm and individual experience on total out-of-hospital time, there are many other factors that may affect this marker of performance. These confounders, presented in Table 1, include the type of trauma, the incident location, patient characteristics, the number and types of procedures performed, the month and year, the

14 All contracting municipalities in Mississippi operate on sole provider agreements, which assign a single advanced life support (ALS) provider to each contracting municipality. The local ALS provider (the “firm” in our analysis) may compete with other firms for the exclusive contract, yet faces no competition in dispatching.

15 The three national standard levels of training for Emergency Medical Technicians (EMT) are: EMT-Basic (EMT-B), EMT-Intermediate (EMT-I), and EMT-Paramedic (EMT-P). The U.S. Department of Transportation (DOT) provided the basis for the education of EMTs and Paramedics. In addition, Mississippi requires operators of ambulance vehicles to be EMT-Driver certified (EMT-D), by participating in a training program in operation of emergency vehicles.
certification level of paramedics and drivers, the company that employs them, the municipality they operate in, and the number of victims.16

The timing of the call may affect total out-of-hospital time as well. Weather conditions, varying by season, may also affect the time needed to reach, access, stabilize, and transport patients. Potential lack of artificial lighting and fatigue, especially at night, could affect the speed of operation at the scene. Therefore, in our analysis, we control for year, month, day of week, and hour of the day.

V. Results
In this section, we begin by presenting estimates of organizational forgetting, turnover effects and skill decay in EMS at the firm level. We then present analyses of potential mechanisms leading to skill decay at the individual paramedic level.

\textit{Firm-Level Analysis}
We estimate equations [8] and [9], first with no controls (Model I), then successively adding possible confounders, as discussed in the previous section.17 All models are estimated by nonlinear least squares with heteroskedasticity-robust standard errors.

Table 2 reports estimates of organizational forgetting for the full sample, first cross-sectionally, then with contract-area fixed effects to account for unobserved differences in geography and severity across areas.18 The upper panel reports estimates based on equation [8], which represents a reduced form of organizational forgetting, as it ignores the distinction between skill decay and turnover effects. The estimates suggest that about a quarter of the stock of experience existing at the beginning of the year survives to the end of the year (0.699 4). When forgetting is identified only from changes over time within contract-area, the measure of forgetting is stable

16 Approximately 75\% of trauma incidents involved a single patient and 98\% involved at most three individuals.
17 Sample size is slightly decreasing across models due to missing information on EMT certification levels and time stamps totaling less than 850 observations and resulting in approximately 174,000 in Model VI for the full sample.
18 Note that since equations [8] and [9] mimic the case in which data on paramedics are missing, it makes little sense to estimate models that include indicators for individual paramedics.
and tightly estimated, with 70% of a firm’s experience being carried over from a quarter ago to today’s performance.

Due to data limitations, previous studies of organizational forgetting could only address turnover effects by adding hiring and separation rates as regressors (Argote, 1999; Thompson, 2007). This approach is valid and useful for eliciting organizational forgetting net of turnover effects under certain limiting scenarios. These include cases where there is no learning; there is learning but none of it is lost (i.e. the human capital accumulated by those leaving the firm stays with the firm); or human capital is lost due to exit, but is perfectly predicted by turnover rates. Nevertheless, it is unlikely that separation rates encompass all information regarding the human capital accumulated by those leaving the firm. For instance, consider two identical firms, one which replaces a highly experienced paramedic while the other replaces a relatively inexperienced one. Both firms will record the same turnover rate yet may differ in their production experience.

To test this empirically, the middle panel of Table 2 includes hiring and separation rates as regressors. In the cross section, hiring and separation rates have large adverse and significant effects on performance. However, when controlling for unobserved contract-area characteristics, these effects disappear. One possible explanation is that the magnitude of hiring and separation rates reflect the size of firms, with observed turnover rates decreasing in firm size. In our application, small firms are common in rural areas, in which total out-of-hospital times are inherently longer.

The lower panel of Table 2 reports estimates based on equation [9] with contract-area fixed effects, in which firm experience is separated into human capital accrued by individuals still in the firm and by those who left the firm. We discuss the estimates of skill decay (1-λE) and turnover effect (λE-γ) from the most saturated model (Model V) with contract-area fixed effects. We find the turnover effect to be roughly twice as large as the effect of skill decay (0.402 compared with 0.229).
As indicated by our framework, the reduced form coefficient estimate of organizational forgetting estimated from equation [8] and reported in the upper panel of Table 2 (0.699) is a weighted average of λ_E (0.771) and γ (0.369) from the lower panel.

In turn, the estimate of μ in [9] is unstable and imprecisely estimated across specifications. Model V with contract area fixed effects suggests that the hypothesis that a new paramedic is comparable to a seasoned paramedic in terms of performance cannot be rejected. While this null (i.e. $\mu=1$) implies that new and seasoned paramedics make equal contributions to firm recent experience, it does not imply that replacing an experienced paramedic by a new one is costless since a fraction $(\lambda - \gamma)$ of the former’s past human capital, \bar{e}_{i-1}, would be lost entirely during replacement.

Put together, $\frac{\bar{\phi}_i (1 - \mu) + \bar{e}_{i-1} (\lambda_E - \gamma)}{\bar{\phi}_i (1 - \mu) + \bar{e}_{i-1} (1 - \gamma)}$ is a measure of the relative importance of the cost of turnover. Assuming the average paramedic in our sample is replaced by one with no experience (i.e. $\bar{\phi}_i \approx 18.02$ and $\bar{e}_{i-1} \approx 209.44$) we find that about 62% of organizational forgetting is attributable to turnover.\(^{19}\)

Adding hiring and separation rates to equation [9] has no effect on the estimates of λ_E, γ, and μ. This suggests that hiring and separation rates provide inadequate information in our application, as they are correlated neither with the recent experience of entrants nor with the value of human capital of employees no longer with the firm.

Individual-Level Analysis

In our application, we find both skill decay and turnover effects to be important channels through which organizational forgetting comes to bear. The detail of our data, which tracks

\(^{19}\) $\bar{e}_{i-1} = f(\lambda_E)$ is calculated assuming $\lambda_E = 0.771$ (as estimated in the most saturated contract area fixed effects specification in Table 2) for the uncensored paramedics sample.
individual employee activity, allows us to further investigate mechanisms that may be responsible for individual skill decay. More specifically, our data follows paramedics over 15 years and we can therefore introduce paramedic fixed effects. For 85% of paramedics, we observe their entry into the profession and onwards. For each incident, we control for time varying paramedic characteristics such as changes to their certification-level as well as the experience and certification-level of the driver with which they are paired. Note that individual level data is not sufficient for studying individual skill decay. One needs an application that allows for attributing performance to individuals. In EMS, out-of-hospital time is produced by paramedic-driver pairs. Therefore, in addition to controlling for the driver characteristics, we control for the joint experience of each paramedic-driver pair.

Consistent estimation by nonlinear least squares of individual skill decay models relies on random assignment of paramedics to scenes. In particular, it requires unobserved patient and scene characteristics to be unrelated to paramedic experience. Table 3 reports estimates of models in which incident characteristics are regressed on paramedic experience, controlling for paramedic fixed effects. The results indicate that paramedic experience is unrelated to most observable patient and scene characteristics, and hence provides validation for our research design. In the few instances in which experience has some statistical significance, the magnitudes of the coefficients are extremely small. This is not surprising, as the unpredictable nature of emergencies and the importance of total out-of-hospital time require ambulance units to be dispatched based solely on proximity.

To control for potential heterogeneity in productivity, we estimated specifications with paramedic fixed effects. These capture any time-invariant factors that affect individual performance and may be related to experience. For example, firms may require their most able

20 The largest effect is for the incidents of motor vehicle crashes (MVC), where a 1% increase in cumulative experience is associated with a 0.00016 percentage point increase in the likelihood being dispatched to an MVC.
paramedics to be on call during times when and/or locations where the volume and severity of trauma are expected to be high. This type of sorting is absorbed into the fixed effect.21

The individual skill decay models are presented in Table 4, which reports estimates of individual learning, β_ν, and skill retention, λ, based on equation [7].22 Individual skill decay measured at the paramedic level is comparable in magnitude to the estimates from the firm analysis, presented in Table 2. The upper panel reports the results for the full sample including all paramedics, and the lower panel reports results for the subsample that excludes paramedics who appeared in the data in 1991, and are therefore potentially left-censored.23 Each panel contrasts estimates from cross-sectional, contract-area fixed effects, and paramedic fixed effects specifications, with successively more incident characteristics being controlled for moving from Model I to VI. As mentioned above, paramedic experience profiles are calculated on a rolling-quarters basis such that, for instance, $\phi_{i,t}$ is the number of runs in which paramedic i was involved over the 91-day period ending at date t. Standard errors are clustered at the paramedic level to allow for correlation in on-scene times across incidents within the same paramedic.

The similar magnitudes in the upper and lower panels suggest that the problem of censored regressors studied by Rigobon and Stoker (2005) does not appear to be severe in this context. Given the estimated magnitude of quarterly individual forgetting, this similarity most probably stems from the irrelevance of experiences accumulated prior to 1991 to performance after the beginning of our sample, in 2001. Focusing on the uncensored sample and the paramedic fixed effects specifications, the estimates of β are relatively insensitive to the set of controls and imply statistically significant learning on the part of paramedics. All else constant, a 50% increase in

21 Bias may result from evolutionary forces such as learning about match quality, which has implications for separation decisions. To test for potential attrition bias, we perform a version of the Verbeek and Nijman (1992) variable addition test described in Wooldridge (2002) in which leads and lags of selection indicators are added as regressors. This approach is attractive in this context since it is implementable in a fixed effects specification. We find no evidence of attrition bias.

22 Note that individual forgetting is $1-\lambda$.

23 Note that the full sample was used for the firm analysis (Table 2), as censoring would not be possible to infer absent individual identifiers.
paramedic experience is associated with roughly 40 seconds shorter total-out-of-hospital duration. Finally, Table 5 indicates that there is a consistent and statistically significant degree of skill decay, and is comparable in magnitude than the aggregate skill decay reported in Table 2.

In all of our specifications, it is important to note that even if our controls for interventions on scene, injury profile, trauma characteristics, and patient demographics reflect severity only to a limited extent, concerns regarding omitted variables are not likely to be important given the current EMS system design. It is difficult to argue for a correlation between severity and experience due to the fact that dispatching is determined by proximity to the scene and not by paramedic reputation. However, even if dispatch matched paramedic experience with patient severity, it is unlikely that indications of higher acuity would result in the dispatching of the least experienced crews, which is the only mechanism that would account for our results. If there is matching between paramedic experience and patient severity, our coefficient estimates of β_e underestimate the true degree of learning.

While our regressions control for the count of procedures performed on-scene, one might worry about selection on the complexity of procedures performed by paramedics. For example, if inexperienced paramedics choose simpler procedures, which require relatively fewer minutes, we might infer that less experience results in shorter out-of-hospital times conditional on the number of procedures. This would lead us to underestimate the magnitude of the experience premium. To address this concern, we replace the procedure counts with a set of 33 procedures indicators. Our results are insensitive to this replacement and, for brevity, are not reported here.

As individual skill decay accounts for approximately 38% of organizational forgetting in EMS, it is important to better understand how individual paramedic forgetting may come to bear. We test two potential mechanisms for skill decay: production breaks through periods of inactivity and interference through a wider set of tasks; in our application, the performance of non-trauma (medical) tasks.
We extend the analysis presented in Table 4 by recording the number of days elapsed since the last trauma run for each paramedic and adding it as a regressor to equation [7]. Under this mechanism of skill decay, pre-hospital times that follow longer periods of inactivity may be lengthier. The results, reported in the upper panel of Table 5, indicate that additional days of trauma inactivity have a small but statistically significant effect, suggesting that an additional day of inactivity is associated with prehospital intervals that are on average one second longer. Comparing estimates of β_ϵ and λ in Table 4 and the upper panel of Table 5, omitting length of inactivity does not appear to confound our estimates severely.24

In general, periods of inactivity encompass two alternative time uses: one includes activities that are at least partially relevant to performance, while the other includes irrelevant tasks. In EMS, non-trauma events such as stroke or cardiac arrest may have relevance to trauma performance to the extent that they involve similar clinical interventions and/or patient interaction.

From a learning perspective, adding paramedics’ experience histories with medical incidents to the specification allows for productivity spillovers in experience across medical and trauma incident types.25 Greater experience with medical incidents may confer some benefits at the scene of trauma if mechanically similar tasks are performed in both types of incidents or learning about patient management accrued over medical scenes is transferable to trauma scenes. The middle panel of Table 5 presents results from estimating equation [7’] below, in which medical experience is added to trauma experience in [7], and is parameterized as in [1]:

\begin{equation}
\text{[7']} \quad \ln OHT_{ikt} = \beta_\epsilon \ln(\lambda \cdot e_{i,j-1} + \phi_{i,j}) + \beta^M_\epsilon \ln(\lambda^M \cdot e^M_{i,j-1} + \phi^M_{i,j}) + \beta_\chi X_{ik} + \beta_\omega W_{it} + \varphi_i + \eta_i + \varepsilon_{ikt}
\end{equation}

24 Note, however, that paramedic volume already captures some of the information contained in our measure of paramedic inactivity: as the average number of inactive days inversely corresponds to the number of trauma incidents in quarter. Nevertheless, the point estimates in the upper panel of Table 5 indicate slightly more learning and less forgetting, as expected when controlling for the confounding effect of recent inactivity.

25 Huckman and Pisano (2006) study same-task transferability for surgeons across different hospitals and its effect on patient mortality. Our analysis studies potentially heterogeneous skills and their effect on performance in a single setting.
Using this specification, we find little evidence of transferability across incident types, as estimates of β^M_e are indistinguishable from zero across all models. This may result from EMS protocols being more well-established for medical events relative to trauma events (Carr et al., 2006).

In addition to studying transferability of human capital, equation [7'] simultaneously explores interference of experience accumulated from medical incidents with performance at the trauma scene. The scope of tasks that each individual carries out may interfere with their performance on a given task through weaker memory retrieval, which may contribute to skill decay (Arthur et al., 1998). The seven percentage point drop in the retention parameter, λ, in the middle panel of Table 5 (relative to Table 4) could be interpreted as evidence of task interference.

Finally, we implement a falsification exercise by estimating the same models described by equation [7], in which we replace the dependent variable, total out-of-hospital time, with an alternative marker of system performance, dispatch time. Dispatch time is defined as the length of time between a 9-1-1 call and the moment paramedics are notified and dispatched to the scene. This measure provides the basis for a credible falsification test as, unlike time spent on scene, paramedics have no influence on it. Therefore, we would not expect to find a relationship between individual paramedic experience and dispatch time. The lower panel of Table 5 validates our performance measure as we find no evidence of learning or skill decay in the case of dispatch time, lending credibility to our results.

VI. Conclusion

Studies of organizational learning and forgetting identify potential channels through which the firm’s production experience is lost. While the ability to distinguish between these channels has implications for efficient resource allocation within the firm, to date, their relative importance has largely been ignored. This paper develops a framework for eliciting the contributions of the two salient channels, labor turnover and human capital depreciation, to organizational
forgetting. When applying our framework to ambulance companies and their workforce, we find evidence of organizational forgetting, which results from sizable skill decay and turnover effects, with the latter having twice the magnitude of the former.

Similar to ship building, automobile and aircraft manufacturing, and pizza franchises, where forgetting has been documented, emergency medical services are labor intensive, subject to high labor turnover, and learning-by-doing is thought to be important at the individual worker level.

In some cases, organizational forgetting is associated with breaks in production and demand volatility. However, organizational forgetting may occur even under continuous production if individual skills depreciate over time and/or the human capital of employees is lost to labor turnover. For instance, high observed turnover rates were hypothesized to cause organizational forgetting in pizza franchises (Darr et al., 1995). EMS is characterized by high labor turnover as personnel face a difficult, often hazardous, work environment.26 In our application, we find that labor turnover accounts for 62% of organizational forgetting.

To test whether the large turnover effects we find in EMS are a feature of the industry or a feature of our framework, we follow the common practice of adding hiring and separation rates to the standard reduced form organizational forgetting specification. In our application, hiring and separation rates neither capture the true effect of labor turnover nor refine the estimates of organizational forgetting. The inadequate information embedded in hiring and separation rates suggests that other studies that lacked the ability to track individuals and therefore relied on firm-level measures of hiring and separation may have understated turnover effects.

26 Paramedics are exposed to potentially infectious bodily fluids, for instance through contact with contaminated needles, and to the hepatitis B virus (Delbridge et al., 1998). Moreover, they are frequently exposed to the threat of violence, incur injuries associated with lifting or falling, and face oncoming traffic at the scene of motor vehicle crashes. Occupational fatality rates for paramedics are comparable to those of police and fire personnel. There are 12.7 fatalities per 100,000 EMS workers annually, which compares with 14.2 for police and 16.5 for firefighters, and a national average of 5 fatalities across all professions (Maguire et al., 2002).
While the bulk of firms and employment in developed countries is concentrated in the service sector, studies of organizational learning and forgetting focus almost exclusively on large scale industrial settings.27 When dealing with commercial aircrafts (Benkard, 2000), automobile production (Eppte et al., 1996) or ships (Argote et al., 1990; Thompson, 2001; Thornton and Thompson, 2001; Thompson, 2007), examples of large-scale production endeavors, organizational forgetting is the result of a mixture of firm and employee level experience depreciation. This is, therefore, a reduced-form phenomenon that encompasses a number of mediators including turnover, literal forgetting by individuals, and adaptation to technological innovations. Therefore, a potentially important benefit of studying production of services is the ability to attribute performance to individuals. This is true in our application; emergency medical services are universal and involve measures of performance that are attributable to individual paramedics. As discussed earlier, the ability to track individuals is necessary for eliciting the contributions of labor turnover and human capital depreciation to organizational forgetting.

While services and manufacturing differ in their production environments, ambulance companies resemble manufacturers in their responsibility for hiring, training, contracting, maintenance of equipment, scheduling, and strategic planning. EMS companies provide service elements that individual paramedics are not able to provide in isolation. For example, around-the-clock coverage is a key contractible feature of emergency services. Our analysis suggests that about a quarter of the stock of experience existing at the beginning of the year survives to the end of the year. This reduced form estimate is lower than recent findings for an aircraft manufacturer (about 60\% according to Benkard, 2000), close to the 35\% for Liberty shipbuilders (Thompson, 2007), and higher than the 5\% estimated by Darr et al. (1995) in the case of pizza franchises. This may suggest that a firm’s ability to mitigate organizational forgetting is weaker in the tertiary sector and calls for additional studies of service delivery.

27 For example, the Bureau of Labor Statistics reports that 75\% of total U.S. employment in 2006 was concentrated in the service industry.
References

Figure 1: Measures of Accumulated Firm Experience over Time

\[\tilde{E}_t = E_t(\gamma = \lambda, \mu = 1) \]

\[E_t(\gamma = 0, \mu < 1) \]
Table 1 - Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-Hospital Time</td>
<td>36.05</td>
<td>minutes 16.62</td>
</tr>
<tr>
<td>Paramedic number of runs in last 3 months</td>
<td>18.02</td>
<td>trauma runs 12.35</td>
</tr>
<tr>
<td>Firm number of runs in last 3 months</td>
<td>458.91</td>
<td>trauma runs 530.69</td>
</tr>
<tr>
<td>Paramedic total number of runs (uncensored)</td>
<td>409.37</td>
<td>trauma runs 298.96</td>
</tr>
<tr>
<td>Paramedic-Driver pair total number of runs</td>
<td>27.81</td>
<td>trauma runs 57.11</td>
</tr>
</tbody>
</table>

Number of Procedures
- Number of EMS procedures in incident: 1.99 procedures, 2.19

Demographics and people in incident
- Patient age: 42.12 years, 25.10
- Patient race: African American: 40.67%, 0.491
- Patient race: White: 56.00%, 0.496
- Patient gender: Female: 55.08%, 0.497
- Number of victims in incident: 1.33 victims, 0.743

EMS times and trauma characteristics
- Type of Trauma: Fall: 31.49%, 0.464
- Type of Trauma: Motor Vehicle Crash: 53.00%, 0.499
- Type of Trauma: Motorcycle Accident: 1.15%, 0.106
- Type of Trauma: Pedestrian Accident: 1.69%, 0.129
- Type of Trauma: Cut / Stabbing: 2.34%, 0.151
- Type of Trauma: Assault: 8.83%, 0.284
- Type of Trauma: Gunshot: 1.51%, 0.122
- Location of Trauma: City street: 20.66%, 0.405
- Location of Trauma: County road: 9.33%, 0.291
- Location of Trauma: State / Federal Highway: 23.69%, 0.425
- Location of Trauma: Residence: 30.53%, 0.461
- Location of Trauma: Other: 15.80%, 0.365

Year, Month, Day of week, Hour of the day
- Year 2001: 19.61%, 0.397
- Year 2002: 21.55%, 0.411
- Year 2003: 19.66%, 0.397
- Year 2004: 19.75%, 0.398
- Year 2005: 19.43%, 0.396
- January: 7.54%, 0.264
- February: 7.78%, 0.268
- March: 8.76%, 0.283
- April: 8.79%, 0.283
- May: 9.15%, 0.288
- June: 8.54%, 0.279
- July: 8.78%, 0.283
- August: 7.90%, 0.270
- September: 7.99%, 0.271
- October: 8.20%, 0.274
- November: 8.33%, 0.276
- December: 8.24%, 0.275

Certification Levels
- Certification Level: EMT-Basic: 2.55%, 0.158
- Certification Level: EMT-Intermediate: 0.57%, 0.075
- Certification Level: EMT-Paramedics: 96.12%, 0.193
Table 2 - Determinants of Organizational Forgetting with Hiring and Separation Rates
Pre-Hospital Trauma Incidents, Mississippi 2001-2005

<table>
<thead>
<tr>
<th></th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
<th>Model IV</th>
<th>Model V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Total Out-of-Hospital Time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_E</td>
<td>0.6970</td>
<td>0.6908</td>
<td>0.6911</td>
<td>0.6933</td>
<td>0.6946</td>
</tr>
<tr>
<td>µ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation</td>
<td>0.2640</td>
<td>0.2983</td>
<td>0.3096</td>
<td>0.2921</td>
<td>0.3058</td>
</tr>
<tr>
<td>Hiring</td>
<td>0.3793</td>
<td>0.3126</td>
<td>0.3112</td>
<td>0.3134</td>
<td>0.3045</td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>139,651</td>
<td>139,651</td>
<td>139,651</td>
<td>139,651</td>
<td>139,651</td>
</tr>
</tbody>
</table>

Notes: Heteroskedasticity-robust standard errors are reported in brackets below the estimated coefficients. ",", ",", and "***" indicate significance at the 10%, 5%, and 1% levels, respectively. Significance levels for estimates of µ are for tests against the null of µ = 1 (i.e. new and seasoned paramedics make equal contributions to firm recent experience). Patient demographics include indicators for race, gender, and 12 age categories. Trauma characteristics include the type of trauma, location of incidents, and injury characteristics. The types of trauma are falls, gunshot wounds, cuts or stab wounds, assaults, motor vehicle crashes, and motorcycle and pedestrian accidents. Locations of incidents include residences, city streets, county roads, and state or federal highways. Injury characteristics include 70 interactions of injured body part and injury type.
Table 3 - Random Assignment Regressions with Paramedic Fixed Effects

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Patient Characteristics</th>
<th>Scene Characteristics</th>
<th>Number of Injuries</th>
<th>Street</th>
<th>Road</th>
<th>Highway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 - 14</td>
<td>14 - 18</td>
<td>18 - 25</td>
<td>25 - 35</td>
<td>35 - 45</td>
<td>45 - 55</td>
</tr>
<tr>
<td>Log Quarterly Volume</td>
<td>0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td>(91 days)</td>
<td>[0.001]</td>
<td>[0.002]</td>
<td>[0.002]</td>
<td>[0.002]</td>
<td>[0.001]</td>
<td>[0.002]</td>
</tr>
<tr>
<td>Log Cumulative Volume</td>
<td>-0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.005</td>
<td>0.0005</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>[0.002]</td>
<td>[0.003]</td>
<td>[0.004]</td>
<td>[0.004]</td>
<td>[0.005]</td>
<td>[0.004]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Cumulative Volume</td>
<td>-0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.005</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>[0.002]</td>
<td>[0.003]</td>
<td>[0.004]</td>
<td>[0.004]</td>
<td>[0.003]</td>
<td>[0.004]</td>
</tr>
</tbody>
</table>

Scene Characteristics (cont)

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>MVC</th>
<th>Gunshot</th>
<th>Fall</th>
<th>Motorcycle Pedestrian</th>
<th>Cut/Stab</th>
<th>Assault</th>
<th>0 - 2</th>
<th>3 - 5</th>
<th>6 - 8</th>
<th>9 - 11</th>
<th>12 - 14</th>
<th>15 - 17</th>
<th>18 - 20</th>
<th>21 - 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Quarterly Volume</td>
<td>-0.012</td>
<td>-0.001</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>-0.0004</td>
<td>0.005</td>
<td>-0.002</td>
<td>0.001</td>
<td>0.0001</td>
<td>-0.005</td>
<td>-0.001</td>
<td>0.008</td>
<td>-0.001</td>
</tr>
<tr>
<td>(91 days)</td>
<td>[0.002]**</td>
<td>[0.001]</td>
<td>[0.002]**</td>
<td>[0.001]</td>
<td>[0.001]</td>
<td>[0.002]**</td>
<td>[0.002]</td>
<td>[0.002]</td>
<td>[0.002]</td>
<td>[0.002]</td>
<td>[0.003]**</td>
<td>[0.003]**</td>
<td>[0.003]</td>
<td>[0.003]</td>
</tr>
<tr>
<td>Log Cumulative Volume</td>
<td>0.016</td>
<td>0.001</td>
<td>-0.013</td>
<td>-0.0001</td>
<td>-0.004</td>
<td>-0.002</td>
<td>-0.001</td>
<td>-0.007</td>
<td>0.003</td>
<td>-0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>[0.007]**</td>
<td>[0.001]</td>
<td>[0.005]**</td>
<td>[0.001]</td>
<td>[0.001]</td>
<td>[0.002]</td>
<td>[0.003]</td>
<td>[0.004]</td>
<td>[0.003]**</td>
<td>[0.004]</td>
<td>[0.005]</td>
<td>[0.005]</td>
<td>[0.005]</td>
<td>[0.005]</td>
</tr>
</tbody>
</table>

Notes: Paramedic fixed effects are included in all models [1] since subsequent learning/forgetting models are estimated with fixed effects and [2] to allow for the possibility of paramedic sorting across time and across the firm's coverage areas in a manner that matches their ability to the expected severity of scenes. Standard errors are reported in brackets below the estimated coefficients, and are clustered at the paramedic level. "*", "**", and "***" indicate significance at the 10%, 5%, and 1% levels, respectively.
<table>
<thead>
<tr>
<th>Model</th>
<th>Learning (β_e)</th>
<th>Retention (λ)</th>
<th>Observations</th>
<th>Number of Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-0.00924</td>
<td>1.74084</td>
<td>-0.02866</td>
<td>0.59670</td>
<td>-0.02858</td>
<td>0.49701</td>
<td>-0.03088</td>
<td>0.51765</td>
<td>-0.02963</td>
<td>0.51765</td>
<td>177,455</td>
<td>2,044</td>
</tr>
<tr>
<td></td>
<td>[0.00541]*</td>
<td>[0.00678]**</td>
<td>[0.00676]**</td>
<td>[0.00097]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>-0.02986</td>
<td>0.55551</td>
<td>-0.02862</td>
<td>0.58178</td>
<td>-0.02877</td>
<td>0.48027</td>
<td>-0.03153</td>
<td>0.58251</td>
<td>-0.03065</td>
<td>0.49851</td>
<td>175,469</td>
<td>2,044</td>
</tr>
<tr>
<td></td>
<td>[0.00678]**</td>
<td>[0.00097]**</td>
<td>[0.00676]**</td>
<td>[0.00642]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>-0.02787</td>
<td>0.55610</td>
<td>-0.02778</td>
<td>0.58155</td>
<td>-0.02447</td>
<td>0.47164</td>
<td>-0.02624</td>
<td>0.58758</td>
<td>-0.02615</td>
<td>0.46111</td>
<td>177,455</td>
<td>2,044</td>
</tr>
<tr>
<td></td>
<td>[0.00676]**</td>
<td>[0.00642]**</td>
<td>[0.00676]**</td>
<td>[0.00642]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>-0.00156</td>
<td>140.90450</td>
<td>-0.00277</td>
<td>0.59285</td>
<td>-0.03143</td>
<td>0.49441</td>
<td>-0.03358</td>
<td>0.59285</td>
<td>-0.03052</td>
<td>0.49441</td>
<td>177,455</td>
<td>2,044</td>
</tr>
<tr>
<td></td>
<td>[0.00063]**</td>
<td>[25.81297]**</td>
<td>[0.00676]**</td>
<td>[0.00642]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>-0.00271</td>
<td>14.10342</td>
<td>-0.002612</td>
<td>0.60616</td>
<td>-0.03043</td>
<td>0.69868</td>
<td>-0.03539</td>
<td>0.69868</td>
<td>-0.03036</td>
<td>0.70002</td>
<td>177,455</td>
<td>2,044</td>
</tr>
<tr>
<td></td>
<td>[0.00183]**</td>
<td>[4.75924]**</td>
<td>[0.00676]**</td>
<td>[0.00642]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>-0.00530</td>
<td>3.92207</td>
<td>-0.02669</td>
<td>0.60837</td>
<td>-0.03539</td>
<td>0.70002</td>
<td>-0.03539</td>
<td>0.70002</td>
<td>-0.03036</td>
<td>0.70002</td>
<td>176,508</td>
<td>2,044</td>
</tr>
<tr>
<td></td>
<td>[0.00368]**</td>
<td>[4.75924]**</td>
<td>[0.00676]**</td>
<td>[0.00642]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td>[0.00662]**</td>
<td>[0.01052]**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: All models control for driver and paramedic-driver pair experiences. Patient demographics include indicators for race, gender, and 12 age categories. Trauma characteristics include the type of trauma, location of incidents, and injury characteristics. The types of trauma are falls, gunshot wounds, cuts or stabblings, assaults, motor vehicle crashes, and motorcycle and pedestrian accidents. Locations of incidents include residences, city streets, county roads, and state or federal highways. Injury characteristics include 70 interactions of injured body part and injury type. Standard errors are reported in brackets below the estimated coefficients, and are clustered at the paramedic level. "*", "**", and "***" indicate significance at the 10%, 5%, and 1% levels, respectively.
Table 5 - Mechanisms for Skill Decay and Falsification Test
Pre-Hospital Trauma Incidents, Mississippi 2001-2005

Dependent Variable: Specifications with Periods of Inactivity

<table>
<thead>
<tr>
<th></th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
<th>Model IV</th>
<th>Model V</th>
<th>Model VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Total Out-of-Hospital Time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning (β_e)</td>
<td>-0.03564</td>
<td>-0.03551</td>
<td>-0.03438</td>
<td>-0.02970</td>
<td>-0.04284</td>
<td>-0.04322</td>
</tr>
<tr>
<td></td>
<td>(0.00862)**</td>
<td>(0.00835)**</td>
<td>(0.00805)**</td>
<td>(0.00796)**</td>
<td>(0.01083)**</td>
<td>(0.01083)**</td>
</tr>
<tr>
<td>Retention (λ)</td>
<td>0.55049</td>
<td>0.52433</td>
<td>0.50996</td>
<td>0.52801</td>
<td>0.73962</td>
<td>0.73974</td>
</tr>
<tr>
<td></td>
<td>(0.10319)**</td>
<td>(0.1074)**</td>
<td>(0.11228)**</td>
<td>(0.12382)**</td>
<td>(0.07806)**</td>
<td>(0.07781)**</td>
</tr>
<tr>
<td>Days since</td>
<td>0.00072</td>
<td>0.00072</td>
<td>0.00068</td>
<td>0.00061</td>
<td>0.00069</td>
<td>0.00069</td>
</tr>
<tr>
<td>Last Run</td>
<td>(0.000021)**</td>
<td>(0.000021)**</td>
<td>(0.00002)**</td>
<td>(0.000019)**</td>
<td>(0.000019)**</td>
<td>(0.000019)**</td>
</tr>
<tr>
<td>Observations</td>
<td>146,012</td>
<td>146,012</td>
<td>146,012</td>
<td>146,012</td>
<td>146,012</td>
<td>145,248</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>1,657</td>
<td>1,657</td>
<td>1,657</td>
<td>1,657</td>
<td>1,657</td>
<td>1,644</td>
</tr>
</tbody>
</table>

Specifications Including Experience with Medical Incidents

<table>
<thead>
<tr>
<th></th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
<th>Model IV</th>
<th>Model V</th>
<th>Model VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Total Out-of-Hospital Time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning (β_e)</td>
<td>-0.01892</td>
<td>-0.04548</td>
<td>-0.04457</td>
<td>-0.03837</td>
<td>-0.04335</td>
<td>-0.02927</td>
</tr>
<tr>
<td></td>
<td>(0.01272)</td>
<td>(0.01594)**</td>
<td>(0.01551)**</td>
<td>(0.01498)**</td>
<td>(0.0195)**</td>
<td>(0.00886)**</td>
</tr>
<tr>
<td>Retention (λ)</td>
<td>0.48310</td>
<td>0.61104</td>
<td>0.60049</td>
<td>0.61268</td>
<td>0.72616</td>
<td>0.64383</td>
</tr>
<tr>
<td></td>
<td>(0.26701)*</td>
<td>(0.08771)**</td>
<td>(0.08835)**</td>
<td>(0.10046)**</td>
<td>(0.12479)**</td>
<td>(0.10711)**</td>
</tr>
<tr>
<td>Learning (β_e^M)</td>
<td>-0.01105</td>
<td>0.02396750</td>
<td>0.02536</td>
<td>0.029915</td>
<td>0.00936</td>
<td>-0.000192</td>
</tr>
<tr>
<td></td>
<td>(0.01218)</td>
<td>(0.0160294)</td>
<td>(0.01593)</td>
<td>(0.01526)</td>
<td>(0.01867)</td>
<td>(0.00919)</td>
</tr>
<tr>
<td>Retention (λ^M)</td>
<td>0.48929</td>
<td>0.85149</td>
<td>0.87804</td>
<td>0.90076</td>
<td>0.75880</td>
<td>34.44258</td>
</tr>
<tr>
<td></td>
<td>(0.38609)</td>
<td>(0.14122)**</td>
<td>(0.14152)**</td>
<td>(0.17695)**</td>
<td>(0.52887)</td>
<td>(157.4546)</td>
</tr>
<tr>
<td>Observations</td>
<td>146,970</td>
<td>146,970</td>
<td>146,970</td>
<td>146,970</td>
<td>146,970</td>
<td>146,191</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>1,738</td>
<td>1,738</td>
<td>1,738</td>
<td>1,738</td>
<td>1,738</td>
<td>1,718</td>
</tr>
</tbody>
</table>

Falsification Test

<table>
<thead>
<tr>
<th></th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
<th>Model IV</th>
<th>Model V</th>
<th>Model VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Time Alerted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning (β_e)</td>
<td>-0.001575</td>
<td>-0.001543</td>
<td>-0.001641</td>
<td>-0.001978</td>
<td>-0.003000</td>
<td>-0.003692</td>
</tr>
<tr>
<td></td>
<td>(0.00527)</td>
<td>(0.00454)</td>
<td>(0.00386)</td>
<td>(0.00314)</td>
<td>(0.00357)</td>
<td>(0.00509)</td>
</tr>
<tr>
<td>Forgetting (λ)</td>
<td>0.000000</td>
<td>0.000070</td>
<td>0.000004</td>
<td>0.000006</td>
<td>0.000005</td>
<td>0.00013</td>
</tr>
<tr>
<td></td>
<td>(0.00001)</td>
<td>(0.000775)</td>
<td>(0.00004)</td>
<td>(0.000027)</td>
<td>(0.000025)</td>
<td>(0.000825)</td>
</tr>
<tr>
<td>Observations</td>
<td>147,061</td>
<td>147,061</td>
<td>147,061</td>
<td>146,993</td>
<td>146,993</td>
<td>146,209</td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>1,741</td>
<td>1,741</td>
<td>1,741</td>
<td>1,740</td>
<td>1,740</td>
<td>1,720</td>
</tr>
</tbody>
</table>

Controls

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Procedures</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Demographics & people in incident</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trauma characteristics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Year, month, day of week, hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certification level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Notes: All models are estimated with paramedic fixed effects, exclude left-censored paramedics, and control for driver and paramedic-driver pair experiences. Patient demographics include indicators for race, gender, and 12 age categories. Trauma characteristics include the type of trauma, location of incidents, and injury characteristics. The types of trauma are falls, gunshot wounds, cuts or stabings, assaults, motor vehicle crashes, and motorcycle and pedestrian accidents. Locations of incidents include residences, city streets, county roads, and state or federal highways. Injury characteristics include 70 interactions of injured body part and injury type. Standard errors are reported in brackets below the estimated coefficients, and are clustered at the paramedic level. "*", "**", and "***" indicate significance at the 10%, 5%, and 1% levels, respectively.