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A MODEL OF RESOURCE REDISTRIBUTION

In this paper we investigate various aspects of resource re-
distribution procedures that suggest processes of exchange.
The definition we have adopted of the elementary act of inter-
action stipulates that any participant at each stage may use
only information on the stages of a fixed number of other par-
ticipants. Sufficient conditions are formulated for the existence
of a procedure from the given class that obtains a distribution
of resources that is optimal in a certain sense.

1. Statement of the Problem

We will consider a system including m participants, each of
which is represented by a concave (convex from above) func-
tion fu(zr), zn € R*, k=1,2,...,m. The matrix z = (z,...,
Zp, ..., Zm) Of size n X m with nonnegative components we will

m
call states of the system. We will let f(:a:):ZI fu(zr). For
h=1

each subset of participants e M= {1, 2,...,m} we define
for z = 0 a point-set mapping &, (z):

Bu ()= {2|2€ Gu(z), f(2)= max f(y)}, (M
VEG ,(x)
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where Gg(x) = {yly= (yl.,---,yh--':ym),yheﬂﬂ!y .—:307

th= Z-’L‘k. yp=2ay for k€ a}.

h€a k€a

(2)

It follows from relations (1) and (2) that f(E«(z)) = f(z) for
any @ and z > 0.

We will define a system A of subsets of the set M, A= {a},
o < M, a5 @. In the following, A will usually contain all the
possible subsets of fixed size9, 2 < 6 << m.

Definition 1. We will call a point-set mapping £« (%), given
by (1) and (2), a feasible transformation or a feasible bargain

if @ € A.

Definition 2. The point z = (Z1, ..., Zky ..., Zm), T =0, we
will call optimal if it is a solution to the problem:
k=1, .. m. (3)

f(y)=2fh(yh)—"' max-zyk =2 zp, Y =0
k=1 =1 h—1

We will denote the greatest value of f(y) in (3) by f*(z).
Definition 3. We will call the sequence of states 2%, s=0,
1,.
and flzs) = f* (2% as s—oo.

We will explain the definitions. We will interpret the functloll

fu(xr) as utilities of the vector of resources z» for the k-th
participant measured in the same units. Let 2°= (519 nn s
z:% ...,zx%) be an arbitrary initial distribution of resources.
The transformation E«(z%) corresponds to the following inter-
action. The participants of the set ¢ combine their resources
and find an arbitrary solution of the problem:

E fr(yr)— max, Zyg = Zzh",

kEa REc h€q

yp =0, k€a (4)

, an optimizing sequence, if z° € &, (2°7), a; € A, s=1,2,
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% Then the resources are distributed in conjunction with the
g v solution that has been found. Here the resources of the parti-
cipants who do not enter into the set ¢ remain unchanged.
Through the transaction, there will be a new state of the sys-
tem z!= (2%, ..., 2!, ...,Zn'), in which a bargain among

the participants of a certain other set takes place, and so on.
§ Inthe process of these transformations the total utility f(x)

| does not decline and the total quantity of resources remains
| n

§  equal to Z:ch".

i i

Of course, for certain participants the value of the utility
# function after the bargain may turn out to be less than the ini-
# tial value. Therefore, we must assume that, simultaneously
with the transfer of resources, monetary calculations are
made ("'side payments' in the terminology of game theory),

. so that as a result of the bargain not one of the participants

1' loses. A system of financial calculations may be determined
| by many methods, but for our purposes a specific method need
| not exist.

We will now assume that the number of participants in each
¢ bargain does not exceed 0. We ask whether a sequence of bar-
‘ gains Eq () exists for the given initial state z¥ such that for

%  some method of choosing z* € E,® (z°7!) the total utility will
"f reach a maximum. (The value of this maximum f"(z%) is de-
termined by the initial state alone.) The simplest examples
| show that such sequences may not exist.

. Example. We will consider the system consisting of three

~ participants with the following utility functions: fi(y1) = min
(g v1), fo(ye) = 0.4us, fi(ys) = 0.4vs. Here yy = (un, vi),
are scalars, k=1, 2, 3. Let the initial state z° = (z,°% z2°, z3°)
' be as follows: z,°= (0.0); 22= (1.0); 2=
'-‘-5 between all possible pairs of participants are feasible. It is
i ﬁsy to see that any of the sets Eq(z?), a= {1,2},{1,3}, {2,3}
contains z° and does not contain any other point. Thus, no se-
quence of feasible bargains leads the system fromthe state i
However, as is easy to show, f(z%) =0.8 < f*(z%) =1. To

L
P

Ugp, Uk

(0.1); only bargains
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achieve the maximum state z* = (1.1; 0.0; 0.0) we must
have a simultaneous transfer of resource from the second
participant and of resource v from the third participant to the

If ¢(y) is concave, the limit (5) exists for all y, h € R", such
that ’ ,

first, i.e., a bargain among three participants. @' (y,h)= min ph. (6)
An example that is similar to this in concept is given in [1], PEPy)

which studies a model close to the one we have described

above, except that only pair-wise bargains are considered. It Let y= (yu,....¥n), vEN={1,2,...n}, v= N\~ We

follows from the results of [1] that with n=1 (the case of one
resource) we may always reach an optimal state through pair-
wise bargains.

Thus, in order to guarantee the existence of an optimizing 1
sequence, it is necessary to allow interaction between a definite &
number of participants at each stage. It will be shown below :
that this number depends, generally speaking, not only on the
number n of resources, but also on the differential properties
of the utility function. In this connection, we will require the
concept of quasi-summator functions, which we consider in
the next section.

will denote by Pr.y the vector with coordinates z;, i=1,2
..., n, satisfying the condition: .

yi, if i 6 v;
0, if i€, (7)

Zi
>
-y

‘ The following definition, obviously, should be introduced
first and represents a fundamental principle for this section
Definition 4. We will call the function ¢ (y), ¥y = (y1,..., ¥ .)
a quasi—s_umrr;ator f,unction on the set of variables {yf,’i E.\Z} .
ztlitO:lhe point »°, if @'(y° k) exists, and for all h € R" the equa-
2. Quasi-Summator Functions

t @ (10 k) = @' (¥°, Prsh) + (3, Prih). (8)
We will present certain definitions and results from [2] that @&
will be used below. § holds.
Let p(y) be a concave function, y 6 R™. The vector p € R® In the future we will use the simpler expression "¢(y) is
is called a supporting functional to ke (y) at the point y, if quasi-summator on v'' in addition to the expression "¢ (y) is
ply+h) < o(y) + ph (1) for all & 6 R*. The set P(y) of sup- : quasi-summator on the set of variables {y; i €v} ." If ¢/ (% A
porting functionals to 1 (y) at the point y is closed, convex, | J c¥isls forany h, it follows from the definition that.(p(y)qzs 8
‘,. quasi-summator at the point y° for N and the empty set
and bounded. If (p(y)_—_z, angr(y), ar =0, we have P(y)= 2 = The quasj-summator nature with respect to v <= N alwa s. i
. volves a quasi-summatorability over ¥. The function ¢ (?j) .
willich is differentiable at the point y°, is quasi—summatojr’at
4 this point for any subset of variables. Actually, in this case
i b

m m

k=1 k=1 _
ayPy (y) . For a function that is differentiable at the point ¥, the
set P(y) contains a single gradient vector. We will denote by '
¢’ (y, k), h € Rn the limit: 3

n

' .- i !0, h) = b
b 9'(y% h) 12; piki, where p= (p1,..., pa) is the gradient of

oty Bje= Jim ¢(y +th)—o(y) _ 5)

s n & o(y) at the point y°.

We will indicate one more important subclass of quasi-
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i following relationship: min ph = min pPr.h + mm pPr-h. 1t is
pEP p=P

summator functions. Assume ¢(y) =¥y (&1(y*)..--, gi(yh),
oaly): Te=gi(§), Yy ERN, y=(y, ceeshee s 375 that
the function V(z1,...,2) is differentiable at the point Z= (ir'|.
....%); and all the derwatlves g/ (7% hY), i=1,2,. g
ist for any h; € R% . It is easy to derive directly from (5) the

easy to check that min pPr,k -+ min pPr.,h = min ph 4 min ph
pEP peP peEP, :DEP

- = min ph. Thus, to prove the theorem it is enough to
PP+ P '

result that ¢’ (7, h) = 2 Vg ), wherey’ = (s v ol l show equivalence of relations (14) and (15):

, /) is a gradient WP(Zl. ..., 7))+ at the point Z. It follows
from this that ¢ (y) is quasi- summator on the set of coordmates :

of the component y* for any i=1,2,...,1%
Let Pc R, veN={1,2,. n} We will introduce the

notation:

min ph = min ph, (15)
peEP pEPv—i-P;

I The last relationship must be fulfilled identically for & € R™.
| It is obvious that (15) follows from (14) and that P, 4 P; D P.

i We will show that if (15) holds, P, + P; < P . (2) If it is not

. * vector j € (Py+ P9)\P - exists. We will consider the
@ hyperplane that strictly separates p from the closed convex

~ finite set P. Suppose that ¢ is its directional vector, and

qp> gp for all pE@P . But then, min gp << ¢p < mm \ 4P,
[ reP+P3

Pq;:Pr‘vP:{Z'szrvy,yep}. (9)

Below, we will use the following obvious properties of the
operation of set projection:

Pry(P + Q) = PrP + PrQ, (10) .\ which contradicts (15). The theorem is proved.
Corollary. If the concave function @(y), y € R™ is quasi-
PryPryP = Pryn,P, (11) summator at the point y° on the sets v,p<= N={1,2,...,n},

PreP =0, PryP=P. (12) it is quasi-summator on the intersection and the union.

Proof. By assumption and Theorem 1, the following equations
hold: P =P, + P; = P, + P;. Therefore, utilizing (10)-(13)
WEget’PﬁPrP-(PV'FPI)"f‘Pr;(PvF!”P\T)=Pv-ﬂ\‘ _}‘Purlﬁ_t_P;l(]V
«I-Pm-v = Puny + Py - But then Py + PW and, by Theorem
1,p(y) is quasi-summator on pMNv.

Since ¢ (y) is quasi-summator on fi and ¥, it immediately fol-

lows that it is quasi-summator on the [i[1% and, consequently,
-;:onp,ﬂ'\‘)= plUv as well.
. Corollary 2. Suppose the sets vi, i=1,2,...,], form a sub-
- division of the set N={1,2,..., n} . (3) In order that the con-
cave function ¢(y), y € R" be quasi-summator on each v; at the
point y°, it is necessary and sufficient that the relationship

Pe= ZPV. (16)

It is especially useful to bear in mind the relationship:

PT‘,,LP-FPFVPDPI‘MUVP, (13)

that is correct for &« ) p= @.

Theorem 1. Let P be a set of supporting functionals to the
concave function @(y), y € R™ at the point y°. In order that
¢ (y) be quasi-summator on v < Nat this point, it is necessary
and sufficient that the following relationship hold:

P=P,+P;. (14 |

Proof. According to (6), equation (8) is equivalent to the

Bl
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hold.

Here, as above, P is a set of supporting functionals to the
function ¢@(y) at the point y°.

proof. From (16) and (13), it is easy to derive the relation-
ship P o P,, + P; . But then, in conformity with (12) and
{13), P==P: Pl—i. Sufficiency now follows from Theorem
1. Necessity will be shown by induction. According to Theo-
rem 1, this assertion is true for I=2. Let it be true for I —1

-2

Then, using Corollary 1, we may write: P= ZPvi-—l- Py _ uvp

i=l1

But,since P =P, + P;

(13),
b ; 1—2
P=Pr, (ZT Pt P“HU“z) tPry, (Z{Pvi =+ Pvl__]_th) =
i=1 b=

I—2

P“I+ZP‘1+P“I-1’

i=1

which was required.

3. Theorem for the Existence of anOptimizing Sequence

We turn now to consideration of the problem formulated in
Section 1. Below we show the sufficient conditions for the ex-
istence of an optimizing sequence of states and a method for
constructing it.

We assume that oy = (.‘E]h, . uonq LR .,Inh),kz 1,2,,..,.

m; N={1,2,...,n}. Earlier, the space R™ was interpreted

as the space of resource sets; in this connection the set v N 5

will be identified with the set of all resources enumerated by

numbers from v.
Definition 5. We will call the set (of resources) v N,
v=~=®@a complex at the point 20= (z,% ..., 2%, ...,2n’). Tel-

ative to the function f(z) = >} fu(zs), zz € R7, if: (a) all the

k=1
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functions fa(zx), k=1,2,...,m are quasi-summator on
{za|j €~} at the point z,°; (b) not one of the proper subsets

' of the set v is not possessed of property (a).

At any point at least one complex exists since the functions

- . fu(zr) are quasi-summator on N. If vV and pare two different
- complexes at the point 20, thenv () p= ®. Otherwise, accord-

ing to corollary 1, the set v(1p would possess property (a)
which would contradict 5. If v is a complex, the set ¥ either
is itself a complex, or else contains a certain complex. Thus,

the following assumption is justified.

Lemma 1. At any point the totality of complexes defines a

(Theorem 1), we obtain, by using (10)- ; subset of the set /.

The concept of complex that we have introduced is connected

~ with another concept used in economic practice. "The value"

of a small change in resource entering complex v, generally
speaking, depends on the increases in the other resources in
v, and does not depend on the change in the resources relating
to other complexes. It will be shown below that the structure

' of efficient local behavior of resource redistribution is deter-
._ mined largely by the character of the partition of the set of
¢ resources into complexes.

Before we consider the proof of the basic theorems, we will

$ introduce a few other concepts which will be useful in what
® follows.

Definition 6. A feasible transformation &, (z) is called ef-

4§ ficient at the point = = 0, if f(8x(z)) > f(z). If « €A and
g J(r) = n[ggicf(iﬂ(:c)),we will call the transformation &.(x)

most efficient at point x. Definitions 1 and 6 also define the
notions of "efficient bargain' and "most efficient bargain"

(at point z).
Definition 7. The point z = 0 is called a deadlock if not a
sirl_gie feasible transformation in it is efficient.
The optimal point, of course, is a deadlock; the converse,
generally speaking, is not true (see the example in Section 1).
Theorem 2, Let fr(zx), k=1,2,...,m, be concave;
f= (%),...,2m) — a deadlock; and § — the greatest number
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of resources containing the complex 6 << m. If bargains be-
tween any 0 -1 participants are feasible, ¥ is an optimal
point.

Proof. From the assumptions and the definition of a dead-
lock point, it follows that for any a & A the totality of vectors
{Z|k € a} forms a solution to the problem:

ka(!lk)**mﬂxa Zyn=2fk; y» =0, kE€Ea. (17)‘

h€Ea h€a hEq

Let P, be the set of supporting functionals to the function
fu(yr) at the point . In order that the set y. =3, k€ q,
be a solutionto the problem (17), it is necessary and sufficient

that vectors pi* € Py, wp* =0 and )= exist satisfying the con-

ditions in [2]:
Pr%* = A® — wy%,

Let vy, i=1,2,...,1, be a partitioning of the set ¥ into
complexes at the point # We introduce the notation:

We= {wi|wp =0, widn=0}, k=12,...,m, (19)
Ly=Pr Pu+-Pre Wy, i=1,2,...,1, k=12,...;m (20)

The sets Lxi, obviously, are convex; they may be considered ‘i 3

to be -.concentrated on the subspace of dimension of 6. From
the relations (18)-(20), we conclude that for any feasible
a N Lu> Pr, A

kea

Since all the a containing the 0 4 1 subscripts are feasible, #

we may apply Khelli's theorem. (4) We obtain [) Ly == for
any i (we recall that M = {1, 2, ..., m}). Leti € define

KEM .
€ ) Lri and then 3, 6 Pry Py -+ Pry Wy for all k& M, We

wp*- =0, k€a. (18) ﬂ;

& sprING 1971 255

ht M i
will define AM — Z A:i Obviously, W, —_—2 Pry Wy; and,

i=1 i=1

1

through corollary 2, P,= lervip" as well. Thus, for any
1==]

k, vectors p,M€Py, w,M €W, exist, such that ¥ = p,™ -}

wyM, This relationship is equivalent to (18), with a =W

4 and is a sufficient condition for the optimality of . The theo-
& rem is proved.

Corollary 3. Suppose that for any k the function fu(zx) is

- differentiable at the point % and all the possible bargains be-

tween pairs of participants are feasible. If ¥ = (Z,..., T,
...,#m) is a deadlock point, it is optimal.

Proof. Since fr(zr), k= 1,2,...,m, is quasi-summator at
the point %, = (Zn,..., Tar) for any set {z;.}, that includes

' one variable, every resource forms a complex and 0 =1,
. which it was required to show.

Corollary 4. Assume that m is greater than n. If all the

. possible bargains between the (n - 1)-th participants are
. feasible, any deadlock point is optimal. (5)

Proof. Let ¥ be a deadlock point and 6§ be the greatest num-

® ber of resources contained in its complex. If A does not con-
i tain all the subsets ¢ < M of capacity 6 + 1, we will consider
‘® anew set of subscripts of feasible bargains: A, = {a|a== D,

" ac B, pEA}. Since 8 << n, A; contains all the sets of the

¢ 041 participants. If the bargain Eg(x) is not efficient at a

& given point, then for any « < f the bargain £.(z) and subse-
quent ones will not be efficient in the same point. Therefore,

¢ the point ¥ is a deadlock for larger sets of feasible bargains

' as well. Therefore, our assertion is proved by the corollary

'  of theorem 2.

We will now show that in the conditions of theorem 2 an

i " optimizing sequence exists for any initial point there.

Theorem 3. Let z5€ &S (zo1), s=1,2,..., e €A If

(a) a set of feasible bargains is chosen sothat any deadlock
i point is optimal and (b) the sequence Za, contains a finite sub-
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sequence of more efficient bargains (definition 6), f(z®) —
f*(z°) as s—oo. (6)

Proof. The sequence f(z*) does not decrease monotonically
and that is why it converges. Let f(z*) —f <[ (z°) and oy =
B(i) be a subsequence with subscripts of the most efficient
bargains such that z%~!'— . Since f(zsit) — f(7) < f*(29),
an efficient bargain with subscript y€ A exists at the point Z.
We get the required contradiction now from the following
change of relationships:

F< 18 (@)= lim [(5(z*7)) < lim f(Bo(er)) =lim f(z+) =1,

Here we use the continuity of f(&y(z)) as a function of 2.
The theorem has been proved.

On the basis of theorems 2 and 3, we get the following suf-
ficient conditions for the existence of an optimizing sequence.

Theorem 4. Let 22 = (z,° ...,z ...,2m%), 2 =0, and
m m
for any y satisfying the conditions y = 0, 2‘ Y= szg

h=1 k=1
the greatest number of resources in the complex does not ex-
ceed 0. If all the bargains among the 0 4 1 participants are
feasible, an optimizing sequence of states proceeding from
point 2% exists.
Instead of a condition of feasibility for all the bargains be-
tween the 0 + 1 participants, we may require that somewhat

less ‘stringent conditions be fulfilled: for any a < M, containing 4 :

941 elements, we find a BEA such that a = p(x). If the
condition (*) is not fulfilled, the assertion of theorem 4 is not

true, generally speaking. An example for § =n =2 was con-

sidered in Section 1. It may easily be generalized to the case
of arbitrary n and g,

One other corollary of the foregoing assertions should be
mentioned. We will say that the point z = 0 is isolated if it

is not contained in any optimizing sequence of states. A dead- E-

lock point may not be either optimal or isolated. It follows
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from theorem 3 that when there are no nonoptimal deadlock
points, isolated points are also absent. Corollary 3 shows

that the set of nonoptimal deadlock points belongs to the set

of points of undifferentiability of the function f(z) (if only pair-
wise bargains are feasible) and, consequently, has Lebesque
measure zero. However, more detailed consideration of the
example in Section 1 shows that the measure of the set of iso-
lated points is not necessarily equal to zero. Thus, as a re-

@ sult of "local" changes in the function f,(zy), "global" results

may arise.

4. Random Bargain Sequences

The method of search for the optimizing sequence shown in
theorem 3 requires that the most efficient bargains be effected
in a finite sequence of steps. The question arises of whether

s :, fulfillment of this condition can be ensured without presupposing
_ | ing the existence of centralized information in the system. It
is natural to assume that the participants enter into bargains
! .‘ according to some random mechanism. One of the possible
‘® statements of the problem is as follows.

On the set Q = {u} of sequences of the form o= (ai,

& 0,...0:...), a;€A, we define a measure p such that for any

finite sets f;€4; and Uy, I= 1,2,...,t, the following equa-

i ; . t
j tion holds: p {w]a,, =p; i= 1’2""'t}=pr’w whats

i=l1

ZP&=1, pp=p>=0 for allp €A,
pEA

This definition corresponds to an independent choice at

._ each step s of a certain feasible set of participants with prob-
! abilities ps, not depending on the superscript s. We will also

',...,x*...),x*GEas(J'ﬁ—'), g =12y,

21)
0,z°)= inf limf(z®). (22)

u€ U, xu) §—+<c0
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We observe that lim f(z°) necessarily exists for any se-

quence of states ue U(w, z%), since in this case f(z®) is
bounded and does not fall monotonically. We ask whether we
may assert that the equation

F(o,2%) = f* (") (23)
is met with probability 1. Since lim f(z®) < f*(2°), the obser-
vance of equality (23) means that for almost all © élig fle®) =

f*(2%) , under any selection of vectors z* from the set of
solutions of the corresponding extremal problem.

If the result of any bargain is determined uniquely (E«(z)
are one-to-one mappings), the answer to this question follows
easily from the results of Section 3. Actually, in thi.s ca_se
U(w,z) is a one-to-one function of © and z°, We will fix the
initial state. Then we may define uniquely over o a sequence
{(w) of subscripts of the most efficient bargains [(w) =
(gt o ovinilidie s s 7

We will consider the events By = {w|as %1}, s=1, Dcans e
The random element as(w) does not depend upon a;(®), ...,

as1(w), while, I;(w), on the other hand, is uniquely determined * E:

by their values.

Therefore, ;;(Bs)zizl p{o|li=ca} p{o|e*a} <1—0p.
z Ltk
We assume that

w(N By < —p)"

g=1

Then

h Z. i
p( N Bs)=n {“’Ias-:”%ls' s=1,2,...,h} =Z M {M%#Zs)' # and ¢ is a subset of participants. It is obvious that any sequence

& of the form 256k, (5% a), s=1,2,...

h—1 4 b nite number of steps. Let z¢ be any limiting state. It is clear
s—=1,2..., h—1, h=a} ploja=a} <A —pr( N B)<U-NE

= a€A
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From the foregoing inequality, it follows that almost all ®
contain the infinite sequence of most efficient bargains. Now
with the help of theorems 2 and 3 we can establish the truth
of the following statement. _

Theorem 5. Let the conditions of theorem 4 be fulfilled and
every feasible bargain be a one-to-one mapping. Then f(z*)

— f*(2°) with probability p = 1.

For the case of one resource the proof of theorem 5 follows
directly from the results of [1].(7)

The uniqueness of the mappings &.(r) is guaranteed, for ex-
ample, in the case of strict concavity of the functions fi.(xy).

It may be shown that in the conditions of theorem 4, equation
(23) holds with the probability 1 for concave differentiable (but
not necessarily strictly concave) functions fy ().

A similar statement remains unproved for the general case.
In connection with this, it is interesting to consider interaction
schemes close to the ones studied above, for which a similar
problem has been positively solved.

Let z= (x),...,%n,...,Tm) 'be the states of the system,

# anda — a numerical parameter greater than zero. We will

introduce a definition of an elementary transformation:

) qfa(-f, a), ‘F“(xv a):?&(p’ 24
£a(z,0)= { ) B uiree (24)
Va@wa)={uly =0, W)= 1@ +a Yu=Y
Ba i Ea
Yn—xp upm k € a} ! . (25)
Here, as above, ¥y = (Y1, ..., Yny ..., Ym), f(y)=2fu(yk).

k=1

is reached in a fi-
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that it need not be optimal, but in the conditions of theorem 4

it turns out to be close to the optimal for small values of a..
Theorem 6. Suppose that in the sequence a, each §ymbol is

repeated an infinite number of times, and the set A is such

that any deadlock point is optimal. Then f(z?) i f (2% asa

goes to zero, no matter what the selection of final states z@.
Proof. It is obvious that for any a GA :

0 f(Ea(=)) — (") s &

The mapping f«(z), as before, is given by (1) and (2). Let
a—0, a>0. Then

If ¥ is a limiting point of the sequence z¢, then, as follows fromt;

(26) and the continuity of f(Ex(z)), we have the inclus'ion: T€
£.(¥) and Aa € A. Thus, x is a deadlock point and this means
it is conditionally optimal, from which follows the required
convergence.

Thus, in the conditions of theorem 4, any random mechanism |

that, with probability 1, gives rise to sequences containing a
finite number of each of the feasible bargains of type (24)

achieves a distribution of resources which for small values of 3

a is close to the optimal distribution. ' -
Comment. For every a< {1,2,... m)} we will consider
the following convex programming problem:

f(y!"“'yh’---vym)“*maX, (27) :
Zgh(yh)z 0, (28) &
k=1
yn€Qn k=1,2,....m (29)
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Here, yx are vectors of size r; gu(yn), =—1,2,...m
m

are vector functions having n scalar components; 2 gr(Zr) =

b= i
0, 2,€Qe k=1,2,...m,m > n.
The following statement, generalizing corollary 4, may be

£ I proved by the same method as theorem 2.

Theorem 7. Let the function f(y:, ..., ¥4, ... ,.ym) be con-

§ cave and quasi-summator on yx, k=1, 2, ... mm, at the point

(fi,...,&k,...,ETm), the vector functions gi(yx) be concave;
and the sets Qx be closed and convex. If the vector ¥ = (&),
-y &y ..., Tn) is a solution to problems (27)-(30) for any

] a containing n 4 1 elements, ¥ maximizes function (27) under

f(Ea(z?)) — f(z%) = 0. (26) &

the constraints of (28) and (29).
For the case of a differentiable function f(yi, ..., ¥a, .-, Um),
and for linear vector functions gi(yx) and Qx = {yx|yx = 0}

* this assertion is proved in [ 5], which appeared after this pa-
per went into press.

Notes

1) ph is the inner product of the vectors p and .

2) The following considerations, in essence, reproduce the
proof of lemma 1 in [2]. ,

3) Le., vi=®,4,j=1,...,1, U v,=N.’
=1

4) Khelli's theorem. Let & be a family of sets in (-dimen-

i u?_ sional vector space in which & is finite or each set of K is
@ compact. If all the 041

sets of family of x have a common
point, the intersection of all the sets of the family of A is not

B ooty 3, 4]

5) The idea of considering the interaction between the

i (n+1)-th participants for the case of n resources was given
@ to the author by B. S. Mitiagin in discussing [1].

~ 6) We recall that ;*(s") is the greatest value of the function
" {(s) in problem (3) with z — =° (and, conseqgnently, with = = ).
i 7) We emphasize that the proof given in [1] is justified only
' In conditions of uniqueness of the mappings () (this is not

@ stipulated in [1]).
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