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Spatial Discounting, Fourier, and Racetrack Economy: 

A Recipe for the Analysis of Spatial Agglomeration Models 

 

By Takashi Akamatsu, Yuki Takayama and Kiyohiro Ikeda 

 

We provide an analytical approach that facilitates understanding the bifurcation 

mechanism of a wide class of economic models involving spatial agglomeration of 

economic activities. The proposed method overcomes the limitations of the Turing 

(1952) approach that has been used to analyze the emergence of agglomeration in the 

multi-regional core-periphery (CP) model of Krugman (1993, 1996). In other words, 

the proposed method allows us to examine whether agglomeration of mobile factors 

emerges from a uniform distribution and to analytically trace the evolution of spatial 

agglomeration patterns (i.e., bifurcations from various polycentric patterns as well as a 

uniform pattern) that these models exhibit when the values of some structural 

parameters change steadily. Applying the proposed method to the multi-regional CP 

model, we uncover a number of previously unknown properties of the CP model, and 

notably, the occurrence of “spatial period doubling bifurcation” in the CP model is 

proved. 
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1. Introduction 

 Most of the world’s population and economic activities are strikingly concentrated 

in a limited number of areas. Although thousands of articles have been devoted to 

explain the prevalence of this pattern, the core-periphery (CP) model developed by 

Krugman (1991) is the first successful attempt to explain this in a full-fledged general 

equilibrium framework (Fujita and Thisse (2009)). The CP model introduces the 

Dixit-Stiglitz (1977) model of monopolistic competition and increasing returns into 

spatial economics and provides a basic framework by which to describe how the 

interaction among increasing returns, transportation cost, and factor mobility can 

cause the formation of economic agglomeration in geographical space. These new 

modeling techniques further led to the development of a new branch of spatial 

economics, known as “new economic geography (NEG)”, which has become a fast-

growing field. Over the past few decades, numerous extensions of the original CP 

model have appeared
1
, and notably, there has been a proliferation of theoretical and 

empirical research applying the NEG theory framework to deal with various policy 

                                                 
1 For comprehensive reviews of the literature on the NEG/CP models, see the following monographs 

and handbooks: Fujita et al. (1999), Papageorgiou and Pines (1999), Fujita and Thisse (2002), Baldwin 

et al. (2003), Henderson and Thisse (2004), and Combes et al. (2008), and Glaeser (2008). 



2 

issues, such as trade policy, taxation, or regional redistribution in recent years 

(Baldwin et al. (2003), Combes et al. (2009)). 

 As indicated by its remarkable expansion, the NEG theory has the potential to 

provide a solid basis for predicting and evaluating the long-run effects of various 

economic policy proposals. There remain, however, some fundamental limitations 

that must be addressed before the NEG theory can be confirmed to provide a sound 

foundation for such applications. One of the most relevant issues is that the theoretical 

results are mainly restricted to two-region cases. Even though some efforts to 

overcome this limitation have been made in the early stages of development of the 

NEG (e.g., Krugman (1993, 1996) and Fujita et al. (1999)), theoretical studies on the 

NEG models have focused almost exclusively on two regions in the last decade.  

 Although clearly the correct starting point for analysis, two-region models have 

several limitations. First, these models can neither describe nor explain a rich variety 

of polycentric patterns that are prevalent in real-world economies. Second, these 

models cannot provide an adequate framework to consider spatial interactions in a 

well-defined sense. For example, consider the concept of market accessibility, the 

differences among regions of which, as evidenced by numerous empirical studies, are 

major factors that lead to various forms of spatial agglomeration. Note that this 

concept is defined as the relative position of each region within the entire network of 

interactions. Due to the existence of such network effects, the impacts of a change in 

market accessibility in a multi-regional system are quite different from those in a two-

region system, the topology of which is too simple to capture the network effects 

(Behrens et al. (2007)). 

 In view of the limitations of two-region models, it remains unclear as to whether 

we can extrapolate the predictions and implications derived from two-regional 

analysis to a multi-regional system (Behrens and Thisse (2007)). Therefore, it is fair 

to say that “real-world geographical issues cannot be easily mapped into two-

regional analysis” (Fujita et al. (1999), pp.79), and the multi-regional framework is a 

prerequisite for systematic empirical research as well as for practical applications of 

the NEG theory.  

 In the present paper, an attempt is made to clarify the spatial agglomeration 

properties of the multi-regional CP model. As described in the NEG literature, the 

two-region CP model exhibits a bifurcation from a symmetric equilibrium (spatially 

uniform distribution of population) to an asymmetric equilibrium (agglomeration of 

population), depending on the values of certain structural parameters. In analyzing the 

multi-regional CP model, the most important, yet most difficult, step is examining the 



3 

more complex bifurcation (i.e., evolution of spatial agglomeration structure). In the 

present paper, we investigate the mechanism of the bifurcation through a novel 

analytical approach that we shall explain later in this section. For the analysis, we 

first present a multi-regional version of Pfluger’s (2004) two-regional CP model, 

which is a slight modification of Krugman’s original CP model, so that short-run 

equilibrium is obtained analytically
2
. We then show a complete picture of the 

evolutionary processes of agglomeration patterns in the CP model with K regions 

equidistantly located on a circumference. The term evolutionary process means that 

we consider a process in which transportation cost parameter τ  steadily decreases 

over time, starting from a very high value of τ , at which a uniform distribution of 

firms/labors is a stable equilibrium.  

 It is first shown that the critical value of τ  at which the agglomeration structure 

first emerges (i.e., a first bifurcation occurs) and the associated agglomeration pattern 

can be obtained analytically. While the first bifurcation is the final and only 

bifurcation in conventional two-region models, the multi-regional CP model does not 

end the story. It is indeed proved that the spatial configuration of population evolves 

over time with further decreases in τ , accompanied by a second bifurcation. The 

analysis of these two bifurcations further reveals that they share a common property, 

namely, the number of core regions (in which firms/workers agglomerate) is reduced 

by half and the spacing between each pair of neighboring core-regions 

(agglomeration shadow) doubles after each bifurcation. This suggests a general rule 

whereby the multi-regional CP economy exhibits the spatial period doubling 

bifurcation (SPDB). Finally, a proof of this conjecture, including a general analytical 

formula to predict the occurrence of the SPDB, is presented
3
. In addition to these 

results, we further uncover the effect of the heterogeneity of consumers on 

agglomeration patterns. Specifically, it is deduced that the CP model may exhibit 

repeated agglomeration and dispersion with the steady decrease in τ , which provides 

a generalization, as well as a theoretical explanation, of several bell-shaped 

development results reported in studies on two-region CP models
4
. 

 While the present paper elucidates the intrinsic properties of the multi-regional CP 

model, another unique contribution is that an analytical approach that facilitates 

                                                 
2
 Although the approach presented herein can be applied to Krugman’s (1991) original CP model, we 

chose this model for clarity of exposition. Essentially, the same results as those obtained for the present 

model are obtained for variants of the Krugman’s model (e.g., Forslid and Ottaviano (2003), Ottaviano 

et al. (2002)), as well as the original Krugman’s model. 
3 While Krugman (1993, 1996) has presented some numerical results that can be regarded as special 

examples of the SPDB, no study has presented a rigorous proof of the general SPDB in the CP model. 
4
 See Tabuchi (1998), Helpman (1998), and Murata (2003). 
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understanding bifurcation properties of a wide class of economic models (as well as 

the CP models) involving spatial agglomeration of economic activities is provided. 

The approach presented in the present paper is characterized by the following three 

tools: (A) spatial discounting matrix (SDM), (B) discrete Fourier transformation 

(DFT), and (C) a system of regions on a circumference (racetrack economy (RE)). 

We outline our approach by briefly reviewing each of these tools/concepts in turn. 

 (A) Geographical location patterns of economic activities are largely shaped by the 

tension between agglomeration forces and dispersion forces. Take the CP model with 

two regions, for example. Suppose that a firm moves from one region to another 

region (say, region 1). This generates an agglomeration force through a circular 

causation of forward linkages (market access effect on consumers ) and backward 

linkages (market access effect on firms ). The former is the incentive for workers to be 

close to the producers of consumer goods, and the latter is the incentive for producers 

to concentrate at locations where the market is greater. In opposition to the 

agglomeration force, a dispersion force (market crowding effect ) is also at work. The 

increased competition in region 1 gives other firms in this region the incentive to 

move to other regions. If the agglomeration force is strong enough to overcome the 

dispersion force, then the core-periphery location pattern emerges in the two-regional 

economy. 

 In a multi-regional economy with more than two regions, it should be emphasized 

that these agglomeration/dispersion forces not only affect region 1 but also spill over 

to every other region with a different strength due to the existence of transportation 

costs and imperfect competition of markets. Furthermore, in the multi-regional CP 

model, the manner in which each of the agglomeration/dispersion forces decays with 

distance (i.e., these forces are spatially discounted ) is described by gravity laws
5
. 

Accordingly, the spatial extent and patterns of such spillover effects governed by the 

gravity laws determine the geographical location patterns of firms and laborers. 

 A key component of the multi-regional CP model for systematically dealing with 

                                                 
5 The concepts of spatial discounting, accessibility, and gravity laws have a long tradition in fields 

dealing with spatial aspects of economic activities. Examples include geography, transportation science, 

location theory, urban economics, regional economics, and international economics. Early empirical 

studies of gravity laws in the social science literature extend back to Ravenstein (1885), Young (1924), 

Reilly (1931), Zipf (1946), Voorhees (1955), and Tinbergen (1962). It has been well established in 

regional science and transportation science that gravity laws can be theoretically derived from the 

maximum entropy principle (e.g., Wilson (1967, 1970), Smith (1976), Anas (1983), and Smith and Sen 

(1995)) or random utility (discrete choice) theory (e.g., Anderson et al. (1992)). Since Anderson (1979), 

it has become increasingly apparent that the gravity models can also be derived from several different 

models with micro economic underpinning (e.g., Bergstrand (1989), Evenett and Keller (2002), and 

Anderson and Wincoop (2003). 
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the spatial patterns of the spillover effect is the spatial discounting matrix (SDM), the 

elements of which represent the spatial discounting factors (SDF) for all pairs of 

regions. (For the definitions of SDF and SDM, see Section 3.) The SDM encapsulates 

the essential information required to analyze the multi-regional CP model. In order to 

determine what types of spatial concentration-dispersion patterns can emerge in the 

CP model for a racetrack economy, it suffices a) to obtain the eigenvalues of the SDM, 

and b) to represent the Jacobian matrix of the indirect utility as a function of the SDM, 

as shown later herein. Note that, although this fact holds for a wide variety of models 

dealing with the formation of spatial patterns in economic activities, we herein restrict 

ourselves to demonstrating this fact using the CP model. 

 (B) Discrete Fourier transformation (DFT) is a simple and powerful technique for 

obtaining the essential indices (eigenvalues and eigenvectors) by which to predict the 

emergence of agglomeration. This may at first appear to be simply a computational 

issue, but its significance in the analysis of the CP model deserves further explanation. 

 Most economic models involving spatial agglomeration, including the CP model, 

usually predict the existence of multiple equilibria. As a manner of refining the set of 

equilibria, it is customary in the NEG literature to assess the stability of equilibria by 

assuming a particular class of adjustment process (e.g., replicator dynamics) used in 

evolutionary game theory
6
. As demonstrated by Papageorgiou and Smith (1983), 

Krugman (1996), and Fujita et al. (1999), combining the evolutionary approach with 

Turing’s approach (Turing, 1952) provides a very effective method of investigating 

the emergence of agglomeration. In this approach, the investigation is concerned 

primarily with the onset of the instability of a uniform equilibrium distribution of 

mobile workers (which implies the emergence of some agglomeration). The 

procedure for examining the instability is based on the eigenvalues 

},...,2,1,{ Kkgk ==g  of the Jacobian matrix of the adjustment process evaluated at 

the symmetric equilibrium (flat earth equilibrium). Accordingly, if the eigenvalues g 

are represented as functions of the key parameters of the CP model (e.g., transport 

cost parameter τ ), we can predict whether a particular agglomeration pattern 

(bifurcation) will emerge with changes in the parameter values.  

 While Turing’s approach offers a remarkable method for assessing the emergence 

of agglomeration, it has two important limitations. First, Turing’s approach deals with 

only the first stage of agglomeration, in which the value of transportation cost steadily 

decreases, and cannot give a general description of what happens thereafter. Second, 

                                                 
6 In the present paper, we use perturbed best response dynamics (e.g., Fudenberg and Levine (1998), 

Vega-Redondo (2003), Sandholm (2009)), instead of replicator dynamics, because the former is 

suitable for dealing with the CP model with heterogeneous agents. (See Section 4.) 
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despite its conceptual simplicity, performing the eigenvalue analysis in a 

straightforward manner becomes very complicated, even for a model with only a few 

cities, and it is, in general, almost impossible to analytically obtain the eigenvalues g 

evaluated for an arbitrary configuration of mobile workers. This is one of the most 

difficult obstacles to clarifying the general properties of the multi-regional CP model. 

 As shown in the present paper, however, the DFT coupled with the racetrack 

economy resolves these limitations. The eigenvalues g of the Jacobian of the CP 

model in the racetrack economy can be represented as a simple unimodal function of 

the eigenvalues of either the SDM or its submatrices. More precisely, the kth 

eigenvalue gk for the flat earth equilibrium reduces to a quadratic function of the kth 

eigenvalue fk of the SDM (see Section 5), whereas for the equilibrium configurations 

that emerge at later stages during the course of steadily decreasing transportation cost, 

a simple technique allows us to obtain each of the eigenvalues g as a function of the 

eigenvalues of the submatrices of the SDM (see Section 6). This means that, if the 

eigenvalues of the SDM and its submatrices are obtained analytically, we can 

completely characterize the intrinsic nature of the CP model without resorting to 

numerical simulations. The DFT offers a powerful means for obtaining the very 

eigenvalues, especially when combined with the racetrack economy explained below. 

 (C) The racetrack economy (RE) is an idealized spatial setting in which locations 

(regions or cities) are spread equidistantly over the circumference of a circle. Perhaps, 

due to its apparently unrealistic setting, the significance of this spatial setting appears 

to have been neither fully recognized nor exploited in previous studies on the NEG 

models following the studies of Krugman (1996) and Fujita et al. (1999)
 7

. In fact, few 

studies have used this approach to analyze the multi-regional CP model. In our view, 

however, the analysis of the racetrack economy is, for several reasons, indispensable 

in fully clarifying the intrinsic self-organizing nature of a wide variety of models 

dealing with the spatial agglomeration of economic activities. 

 First, the RE is helpful in obtaining a systematic overview of these spatial 

agglomeration models. Note that these modes have not been systematically compared 

in a unified spatial setting, despite the fact that the resulting location patterns are 

significantly affected by spatial boundary conditions or location specific conditions. 

In the RE, these effects are completely removed, so that we can isolate the self-

organizing properties in a pure form. Accordingly, the RE provides a benchmark 

circumstance or an ideal test-bed designed to compare the intrinsic properties of these 

                                                 
7 Before Krugman’s research (1993, 1996), there were few studies using a circular city model (e.g., 

Salop (1979), Novshek (1980), Papageorgiou and Smith (1983), and Eaton and Wooders (1985)). 
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models, and such comparisons should facilitate the refinement of a body of 

knowledge on these models into a coherent and systematic theory. 

 Second, the RE with discrete locations greatly facilitates the eigenvalue analysis of 

these spatial agglomeration models. More specifically, the SDM for the RE reduces to 

a circulant matrix, which allows us to obtain the analytical expression of the 

eigenvalues of the SDM through a simple matrix operation, namely, the DFT of the 

first row vector of the SDM 
8
. Furthermore, each row vector of the DFT matrix (i.e., 

each eigenvector) represents the agglomeration patterns of firms/workers by the 

configuration pattern of the entries (see Section 4). Accordingly, the eigenvectors and 

the associated eigenvalues g thus obtained provide a simple method by which to 

predict what types of agglomeration patterns emerge for an arbitrary given condition.  

 Finally, note that the results obtained for the RE have a significant degree of 

generality. From a mathematical point of view, the essence of the RE lied in its 

periodic boundary condition, which yields structural symmetry of the system. The 

bifurcation properties of such systems (with symmetric structure) often have some 

general regularities described by the group-theoretic bifurcation theory (e.g., 

Golubitsky and Schaeffer (1985)). As can be inferred from this theoretical link, most 

of the intrinsic properties of the CP models obtained in the RE are not restricted to a 

one-dimensional space, but rather hold for a two-dimensional space with a periodic 

boundary. Therefore, the approach presented in the present paper can be easily 

extended to a two-dimensional space, although the present paper considers only the 

one-dimensional case. 

 Thus, by laying out these three tools/concepts (A), (B), and (C), the present study 

makes a unique contribution to the understanding of the bifurcation mechanism of a 

variety of economic agglomeration models, as well as the CP model. Although each 

of these tools/concepts is rather well established in the literature, the present study is 

unique in the sense that 1) it sheds new light on the essential role of the spatial 

discounting factor (SDF) in the context of the bifurcation mechanism/analysis of the 

economic models involving spatial agglomeration, 2) it provides an analytically 

tractable method that allows the evolutionary processes of spatial agglomeration, as 

well as the emergence of agglomeration, to be traced by effectively combining 

discrete Fourier transformation (DFT) with the circulant properties of the spatial 

                                                 
8 The use of DFT combined with a circulant matrix is not an esoteric technique. Rather, this is an 

indispensable technique in a wide variety of fields that deal with spatial patterns, including time-series 

analysis in econometrics, macro economics, and finance; signal processing, image processing, and 

pattern recognition in computer science; morphogenesis in theoretical biology; and phase transitions in 

materials in statistical physics. Therefore, it is natural that economic models involving spatial patterns 

of agglomeration might be analyzed using these tools. 
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discounting matrix (SDM) in the discrete racetrack economy (RE), and 3) it 

demonstrates the usefulness of the proposed method by uncovering a number of 

previously unknown properties of the CP model. 

 The remainder of the present paper is organized as follows. Section 2 discusses 

related research. Section 3 formulates a multi-regional CP model and defines the 

stability of the equilibrium of the model. Section 4 defines the SDM in a racetrack 

economy, the eigenvalues of which are provided by DFT. In Section 5, several types 

of bifurcations from a uniform distribution are analyzed, which also serves as a 

preliminary step for the analysis of the SPDB in Section 6. Conclusions are presented 

in Section 7. 

 

2. Related Research  

 Since the seminal work of Krugman (1991), an enormous number of studies on the 

CP model and its variants have been published. However, since the work of Krugman 

(1993, 1996) and Fujita et al. (1999), theoretical studies on the CP/NEG models have 

been almost exclusively limited to two-region cases. A few exceptions have dealt with 

CP models having more than two regions (Mossay (2003), Tabuchi et al. (2005), 

Picard and Tabuchi (2009), Oyama (2009), Akamatsu and Takayama (2009a), 

Tabuchi and Thisse (2009), and Ikeda et al. (2009)). 

 Krugman (1993) presented a few numerical simulation runs for the CP model in 

which 12 regions are equidistantly located on a circumference. The resultant locations 

of population, in which three types of evenly spaced agglomeration patterns (mono-

centric, duo-centric, and tri-centric patterns) emerge, suggests a certain similarity to 

Christaller’s central-place patterns (Christaller, 1933). The numerical experiments, 

however, are limited to a particular set of parameter values, and no theoretical 

analysis is given. Krugman (1996, Appendix) and Fujita et al. (1999, Chapter 6) 

analyzed the CP model with a continuum of locations on a circumference. Using 

Turing’s approach (Turing, 1952), they succeeded in showing the conditions for the 

instability of the flat earth equilibrium. Their analysis, however, provides only the 

initial period of agglomeration (a first bifurcation) when the transportation cost 

steadily increases. In order to analyze the possible bifurcations in the later stages, they 

resort to rather ad hoc numerical simulations. Thus, it is fair to say that their 

investigations do not systematically show the general properties of the multi-regional 

CP model, although these studies do provide valuable insight. 

 Recently, a few studies have carefully re-examined the robustness of Krugman’s 
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findings in the CP model with a continuous-space racetrack economy. Mossay (2003) 

theoretically qualified Krugman’s results in the case of workers’ heterogeneous 

preferences for location. More recently, Picard and Tabuchi (2009) examined the 

impact of the shape of transport costs on the structure of spatial equilibria. These 

studies, however, focus only on the first stage of agglomeration as the local instability 

of a uniform equilibrium distribution. Therefore, the same limitation as Krugman’s 

approach applies to these studies. Tabuchi et al. (2005) studied the impact of 

decreasing transport costs on the size and number of cities in a multi-regional model 

that extends a two-regional CP model by Ottaviano et al. (2002). Oyama (2009) 

showed that the multi-regional CP model admits a potential function, which allowed 

to identify a stationary state that is uniquely absorbing and globally accessible under 

the perfect foresight dynamics. However, these analyses are restricted to a very 

special class of transport geometry in which regions are pairwise equidistant. 

Akamatsu and Takayama (2009a) analyzed a pair of multi-regional models that 

extends the two-region CP models developed by Forslid and Ottaviano (2003) and 

Pflüger (2004). Although they demonstrated the evolutionary process of spatial 

agglomeration in these models, their analysis is only restricted to the case of four-

region models. 

 Only Tabuchi and Thisse (2009) and Ikeda et al. (2009) have discussed the general 

regularities of bifurcations in the multi-regional CP model. In the former study, which 

was conducted independently at approximately the same time as the latter study, 

Tabuchi and Thisse predicted that the CP model could exhibit a spatial period-

doubling bifurcation (SPDB) pattern. They also showed (by a numerical example) that 

a hierarchical urban system structure emerges for the CP model with multiple 

industries. Although some of their results on the bifurcation properties of the CP 

model share certain similarity with our findings, the purpose and the emphasis of their 

study was significantly different from ours. They attempted to derive an urban 

hierarchical principle from the CP model. Moreover, unlike our study, they appeared 

not to recognize the essential role of the SDM in the bifurcation analysis and did not 

provide a general methodology that is applicable to the analysis of a wider class of 

models other than the CP model, Accordingly, their analysis is specific to the CP 

model, in which no simple relations between the Jacobian matrix and the SDF are 

shown.  

 In the latter study, Ikeda et al. presented an approach to understanding the 

bifurcation behaviors of the multi-regional CP model, combining the group-theoretic 

bifurcation theory with the computational bifurcation theory. They also predicted the 



10 

possibility of the SPDB based on the former theory and then demonstrated its 

existence using numerical examples based on the latter theory. Admittedly, the former 

theory is rather abstract and cannot provide a concrete prediction (e.g., the former 

theory cannot answer with certainty whether the CP model exhibits the SPDB without 

eigenvalue analysis), although the former theory provides a very general framework 

for bifurcation analysis. In contrast, the latter theory allows us to obtain very concrete 

(numerical) predictions, although the range of predictions is limited to certain specific 

cases. Thus, the present paper bridges the gap between these two theories, by 

providing a methodology that allows us to analytically predict the general bifurcation 

properties of a wide class of economic models involving spatial agglomeration of 

economic activities. 

 

3. The Core-Periphery Model 

In this section, we present the multi-regional CP model. Although the basic 

assumptions of this model are the same as those of Pflüger (2004)
9
, except for the 

number of regions, for the sake of completeness, we present the basic assumptions of 

this model in Section 3.1. The short-run equilibrium is described in Section 3.2. The 

long-run equilibrium and its stability are defined in Section 3.3. 

3.1. Basic Assumptions 

The economy is composed of K regions (labeled 1,...,1,0 −= Ki ), two factors of 

production (skilled and unskilled labor), and two sectors (agriculture A and 

manufacturing M). There are H skilled and KL =  unskilled workers, who consume 

two final goods, namely, horizontally differentiated M-sector goods and 

homogeneous A-sector goods, and supply one unit of his type of labor inelastically. 

Skilled workers are mobile across regions. The number of skilled workers in region i 

is denoted by hi. Unskilled workers are immobile and equally distributed across all 

regions (i.e., the number of unskilled workers in each region is one).  

Preferences U over the M- and A-sector goods are identical across individuals. The 

utility of an individual in region i is given by 

(3.1) A
i

M
i

A
i

M
i CCCCU += ln),( μ , 

where 0>μ  is the constant expenditure share on industrial varieties, A
iC  is the 

                                                 
9 The basic assumptions of this model are the same as those of Krugman (1991), except for the 

functional forms of a utility function and a production function. Pflüger (2004) replaces the utility 

function of Krugman with that of the international trade model of Martin and Rogers (1995) and the 

production function of Krugman with that of Flam and Helpman (1987). 
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consumption of the A-sector product in region i, and M
iC  is the manufacturing 

aggregate in region i and is defined as 

 

)1/(

/)1()(

−

∈
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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σσ
σσ

j
nk ji

M
i

j

dkkqC ,  

where )(kq ji  is the consumption in region i of a variety ],0[ jnk ∈  produced in 

region j, nj is the number of varieties produced in region j, and 1>σ  is the constant 

elasticity of substitution between any two varieties. The budget constraint is given by 

(3.2) i
j

nk jiji
A
i YdkkqkpC

j

=+ ∑∫ ∈
)()( ,  

where )(kp ji  is the price of a variety k in region i produced in region j and Yi is the 

income of an individual in region i. 

An individual in region i maximizes (3.1) subject to (3.2). This yields the following 

demand functions: 

(3.3a) μ−= i
A
i YC , i

M
iC ρμ /= ,  

(3.3b) σσ ρμ −−= 1/)}({)( ijiji kpkq , 

where iρ  denotes the price index of the differentiated product in region i, which is 

given by 

(3.4) 

)1/(1

1)(

σ
σρ

−

∈
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∫

j
nk jii

j

dkkp .  

Since the population in region i is 1+ih , we have the total demand )(kQ ji  in region i 

for a variety k produced in region j: 

(3.5) )1(
)}({

)(
1

+= −

−

i

i

ji

ji h
kp

kQ σ

σ

ρ
μ

.  

The A-sector is perfectly competitive and produces homogeneous goods under 

constant returns to scale technology, which requires one unit of unskilled labor in 

order to produce one unit of output. For simplicity, we assume that the A-sector goods 

are transported freely between regions and are chosen as the numéraire. These 

assumptions mean that, in equilibrium, the wage of low-skilled worker L
iw  is equal to 

that in all regions (i.e., iwL
i ∀= 1 ).  

The M-sector output is produced under increasing returns to scale and Dixit-Stiglitz 

monopolistic competition. A firm incurs a fixed input requirement of α units of skilled 
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labor and a marginal input requirement of β  units of unskilled labor. Given the fixed 

input requirement α, the skilled labor market clearing implies that, in equilibrium, the 

number of firms in region i is determined by α/ii hn = . An M-sector firm located in 

region i maximizes profit: 

 ( )∑ +−=Π
j

iiijiji kxwkQkpk )()()()( βα ,  

where iw  is the wage of the skilled worker and )(kxi  is the total supply. The 

transportation costs for M-sector goods are assumed to take on iceberg form. That is, 

for each unit of the M-sector goods transported from region i to region ij ≠ , only a 

fraction 1/1 <ijφ  arrives. Thus, the total supply )(kxi  is given by 

(3.6)  ∑=
j

ijiji kQkx )()( φ .  

Since we have a continuum of firms, each firm is negligible in the sense that its action 

has no impact on the market (i.e., the price indices). Hence, the first-order condition 

for profit maximization gives 

(3.7) ijij kp φ
σ

βσ
1

)(
 

−
= .  

This expression implies that the price of the M-sector product does not depend on 

variety k, so that )(kQij  and )(kxi  do not depend on k. Thus, we describe these 

variables without argument k. Substituting (3.7) into (3.4), the price index becomes 

(3.8) )1/(1 
)(

1

σ

σ
βσρ −∑−

=
j

jiji dh , 

where σφ −≡ 1
jijid  is a spatial discounting factor between regions j and i from (3.5) 

and (3.8), jid  is obtained as )/()( iiiijiji QpQp , which means that jid  is the ratio of 

total expenditure in region i for each M-sector product produced in region j to the 

expenditure for a domestic product.  

3.2. Short-run Equilibrium 

In the short run, skilled workers are immobile between regions, that is, their spatial 

distribution ( T
110 ],...,,[ −≡ Khhhh ) is assumed to be given. The short-run equilibrium 

conditions consist of the M-sector goods market clearing condition and the zero-profit 

condition due to the free entry and exit of firms. The former condition can be written 

as (3.6). The latter condition requires that the operating profit of a firm is entirely 

absorbed by the wage bill of its skilled workers: 
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(3.9) )]()([ )( 1 hhh i
j

ijiji xQpw βα −= ∑− .  

Substituting (3.5), (3.6), (3.7), and (3.8) into (3.9), we have the short-run 

equilibrium wage: 

(3.10) )}()({)( )()(1 hhh L
i

H
ii www += −μσ ,  

(3.11) ∑≡
j

j

j

ijH
i h

Δ
d

w
)(

)()(

h
h ,  ∑≡

j j

ijL
i Δ

d
w

)(
)()(

h
h ,  

where ∑≡
k kkjj hdΔ )(h  denotes the market size of the M-sector in region j. Thus, 

)(/ hjij Δd  defines the market share in region j of each M-sector product produced in 

region i.  

The indirect utility )(hiv  is obtained by substituting (3.3b), (3.8), and (3.10) 

into (3.1)
10

: 

(3.12) )},()({)()( )()(1 hhhh L
i

H
iii wwSv ++= −σ  

where )(ln)1()( 1 hh ii ΔS −−≡ σ . For the convenience of the analysis in following 

sections, we express the indirect utility function v(h) in matrix form by using the 

spatial discounting matrix D, entry ),( ji  of which is ijd : 

(3.13a)  )}()({)()( )()(1
hwhwhShv

LH ++= −σ , 

where T
110 )](),...,(),([)( hhhhS −≡ KSSS , and )(Hw  and )(Lw  are defined as 

(3.13b)  Mhw ≡)(H ,  M1w ≡)(L , 

(3.13c)  1−≡ DΔM , ]diag[ T
hDΔ ≡ ,   T]1,...,1,1[≡1 . 

3.3. Adjustment Process, Long-run Equilibrium and Stability 

In the long run, the skilled workers are inter-regionally mobile. They are assumed 

to be heterogeneous in their preferences for location choice. That is, the indirect 

utility for an individual s in region i is expressed as 

 )()( )()( s
ii

s
i vv ε+= hh , 

where )(s
iε  denotes the utility representing the idiosyncratic taste for residential 

location, and },{ )( ss
i ∀ε  is continuously distributed across individuals.  

We present the dynamics of the migration of the skilled workers in order to define 

                                                 
10 We ignore the constant terms and the coefficient μ, which have no influence on the results in the 

following sections. 
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the long-run equilibrium and its stability with respect to small perturbations (i.e., local 

stability). We assume that at each time period t, the opportunity for skilled workers to 

migrate emerges according to an independent Poisson process with arrival rate λ. That 

is, for each time interval [t ,t+dt), a fraction λdt of skilled workers have the oppor-

tunity to migrate. Given an opportunity at time t, each worker chooses the region that 

provides the highest indirect utility ))(()( tv s
i h , which depends on the current 

distribution T
110 )](),...,(),([)( thththt K −≡h . The fraction ))(( tPi h  of skilled workers 

who choose region i at time t is given by ]))(())(([Pr))(( )()( ijtvtvtP s
j

s
ii ≠∀>= hhh . 

Thus, we have  

 ))(()()1()( tPHdtthdtdtth iii hλλ +−=+      i∀ . 

By normalizing the unit of time so that 1=λ , we obtain the following adjustment 

process: 

(3.14) )())(())(()( ttHtt hhPhFh −≡=& , 

where h&  denotes the time derivative of h(t), and T
110 )](...,),(),([)( hhhhP −≡ KPPP . 

For the specific functional form of ))(( tPi h , we use the logit choice function: 

(3.15) ∑≡
j jii vvP )](exp[/)](exp[)( hhh θθ , 

where ),0( ∞∈θ  is the parameter denoting the inverse of variance of the idiosyncratic 

tastes. This implies the assumption that the distributions of },{ )( ss
i ∀ε  are Weibull 

distributions, which are identical and independent across regions (e.g., McFadden 

(1974), Anderson et al. (1992)). The adjustment process described by (3.14) 

and (3.15) is the logit dynamics, which has been studied in evolutionary game theory 

(e.g., Fudenberg and Levine (1998), Hofbauer and Sandholm (2002, 2007), and 

Sandholm (2009)).  

Next, we define the long-run equilibrium and its stability. The long-run equilibrium 

is a stationary point of the adjustment process of (3.14): 

Definition 3.1: The long-run equilibrium is defined as the distribution *
h  that 

satisfies  

(3.16) 0hhPhF =−≡ *** )()( H . 

Note that the heterogeneous consumer case includes the conventional homogeneous 

consumer case. Indeed, when ∞→θ , the condition given in (3.16) reduces to that for 

the homogeneous consumer case: 
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where *V  denotes the equilibrium utility.  

We limit the area of concern to the neighborhood of h
*
, and define the stability of 

h
*
 in the sense of asymptotic stability, the precise definition of which is as follows. 

Definition 3.2: A long-run equilibrium h
*
 is asymptotically stable if, for any 0>ε , 

there is a neighborhood )( *
hN  of h

*
 such that, for every )( *

0 hh N∈ , the solution 

)(th  of (3.14) with an initial value 0)0( hh =  satisfies ε<− ||)(|| *
hh t  for any time 

0≥t , and *)(lim hh =∞→ tt . If equilibrium h
*
 is not asymptotically stable, it is 

unstable. 

In dynamic system theory, h
*
 is asymptotically stable if all of the eigenvalues of the 

Jacobian matrix ≡∇ )(hF ]/)([ ji hF ∂∂ h  of the adjustment process of (3.14) have 

negative real parts; otherwise h
*
 is unstable (see, for example, Hirsch and Smale 

(1974)). This means that the asymptotic stability can be assessed by examining the 

following Jacobian matrix: 

(3.17) IhvhJhF −∇=∇ )()()( H , 

where )(hJ  and )(hv∇  are K-by-K matrices, the ),( ji  entries of which are 

ji vP ∂∂ /)(v  and ji hv ∂∂ /)(h , respectively. For the logit choice function of (3.15), it 

is easily verified that the former Jacobian matrix )(hJ  is expressed as 

(3.18) })()()](diag[{)( T
hPhPhPhJ −= θ . 

The latter Jacobian matrix )(hv∇  is given by 

(3.19) )}()({)()( )()(1 hwhwhShv HL ∇+∇+∇=∇ −σ , 

where 
T)(T1 ,)1( MMwMS −=∇−=∇ − Lσ , T)(  MMHMw −=∇ H , and 

][diag hH ≡ . 

 

4. Spatial Discounting Matrix and Racetrack Economy 

 In order to understand the bifurcation mechanism of the CP model, we need to 

know how the eigenvalues of the Jacobian matrix of the adjustment process of (3.14) 

depends on the bifurcation parameters (e.g., transportation cost τ ). A combination of 

the racetrack economy (RE) defined in Section 4.1 and the resultant circulant 

properties of the spatial discounting matrix (SDM) shown in Section 4.2 greatly 
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facilitates the analysis. Section 4.3 shows that the eigenvalues {gk} of the Jacobian 

matrix of the adjustment process can be expressed as simple functions of the 

eigenvalues }{ kf  of the SDM. 

4.1 Racetrack Economy 

 Consider a racetrack economy (RE) in which K regions }1,...,2,1,0{ −K  are 

equidistantly located on a circle of radius 1. Let ),( jit  denote the distance between 

regions i and j. The distance between these two regions is defined as the minimum 

path length, i.e., 

(4.1)   ),()/2(),( jimKjit ⋅= π , 

where } ||  , |.{|min),( jiKjijim −−−≡ . The set )}1,...,2,1,0,(),,({ −= Kjijit  of the 

distances can be represented by the spatial discounting matrix (SDM) D, entry ),( ji , 

dij, of which is given by 

(4.2)   )],(  )1(exp[ jitdij ⋅⋅−−≡ τσ . 

Defining the spatial discount factor (SDF) by 

(4.3)   )]/2(  )1(exp[ Kr πτσ ⋅−−≡ , 

we can represent dij as 
),( jimr . It follows from the definition that the SDF r is a 

monotonically decreasing function of the transportation cost parameter τ , and hence 

the feasible range of the SDF (corresponding to ∞+<≤  0 τ ) is given by (0,1]: 

1    0 =⇔= rτ ,  and  0    →⇔+∞→ rτ . 

 As shown by Definitions (4.1) and (4.2), the SDM D in a racetrack economy is a 

circulant, which is constructed from the vector d0
T22 ],,..., ,...,,,1[ rrrrr M≡  (see, for 

example, Gray (2006) for the definition of circulants). This circulant property of the 

matrix D offers a key to understanding the essential properties of the CP model.  

4.2 Eigenvalue of the Spatial Discounting Matrix 

 By exploiting the fact that the SDM D is a circulant matrix, we can easily obtain 

the eigenvalues T

11,0 ],...,[ −≡ Kffff of the SDM by discrete Fourier transformation 

(DFT). More specifically, the eigenvalues f  are given by the following similarity 

transformation of D: 

(4.4)    ][diag  
*

fZDZ = , 

where Z is a DFT matrix, element ),( kj  of which is jk

jk wz ≡  )1,...,1,0,( −= Kkj , 
)/2( i Kew π≡ , and Z

*
 denotes the conjugate transpose of Z. Furthermore, (4.4) and the 

properties of a circulant (see, for example, Gray (2006)) show that DFT of the vector 

d0 (the first row vector of D) directly yields the eigenvalues f: 
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(4.5)    0 dZf = . 

Since the entries of d0 satisfy )1,...,2,1( ,0,0 −== − Mmdd mKm , where 2/KM ≡ , we 

see that the eigenvalues f are composed of 1−M  roots with multiplicity 2 and two 

simple roots (k = 0, M). This together with the straightforward calculation of (4.5) 

yields the following lemma (proofs of lemmas are hereinafter given in the 

Appendices): 

Lemma 4.1: The eigenvalues f of the SDM on the RE with K regions are given by 

(4.6a)   )()( rRrcf mmm =  ),...,2,1,0( Mm = , 

(4.6b)   mKm ff −=  )1,...,2,1( −= Mm , 

where 
2

  

2

)( /2cos21

1
)(

rKmr

r
rcm +−

−
≡

π
, Mm

m rrR )1(1)( −−≡      ),...,2,1,0( Mm = . 

 As shown in Section 4.3, the eigenvalues )(rf  of matrix d/D , which can be 

obtained by normalizing the eigenvalues )(rf  by df ≡⋅= 1d00 , play a key role in 

the analysis of the bifurcation from a uniform distribution h  (flat earth equilibrium). 

It follows from Lemma 4.1 that the eigenvalues )(rf  have the following properties. 

Proposition 4.1: The normalized SDM D/d on the RE with K regions has the 

following eigenvector and the associated eigenvalues: 

(i) the kth eigenvector )1,...,2,1,0( −= Kk  is given by the kth row vector, kz , of the 

discrete Fourier transformation (DFT) matrix Z, that is, 

(4.7)  ],...,, ,1[ )1(2 −≡ Kkkk

k wwwz ,  where )/2( i Kew π≡ . 

(ii) the kth eigenvalue kf  (k = 1,2,…, K-1) is given by 

(4.8a)  10 =f ,  2))(( rcf MM = , 

(4.8b)  mKm ff −=
⎩
⎨
⎧

=
odd):(

even):(

  )()()(

           )()(

   

   

m

m

rrcrc

rcrc

MMm

Mm

ε
 )1,...,2,1( −= Mm , 

where )1/()1()( rrrcM +−= ,   )1/()1()( MM

M rrr −+≡ε . 

(iii) mf  ),...,2,1( Mm =  is a monotonically decreasing function of r for )1,0[∈∀r . 

(iv)  
⎪⎩

⎪
⎨
⎧

==

==

2

0

))(()()}(.{min 

1)()}(.{max 

rcrfrf

rfrf

MMm
m

m
m

    for  )1,0[∈∀r . 
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(v)  
⎪⎩

⎪
⎨
⎧

>>>>>>≥

=>>>>>=

−+ MMMk

MMk

cffff

cffff

ε 1 

      1 

2  

11231

2   

220

LL

LL
  for  )1,0[∈∀r . 

 Figure 1 illustrates the properties of the eigenvalues f  in Proposition 4.1 for the 

case of )82/(16 === KMK . For convenience in the bifurcation analysis in later 

sections, we depict the eigenvalues as functions of the transportation cost parameter τ . 

It follows from Definition (4.3) that the SDF )1,0[∈r  is a monotonically decreasing 

function of τ  (see Definition (4.3)), and that 0=τ 1    =⇔ r  and ∞+→τ  0  →⇔ r . 

This, together with (iii) in the proposition, indicate that mf  is a monotonically 

increasing function of τ  and that 0=τ  0    =⇔ mf  and ∞+→τ  1    →⇔ mf . 

 

 

 

 

 

 

 

 

 

 

Figure 1. Eigenvalues mf  (m = 0,1,2,..,8) of D/d for K = 16 

as functions of transportation cost parameter τ 

4.3 Eigenvalues of the Jacobi Matrices 

 The eigenvalues g of the Jacobian matrix )( hF∇  at an arbitrary distribution h of 

the skilled labor cannot be obtained without resorting to numerical techniques. It is, 

however, possible at some symmetric distributions h  to obtain analytical expressions 

for the eigenvalues g of the Jacobian. In particular, a uniform distribution of skilled 

workers (flat earth equilibrium), ],,...,,[ hhhh≡h  and KHh /≡ , which has intrinsic 

significance in examining the emergence of agglomeration, gives us the simplest 

example for illustrating this fact. At the uniform configuration h , the Jacobian matrix 

of the adjustment process: 

(4.9)   IhvhJhF −∇=∇ )( )()(   H  

reduces to a circulant, as shown in the following lemmas. 

Lemma 4.2: The Jacobian matrices )(hJ  and )(hv∇  at h  are given by 
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(4.10)   )(hJ )/ )(/( T KK 11I −= θ , 

(4.11)   =∇ )(hv }]/[ ]/[ { 21
 dadbh DD −− , 

where  )1( 11 −− +≡ ha σ ,  11)1( −− +−≡ σσb , T]1,...,1,1[≡1 . 

Lemma 4.3: The Jacobian matrices )(hJ , )(hv∇ , and )( hF∇  at h  are circulants. 

 The fact that )( hF∇  is a circulant allows us to obtain the eigenvalues g of )( hF∇  

using the DFT matrix Z. Specifically, both sides of (4.9) can be diagonalized by the 

similarity transformation based on Z: 

(4.12)   ][diag][diag  ][diag][diag   1eg −= δH , 

where δ  and e  are the eigenvalues of )(hJ  and )(hv∇ , respectively. The two 

eigenvalues, δ  and e , in the right-hand side of (4.12) are easily obtained as follows. 

The former eigenvalues δ  are obtained by DFT of the first row vector of )(hJ  in 

(4.11): 

    T
  ]1,...,1 ,1 ,1 ,0)[/( Kθ=δ . 

As for the latter eigenvalues e , note that )(hv∇  in (4.10) consists of additions and 

multiplications of the circulant D/d. This implies that the eigenvalues e are 

represented as functions of the eigenvalues f  of D/d: 

    }][][{ 2
  

1
  ffe abh −= −

, 

where ][][][ 2
xxx ⋅≡ , and ][][ yx ⋅  denotes the component-wise products of vectors x 

and y. Thus, we arrive at the following proposition for the eigenvalues of )( hF∇ : 

Proposition 4.2: Consider a uniform distribution h  of skilled workers in the RE with 

K regions. The Jacobian matrix )(hF∇  of the adjustment process of (3.14) at h  has 

the following eigenvector and associated eigenvalues: 

(i) the k th eigenvector )1,...,2,1( −= Kk  is given by the k th row vector, zk, of the 

discrete Fourier transformation (DFT) matrix  Z. 

(ii) the k th eigenvalue kg  )1,...,2,1( −= Kk  is given by a quadratic function of the 

k th eigenvalue kf  of the spatial discounting matrix D/d : 

(4.13a)   )1,...,2,1()( −== KkfGg kk θ ,     10 −=g , 

(4.13b)   12
    )( −−−≡ θxaxbxG , 

where )1( 11 −− +≡ ha σ , 11)1( −− +−≡ σσb . 
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 The eigenvectors )}1,...,2,1({ −= Kkkz  in the first part of Proposition 4.2 

represent the agglomeration patterns of skilled workers by the configuration pattern of 

the entries. For example, all entries of z0 are equal to 1, and the entry pattern of 

]1,...,1,1[0 =z  corresponds to the state in which skilled workers are uniformly 

distributed among K regions, whereas ]1...,1,1,1,1[ −−−=Mz , where the alternating 

sequence of 1 and −1, represents an M-centric agglomerate pattern in which skilled 

workers reside in 2/KM =  regions alternately. Similarly, zM/2 correspond to an 

2/M -centric pattern. 

 The eigenvalues gk in the second part of the proposition can be interpreted as the 

strength of net agglomeration force that leads the uniform distribution to the direction 

of the k th agglomeration pattern (i.e., zk). The term net agglomeration force refers to 

the net effect of the agglomeration force minus the dispersion force. Specifically, 

these forces correspond to bx  and 2ax , respectively, in (4.13b). As is clear from the 

derivation of the eigenvalues g, the term bx  stems from S∇  and the first term of 
)(H

w∇ , which represent forward linkage (or price-index effect) and backward linkage 

(or market access effect of firms), respectively. Thus, the term bx  represents the 

agglomeration force induced by the increase in the variety of products that would be 

realized when the uniform distribution h  deviates to agglomeration pattern zk. The 

term 2ax , which stems from )(L
w∇  and the second term of )(H

w∇ , represents the 

dispersion force due to increased market competition (market crowding effect) in the 

agglomerated pattern zk. 

 

5. Uniform Distribution and Agglomeration 

5.1 The First Bifurcation – Emergence of Agglomeration 

 We are now ready to examine the emergence of agglomeration in the CP model. In 

this and subsequent sections, we consider the bifurcation process of the equilibrium, 

where the value of the transportation cost τ  steadily decreases from a very high value. 

 In order for the bifurcation from the flat earth equilibrium to occur with the 

changes in τ , either of the eigenvalues }0,{ ≠∀kgk  must changes sign. Since the 

eigenvalues gk are given by )( kfG , changes in sign indicate that there should exist 

real solutions for the following quadratic equation with respect to fk : 

(5.1)    0)( =kfG  

Moreover, the solutions must lie in the interval [0, 1), which is the possible range of 

the eigenvalue fk. These conditions lead to the following proposition: 
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Proposition 5.1: Starting from a very high value of the transport cost τ , we steadily 

decrease the value of τ . In order for a bifurcation from a uniform equilibrium to some 

agglomeration to occur in the RE, the parameters of the CP model should satisfy 

(5.2)   0 4 12 ≥−≡Θ −θab    and   ab 2≤Θ+ . 

 The first inequality in Proposition 5.1 is the condition for the existence of real 

solutions of (5.1) with respect to fk. This condition is not necessarily satisfied for 

cases in which the heterogeneity of consumers is very large (i.e., θ  is very small), 

which implies that no agglomeration occurs in such cases. The second inequality, 

which stems from the requirement that solutions of (5.1) be less than 1, corresponds to 

the no-black-hole condition, as described in the literature dealing with the two-region 

CP model. For cases in which the no-black-hole condition is not satisfied, the 

eigenvalues }0,{ ≠∀kgk  are positive even when the transportation cost τ  is very 

high, which means that the uniform distribution h  cannot be a stable equilibrium. 

 In the following analyses, we assume that the parameters ),,( θσh  of the CP model 

satisfy (5.2) in Proposition 5.1. We then have two real solutions for (5.1) with respect 

to fk: 

(5.3)   )2/()(* abx Θ+≡+  and  )2/()(* abx Θ−≡−  

Each of the solutions 
*

±x  represents a critical value (break point) at which a 

bifurcation from the flat earth equilibrium h  occurs if we regard the eigenvalue fk as a 

bifurcation parameter.  

 Since we are interested in the process of decreasing the value of τ , it is more 

meaningful to express the break point in terms of τ (rather than in terms of  fk). For 

this purpose, we define the inverse function, )(⋅kτ , of the eigenvalue )(τkf  as a 

function of τ : 

(5.4)   )()( **** τττ kk fxx =⇔= . 

The inverse )(⋅kτ  is a monotonically increasing function because )(⋅kf  is a 

monotonically increasing function of τ  (see Figure 1). 

 Now suppose that the transportation cost is initially large enough for the condition 

)( *

+> xkττ  0≠∀k to hold. From Definition (5.4) of the inverse function )(⋅kτ , this is 

equivalent to 

(5.5)   0  )( * ≠∀> + kxfk τ . 

Since the eigenvalue gk is a concave function G of kf  (see Proposition 4.2), the 

condition given in (5.5) implies that 0  0 ≠∀< kgk  holds, and hence the flat earth 
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equilibrium is stable. We then consider what happens when the value of τ  steadily 

decreases. The decrease in τ  leads to a state in which )( *

+≤ xkττ  holds for some k. 

This can be equivalently represented as 

(5.6)   kxfk ∃≤ +
*)(τ , 

which means that kgk ∃≥ 0 , and, therefore, the flat earth equilibrium is unstable. 

While (5.6) does not explicitly show which of the eigenvalues )}({ τkf first satisfies 

this condition, Proposition 4.1 shows that the M th eigenvalue first reaches the critical 

value 
*

+x  because  

    )}(.{min)( ττ k
k

M ff =  for  ) ,0[ ∞+∈∀τ . 

Accordingly, the critical value of τ  at which the first bifurcation occurs is given by 

(5.7)   )()}(.{max ***

+++ =≡ xx Mk
k

τττ . 

 The above procedure for obtaining the break point (at which the bifurcation 

occurs) can also be illustrated graphically, as shown in Figure 2. In the course of 

steadily decreasing the value of τ , the bifurcation from the flat earth equilibrium 

occurs when either of )(τkf  first takes a value less than 
*

+x . Figure 2 shows that this 

occurs at the point of intersection +C of the horizontal line +l  (which represents 
*

+= xfk ) and the curve )(τMf  (which is the minimum of { )(τkf }). This figure also 

shows that +C  is characterized as the point at which the maximum of { )( *

+xkτ } is 

attained. This yields (5.7) for the critical value of τ . 

 

 

 

 

 

 

 

 

 

 

Figure 2. First break point in the course of decreasing τ  

 The fact that the M th eigenvalue first reaches the critical value 
*

+x  also enables us 

to identify the associated agglomeration pattern that emerges at the first bifurcation. 
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Recall here that the equilibrium moves in the direction of the eigenvector for which 

the associated eigenvalue reaches the critical value. As stated in Proposition 4.2, this 

direction is the M th eigenvector ]1,1,,1,1[     −−= KMz . Therefore, the pattern of 

agglomeration that first emerges is 

(5.8)  ] , ,..., ,[ δδδδδ −+−+=+= hhhhMzhh    )0( h≤≤ δ , 

in which skilled workers agglomerate in alternate regions. 

 Finally, note that (5.7) implicitly indicates how the changes in the values of the CP 

model parameters affect the critical value 
*

+τ . More specifically, (5.7) is equivalent to 

))(( **

++ = τrfx M , which yields the critical value in terms of the SDF: 

(5.9)   ))(1/())(1()( 2/1*2/1**

+++ +−= xxr τ . 

This yields the relationship between 
*

+τ  and the CP model parameters ),,( θσh  

because 
*

+x  is explicitly represented as a function of ),,( θσh  in (5.3) and the SDF r is 

a simple exponential function of τ , as defined in (4.3). Thus, we can characterize the 

bifurcation from the uniform distribution as follows. 

Proposition 5.2: Suppose that the CP model satisfies the conditions described in 

Proposition 5.1. Starting from a state in which the value of the transportation cost τ  

is large enough for the uniform distribution h  to be a stable equilibrium, we consider 

the process in which the value of τ  steadily decreases. 

(i) The net agglomeration force (i.e., the eigenvalue) gk for each agglomeration 

pattern (i.e., the eigenvector) zk increases with the decrease in τ , and the uniform 

distribution becomes unstable at the break point *

+=ττ  given by (5.3) and (5.7). 

(ii) The critical value *

+τ  decreases as a) the heterogeneity of skilled workers (in 

location choice) becomes smaller (i.e., θ is large), b) the number of skilled workers 

relative to that of the unskilled workers becomes larger (i.e., h is large), and c) the 

elasticity of substitution between two varieties becomes smaller (i.e., σ is small). 

(iii) The pattern of agglomeration that first emerges is 

] ,, , ,[ δδδδ −+−+= hhhh Lh  )0( h≤≤ δ , in which skilled workers agglomerate 

in alternate regions. 

5.2 The Last Bifurcation – Collapse of Agglomeration 

 In Section 5.1, we have derived two critical values (with respect to the eigenvalue 

kf ), 
*

+x  and 
*

−x , at each of which a bifurcation from the uniform distribution h  

occurs, and only the properties of the bifurcation at the former critical value (
*

+x ) have 
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been shown. We shall examine the bifurcation at the latter critical value (
*

−x ). We 

discuss two cases, A and B. In Case A, consumers are homogeneous with respect to 

location choice (i.e., +∞→θ ), and in Case B, consumers are inhomogeneous (i.e., θ  

is finite). As shown below, these two cases exhibit significantly different properties of 

the bifurcation at the critical value 
*

−x . 

 A) For the homogeneous consumer case, 
2b=Θ  and the critical value given by 

(5.3) reduces to the following simpler expression: 

    0      /)(lim or 
* abx =±

+∞→
θ

θ
. 

Substituting this into the definition of )(⋅kτ , we see that )( *
−xkτ 0  0)0( ≠∀== kkτ . 

Therefore, the critical value *

−τ  for the bifurcation from some agglomeration to the 

flat earth equilibrium is zero: 

    0)}0(.{minlim * ==−+∞→ k
k

ττ
θ

. 

This means that at least one of the eigenvalues {gk} is always positive for the interval 

)](,0( *

+xMτ  of τ  (see Figure 3). That is, no matter how small the transportation cost, 

agglomeration never collapses, except for the minimum limit of 0=τ . 
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A) Homogeneous consumer case             B) Heterogeneous consumer case 

Figure 3.  Stability and eigenvalue gk 

 B) For the case in which consumers are heterogeneous, we see from (5.3) that the 

critical value *

−x  is always positive regardless of the values of the CP model 

parameters, and thus kxk ∀>−   0)( *τ . This means that the net agglomeration force gk 

can be negative on the interval )](,0( *

−xkτ  of τ  (see Figure 3). Accordingly, in the 

course of decreasing τ , a bifurcation from some agglomeration to the uniform 

distribution (re-dispersion) h  necessarily occurs at the critical value: 

    0)}(.{min ** >= −− xk
k

ττ . 
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That is, the CP economy with heterogeneous consumers necessarily moves from 

agglomeration to dispersion when the transportation cost τ  decreases to the critical 

value. This is a generalized result of the conventional bell-shaped  bifurcation in the 

two-region CP model with idiosyncratic differences in location choice (e.g., Tabuchi 

(1998), Helpman (1998), Murata (2003)). 

 It is worthwhile to examine the properties of the re-dispersion more closely. First, 

it can be deduced that, even if the consumers are homogeneous, the re-dispersion 

occurs when some dispersion forces (e.g., land rent) that increase with agglomeration 

are introduced into the CP model. This is because the necessary and sufficient 

condition for the occurrence of the re-dispersion is that the parameters of the CP 

model satisfy 0* >−x . This requirement can be satisfied by either adding an extra 

constant term in the function G in (4.13) or introducing heterogeneity in location 

choice (i.e., θ  is finite). 

 Second, the re-dispersion can be observed not only at the critical value *

−τ  but also 

in the course of evolving agglomeration. The re-dispersion at *

−τ  is the last among 

multiple re-dispersions in the course of decreasing τ . The mechanism of how such 

repetitions of agglomeration and dispersion may occur can best be explained by the 

example in Figure 4
11

. Each curve in this figure represents the eigenvalue fk at the 

uniform distribution h  as a function of τ . Recall that a bifurcation from 

agglomeration to dispersion occurs when all of the eigenvalues {gk} at h  become 

negative. We can see from the figure that this actually occurs twice during the process 

of decreasing τ . Specifically, the first re-dispersion is observed at the boundary **

−τ  

between ranges A and B. Some agglomeration is present in range A, because either of 

}1 ,0,{ ≠∀kfk  is in ],[ **

+− xx , and hence either of the eigenvalues }1 ,0,{ ≠∀kgk  at h  is 

positive, but h  become stable below the boundary **

−τ  (range B) because all of the 

eigenvalues {gk} at h  are negative. (Note that *

1 +> xf  and *

−< xfk  1 ,0≠∀k , which 

means that none of }{ kf  is in ],[ **

+− xx .) Note here that some agglomeration again 

emerges in range C because 151 ff =  are in ],[ **

+− xx , and hence the eigenvalues 

151 gg =  at h  are positive. This leads to the second re-dispersion at the boundary *

−τ  

between ranges C and D, and  h  again becomes stable below the boundary *

−τ  (range 

D) because all of the eigenvalues {gk} at h  are negative. (Note that 0 * ≠∀< − kxfk , 

which means that none of }{ kf  is in ],[ **

+− xx .) 

 The discussion thus far can be summarized as the following proposition: 

                                                 
11 Detailed discussions on the economic implications/interpretations of this phenomenon are relegated 

to Akamatsu, Takayama, and Sugasawa (2009) because the purpose of the present paper is to 

demonstrate a method by which to analyze the CP models. 
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Proposition 5.3: Starting with an agglomeration state, we consider the process in 

which the value of the transportation cost τ decreases. 

(i) The net agglomeration force gk for each zk monotonically decreases with the 

decrease in τ  after a monotonic increase (i.e., gk  is a unimodal function of τ ). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4. Repetitions of agglomeration and dispersion 

 (ii) For the CP model with homogeneous consumers, all of the net agglomeration 

forces reach zero only at the limit of 0=τ . That is, the agglomeration equilibrium 

never reverts to the uniform distribution equilibrium during the course of 

decreasing τ . 

(iii) For the CP model with heterogeneous consumers, all of the net agglomeration 

forces reach zero at a strictly positive value of τ . That is, a bifurcation from some 

agglomeration to the uniform distribution equilibrium (re-dispersion) occurs at 
*

−= ττ , where *

−τ  
is given by (5.10) and (5.3). Furthermore, repetitions of 

agglomeration and dispersion may be observed (see Figure 4). 

 

6. Evolution of Agglomeration Patterns 

 In conventional two-region CP models, steady decreases in transportation cost lead 

to the occurrence of a bifurcation from the uniform distribution h  to a monocentric 

agglomeration. In the multi-regional CP model, however, the first bifurcation shown 

in Section 5 does not directly branch to the monocentric agglomeration. Instead, 

further bifurcations leading to a more concentrated pattern can repeatedly occur. In 

this section, we examine such evolution of agglomeration after the first bifurcation, 

restricting ourselves to the homogeneous consumer case (i.e., +∞→θ ). First, in 
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Section 6.1, it is shown that a second bifurcation from h  indeed occurs, which 

suggests a general rule of the agglomeration process whereby the multi-regional CP 

economy exhibits the spatial period doubling bifurcation (SPDB). In Section 6.2, a 

proof of this conjecture, including a general analytical formula to predict the 

occurrence of the SPDB, is presented. In order to illustrate the theoretical results, a 

number of numerical examples are presented in Section 6.3. 

6.1 The Second Bifurcation 

 As we decrease the value of τ from the break point *

+=ττ  (at which the first 

bifurcation occurs), the deviation δ  from the uniform distribution h  increases 

monotonically. This eventually leads to an M-centric pattern, ]0,2,...,0,2,0,2[* hhh=h , 

where skilled workers equally exist only in the alternate two regions. In other words, 

skilled workers/firms in half of the regions are completely absorbed into the 

neighboring core regions (in which skilled workers agglomerate) in h
*
. The fact that 

the M-centric pattern h
*
 may exist as an equilibrium of the CP model can be 

confirmed by examining the sustain point for h
*
. The sustain point is the value of τ  

below which the equilibrium condition for h
*
, 

(6.1)   )}({max)()( **

2

*

0 hhh k
k

vvv == , 

is satisfied. As shown in Appendix 3, the condition of (6.1) indeed holds for any τ  

smaller than *
01τ , which is the sustain point for h

*
. 

 After the emergence of the M-centric pattern ]0,2,...,0,2,0,2[* hhh=h , further 

decreases in τ  below the sustain point can lead to further bifurcations (i.e., h
*
 become 

unstable). In order to investigate such a possibility, we need to obtain the eigenvectors 

and the associated eigenvalues for the Jacobian matrix of the adjustment process at h
*
: 

(6.2)   IhvhJhF −∇=∇ )( )()( **
 

* H . 

A seeming difficulty encountered in obtaining the eigenvalues is that, unlike the 

Jacobian )( hF∇  at h , the Jacobian )( *
hF∇  at h

*
 is no longer a circulant matrix. This 

is due to the loss of symmetry in the configuration h
* 
of skilled workers, which leads 

to )( *
 hJ  and )( *

hv∇  not being circulant matrices. However, it is still possible to find 

a closed-form expression for the eigenvalues of )( *
hF∇  based on the fact that h

*
 has 

partial symmetry and the submatrices of )( *
 hJ  and )( *

hv∇  are circulants. 

 In order to exploit the symmetry remaining in the M-centric pattern h
*
, we begin 

by dividing the set }1,...,2,1,0{ −= KC  of regions into two subsets, namely, the subset 

C0 ={0,2,…, K−2} of regions with skilled workers and the subset }1,...,3,0{1 −= KC  

of regions without skilled workers. Corresponding to this division of the set of regions, 
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we consider the following permutation σ  of the set C : 

   ⎥
⎦

⎤
⎢
⎣

⎡
−
−+

−
−

1

1
    

3

1
 

12

1
    

4

2
  

2

1
  

0

0
:

K

KMM

K

M

L

L

L

L
σ , 

so that the first half elements )}1(),...,1( ),0({ −Mσσσ  and the second half elements 

)}1(),...,1( ),({ −+ KMM σσσ of the set )}1(...,  ),1( ),0({ −= KC P σσσ  correspond to 

the sub-sets 0C  and 1C , respectively. For this permutation, we define the associated 

K-by-K permutation matrix P(1) : 

(6.3)    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡

o

e

)1(

)1(

)1(

   

P

P
P , 

where e

)1(P  and o

)1(P  are M-by-K matrices. The ),( ji  element of e

)1(P  is 1 if ij  2=  

)1,...,2,1,0( −= Mi , and is otherwise 0, whereas that of 
o

)1(P  is 1 if 12 += ij , and is 

otherwise 0. It is readily verified that, for a K-by-K matrix A, the ),( ji  element of 

which is ija , 
T 

)1()1( APP  yields a matrix for which the ),( ji  element is )( )( jia σσ , and that 
T 

)1( )1( PP )1(

T 

)1( PP= I= . That is, the similarity transformation 
T 

)1()1( APP  gives a consistent 

renumbering of the rows and columns of A by the permutation σ . 

 The permutation σ  (or the permutation matrix )1(P  in (6.3)) constitutes a new 

coordinate system for analyzing the Jacobian matrix of the adjustment process. Under 

the new coordinate system, the SDM D can be represented as 

(6.4)   ⎥
⎦

⎤
⎢
⎣

⎡
=≡×

)0(T)1(

)1()0(

T 

)1( )1(
DD

DD
PDPD , 

where each of the submatrices )0(
D  and )1(

D  is a M-by-M circulant generated from 

vectors T2442)0(

0 ],,...,,...,, ,1 [ rrrrr M≡d  and T
 

3113
 

)1(

0 ],,...,,,...,,[ rrrrrr MM −−≡d , 

respectively. Similarly, the Jacobian matrix )( *
hF∇ of the adjustment process is 

transformed into 

(6.5)  T 

)1(

*

)1(

* )()( PhFPhF ∇≡∇× IhvhJ −∇= ×× )( )( **
 H , 

where the Jacobian matrices in the right-hand side are, respectively, defined as  

(6.6a)  T 

)1( 
*

)1(

* )()( PhJPhJ ≡×
⎥
⎦

⎤
⎢
⎣

⎡
=

)11()10(

)01()00(

JJ

JJ
, 

(6.6b)  T 

)1( 
*

)1(

* )()( PhvPhv ∇≡∇×
⎥
⎦

⎤
⎢
⎣

⎡
=

)11()10(

)01()00(

2

1

VV

VV

h
. 

 For these Jacobian matrices under the new coordinate system, we have 

Lemma 6.1.1: All of the submatrices J
(ij)

 and V
(ij)

 )1,0,( =ji  are circulants. 
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This leads to the following lemma, which significantly facilitates obtaining the 

eigenvalues }{ **

kg=g  of the Jacobian matrix )( *
hF∇ : 

Lemma 6.1.2: The eigenvalues )1,...,2,1(* −= Kkgk  of the Jacobian matrix )( *
hF∇  

of the adjustment process at *
h ]0 ,2 ..., ,0 ,2 ,0 ,2[ hhh=  are represented as 

(6.7)   

)00(

2/  *

):(              1

):(   1

⎩
⎨
⎧

−
−

=
oddk

evenke
g k

k

θ
, 

where T)00(

1

)00(

1

)00(

0

)00( ],..., ,[ −≡ Meeee  denotes the eigenvalues of the Jacobian V
(00)

. 

This lemma implies that knowing only V
(00)

 is sufficient to obtain the eigenvalues *
g  

of the Jacobian matrix )( *
hF∇ . Furthermore, the submatrix V

(00)
 is a circulant 

consisting only of submatrices D
(0)

, D
(1)

, and D
(1)T

 of the SDM D. Since they are 

circulants, for which DFT of vectors d0
(0)

, d0
(1)

, and d0
(1T) 

yields the associated 

eigenvalues )1()0(  , ff , and 
)T1(

f , we can obtain the eigenvalues )00(
e  of the matrix V

(00)
: 

Lemma 6.1.3: The Jacobian V
(00)

 and the associated eigenvalues )00(
e  are given by 

(6.8a)  ]/[  

)0(

)0(
 

)00( db DV = }/][]/)[21{( 2 

(1)

T)1()1(2 

)0(

)0(

1   ddha DDD ++−  

(6.8b)  ]/[      

)0(

)0(
 

)00( db fe = }/][][]/)[21{( 2 

(1)

)T1()1(2 

)0(

)0(

1   ddha fff ⋅++−  

where 11)1( −− +−≡ σσb and 11

1 )2( −−≡ ha σ ; 1d ⋅≡ )(

0)(

i

id  (i = 0,1). 

Combining this with (6.7) in Lemma 6.1.2, we have 

Proposition 6.1: The largest eigenvalue of the Jacobian matrix )( *
hF∇  of the 

adjustment process of (3.14) at h
*
 is given by 

(6.9a)  ))(( }{ .max *

2/

*** rfGgg MMk
k

θ==    for  1] ,0(∈∀r , 

and the associated eigenvector is the 2/KM ≡  th row vector *

Mz  of )1( 
T 

)1(

*
PZPZ

×≡ , 

where ],[diag ][][ MM ZZZ ≡× , ][MZ  is an M-by-M DFT matrix; 22* 

2/ )()( rcrfM ≡ , 

(6.9b)   12*
 

*   )( −−−≡ θxaxbxG , 

(6.9c)   ))2(1()21( 11

1

* −− +=+≡ hhaa σ , 11)1( −− +−≡ σσb . 

 This proposition allows us to determine the critical value at which a bifurcation 

from the M-centric pattern ]0,2,...,0,2,0,2[* hhh=h  occurs. In a similar manner to the 

discussions for the first bifurcation from the uniform distribution h , we see that the 

second bifurcation from the M-centric pattern h
*
 occurs when the maximum 
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eigenvalue )(* xgM  changes sign. Accordingly, the critical values of 22* 

2/ )(rcfM ≡  at 

which the second bifurcation occurs are the solutions of a quadratic equation 

0)(* =xG . For the homogeneous consumer case (i.e., +∞→θ ), the quadratic 

equation reduces to 

(6.10)   0 )(  .lim 2** =−=
+∞→

xaxbxG
θ

, 

and hence, the critical values (i.e., the solutions of (6.10)) are given by 

(6.11)   })2(1/{/ 1*** −
+ +== hbabx σ ,  and  0** =−x . 

Note here that * 

2/Mf  is a monotonically increasing function of τ . This implies that, in 

the course of decreasing τ , the second bifurcation occurs when τ  first reaches the 

critical value **

+τ  that satisfies 
22 **** ))(( ++ = τrcx . That is, the critical value of the 

second bifurcation in terms of the SDF is given by 

(6.12)   2/1 2/1**2/1**** )])(1( / ))(1[()( +++ +−= xxr τ . 

We can also identify the associated agglomeration pattern that emerges at this 

bifurcation. The direction of movement away from h
*
 at this bifurcation is the M th 

eigenvector of Z
*
: ]0 ,1 ,0 ,1 ,...,0 ,1 ,0 ,1[* −−=Mz . Accordingly, the pattern of 

agglomeration is given by 

   ...] ,0 ,2 ,0 ,2[*
 

* δδδ −+=+= hhMzhh  )20( h≤≤ δ . 

Thus, the properties of the second bifurcation can be summarized as follows: 

Proposition 6.2: Suppose that the M-centric pattern ...] ,0 ,2 ,0 ,2[* hh=h  is a stable 

equilibrium for the CP model with homogeneous consumers. With the decreases in τ , 

the M-centric pattern h
*
 becomes unstable at the second break point **

+=ττ  given by 

(6.11) and (6.12), and a more concentrated pattern ] ... ,0 ,2 ,0 ,2[ δδ −+= hhh  

)20( h≤≤ δ  then emerges. 

 After the second bifurcation, the deviation δ  from the M-centric pattern *
h  

monotonically increases with the decrease in the transportation cost τ , which leads to 

an (M/2)-centric pattern, ]0,0,0,4..., ,0 ,0 ,0 ,4[** hh=h . That is, half of the core 

regions in the M-centric pattern *
h  are completely taken over by the neighboring new 

core regions in h
**

. This fact can be confirmed by examining a sustain point for the 

(M/2)-centric pattern. As shown in Appendix 3, the equilibrium condition for **
h , 

(6.13)   )}({max)( ****

0 hh k
k

vv = , 

is satisfied for any τ  smaller than some critical value. 
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6.2 Recursive Bifurcations - Spatial Period Doubling Bifurcations 

 The analysis of the first and second bifurcations thus far reveals that the first and 

second bifurcations share a common property whereby the number of core regions is 

reduced by half and the spacing between each pair of neighboring core-regions 

doubles after each bifurcation. An intuitive explanation for this striking regularity is 

that the 2/K -centric pattern h
*
 in an RE with K regions and a uniform pattern in an 

RE with 2/K  regions can be regarded as approximately equivalent. As shown in 

Lemma 6.1.2, the occurrence of the bifurcation from h
*
 is determined by only the 

marginal utilities V
(00)

 of skilled workers in core regions. Therefore, the bifurcation at 

h
*
 may be qualitatively similar to that of a uniform pattern in an RE with 2/K  

regions, in which the 4/K -centric pattern should emerge at the first bifurcation. (For 

clarity of exposition, we assume below that the number of regions K is a power of 

2
12

.) Following this reasoning, we conjecture that, in the course of decreasing τ , the 

multi-regional CP economy exhibits the spatial period doubling bifurcation (SPDB), 

whereby a third bifurcation at the )2/( 2K -centric pattern h
**

 leads to a )2/( 3K -

centric pattern h
*** 

(in which alternate core regions of h
**

 are extinct), at which a 

fourth bifurcation leads to a )2/( 4K -centric pattern, and such recursive bifurcations 

continue until a monocentric agglomeration is obtained (See Figure 5). 

 

 

 

 

 

Figure 5. A series of agglomeration patterns that emerge in the course of decreasing τ . 

 To a certain extent, the above conjecture is true, but the dispersion force due to 

unskilled workers living in periphery regions should not be overlooked. Since their 

import of M-sector goods affects the wages of skilled workers in the core regions, the 

marginal utilities V
00

 of the core regions in the K regional system are not exactly the 

same as those in a 2/K  regional system. Thus, the occurrence of the SPDB is not 

necessarily obvious and must be proven. 

 In order to examine the possibility of the SPDB, we must obtain the eigenvalues 

g
(n)

 of the Jacobian matrix )( )(n
hF∇  at the nK 2/ -centric configuration, 

   ]0,0 ,2,,0,0 ,2,0,0 ,2[

222

)(

43421 LL43421 L43421 L
n

n

n

n

n

nn hhh≡h , 

                                                 
12

 The detailed discussion without this assumption is shown in Ikeda et al.(2009). 

τ 
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which would emerge after the n th bifurcation from the flat earth equilibrium for an 

arbitrary natural number n. For this purpose, we introduce a particular division of the 

set of C by which we exploit the symmetry of the configuration )(n
h  so that the 

resultant submatrices of the Jacobian )( )(n
hF∇  reduce to circulants. First, recall that 

in obtaining the eigenvalues of )( *
hF∇  at a 2/K -centric configuration *

h  that 

emerges after the first bifurcation, we have divided the set C of regions into two 

subsets, namely, the subset }2,...,2,0{0 −= KC  of regions with skilled workers and 

the subset }1,...,3,1{1 −= KC  of regions without skilled workers. In a similar vein, for 

a 4/K -centric configuration **
h that would emerge after the second bifurcation from 

the configuration *
h , it is natural to divide each iC  )1,0( =i  into two subsets, 0iC  and 

1iC , the elements of which are the even-numbered regions and the odd-numbered 

regions in iC , respectively. It is also natural in the division to suppose that only the 

regions in subset C00 have skilled workers in configuration **
h . This division 

procedure can be repeated recursively. For configuration )(n
h  after n bifurcations, 

each of the 12 −n  subsets 
210 −niiiC L  )1 ,0,, ,( 210 =−niii L  of regions generated at the 

preceding ( 1−n  th) bifurcation is divided into two subsets, )1 ,0( 1 1210
=−−− niiii iC

nnL . 

 This division procedure naturally leads to the following definition of the 

permutation n

Kσ  of the set C: 

  ⎥
⎦

⎤
⎢
⎣

⎡ −−−−−

1111010000100000

1,,13,,212,,1,,1 ,0
:

LLLL L

LLLLL

CCCC

KLKLLLLL
n

Kσ , 

where nKL 2/≡ . Note here that the division and the associated permutation are the 

same as those used in the fast Fourier transform (FFT) algorithm (see, for example, 

Van Loan (1992)). This implies that the k th element )(kn

Kσ  )1,...,1,0( −= Kk  of the 

permutation n

Kσ  is given by a bit reversal  operation used in the FFT technique 

whereby an index k, written in binary with digits 0 12 1 bbbb KK L−− , is transferred to 

the index with reversed digits 1 21 0 −− KK bbbb L , which yields )(kn

Kσ . It also follows 

that the first component of the subset 
110 −niiiC L  is given by the bit reversal of 

1210   −niiii L : 1

110 22)( −
−++⋅+≡ n

niiina L  (for a concrete illustration of the division 

of the set C and the associated permutation n

Kσ , see Appendix 6). 

 The permutation n

Kσ  defined above can be expressed in terms of the associated 

KK ×  permutation matrix P(n) : 

(6.14)  
)1( 

)(

)(

)(

ˆ

ˆ

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

≡ n

n

n

n P

p0

0p

P O , 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡

o

n

e

n

n

)(

)(

)(

   
ˆ

P

P
P , 

where e

n)(P  and o

n)(P  are 12/ +nK  by nK 2/  matrices. The ),( ji  element of 
e

n)(P  is 1 if 
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ij  2=  )12/,...,2,1,0( 1 −= +nKi , and is otherwise 0, whereas that of 
o

n)(P  is 1 if 

12 += ij , and is otherwise 0. Under the new coordinate system transformed by the 

permutation n

Kσ , the SDM D can be represented as 

(6.15)   T 

)( )()(  nnn PDPD ≡× . 

Clearly, the transformed SDM, ×
)(nD , consists of 2)2( n  blocks (submatrices), in which 

each of the n2  block divisions in each of the row and column directions corresponds 

to the subset 
1210     −niiiiC L  )1 ,0,, ,( 110 =−niii L  of C. As it turns out, we do not have to 

deal with all of the submatrices. For our purpose, it is sufficient to focus on n2  

submatrices of the first block-row, in which each submatrix, denoted as 
)

1
  

2
 

1
 

0
( −n

iiii L
D , 

represents the spatial discounting factors between the core regions of set )0000( LC  and 

the periphery regions of set 
1210     −niiiiC L . It is readily shown that the submatrix 

)
1

  
2

 
1

 
0

( −n
iiii L

D  is a circulant generated from a vector ))((

0

)
1

  
2

 
1

 
0

(

0

nan
iiii

dd ≡−L
 with 

nKnL 2/)( ≡  elements, the k th element ))((
,0

na
kd  of which is given by 

(6.16)  
⎪⎩

⎪
⎨
⎧
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+

)()(if

)(0if

2))(()(

2)(
))((

,0

nLknMr

nMkr
d

n

n

knLnb

kna
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k , 

where 1

110 22)( −
−++⋅+≡ n

niiina L   (i.e., the bit reversal of 1210   −niiii L  )2(mod = 
1

021 22 −
−− ++⋅+ n

nn iii L ), )(2)( nanb n −≡ , and 2/)()( nLnM ≡ . 

 Similarly, applying this transformation to the Jacobian matrix )( *
hF∇  of the 

adjustment process, we have 

(6.17)  T 

)( 
)(

)(

)( )()( n

n

n

n
PhFPhF ∇≡∇× IhvhJ −∇= ×× )( )( )()(

 
nnH , 

where the Jacobian matrices in the right-hand side are, respectively, defined as 

(6.18)  T 

)( 
)(

)(

)( )()( n

n

n

n
PhJPhJ ≡× ,    T 

)( 
)(

)(

)( )()( n

n

n

n
PhvPhv ∇≡∇× . 

Each of the Jacobian matrices )( )(n
hJ

×  and )( )(n
hv

×∇  has a block structure with 
2)2( n  submatrices, just like the transformed SDM. These submatrices under the new 

coordinate system have the following desirable properties: 

Lemma 6.2.1: The submatrices J
(0,a(n))

 of )( )(n
hJ

×  and V
(0,a(n))

 of )( )(n
hv

×∇ , )(( na  
1

110 22 −
−++⋅+≡ n

niii L )12...,,2,1,0     −= n , are circulants, where the superscript (0, 

a(n)) of each submatrix denotes that the block-row and the block-column of the 

submatrix correspond to set )0000( LC  and set 
1210     −niiiiC L , respectively. 

This leads to the following result (parallel to Lemma 6.1.2 in the second bifurcation), 

which is very useful for obtaining the eigenvalues }{ )()( n
k

n g=g  of )( )(n
hF∇ : 
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Lemma 6.2.2: The eigenvalues )1,...,2,1,0()( −= Kkg n
k  of the Jacobian matrix 

)( )(n
hF∇  of the adjustment process at )(n

h  are represented as 

(6.19)   
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where T)0,0(

1)(

)0,0(

1

)0,0(

0

)0,0( ],..., ,[ −≡ nLeeee  are the eigenvalues of the submatrix V
(0,0)

. 

This lemma indicates that the eigenvalues )0,0(
e  of the submatrix )0,0(

V  immediately 

yield the eigenvalues )(n
g . Since the )0,0(

V  is a circulant consisting only of the sub-

matrices ≡))(( na
D

)
1
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1

 
0

( −n
iiii L

D  of the SDM, we can obtain the eigenvalues )0,0(
e : 

Lemma 6.2.3: The Jacobian )0,0(
V  and the associated eigenvalues )0,0(

e  are given by 
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 Straightforward calculation of (6.20b) together with Lemma 6.2.2 leads to the 

following proposition, which provides the key information by which to examine the 

occurrence of the 1+n  th bifurcation from the nK 2/ -centric agglomeration pattern 
)(n

h : 

Proposition 6.3: The largest eigenvalue of the Jacobian matrix )( )(n
hF∇  of the 

adjustment process of (3.14) at h
(n)

 is given by 

(6.21)  
)()( }{ .max n
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k
k

gg = )( )( rG nθ=  for  1] ,0(∈∀r , 

and the associated eigenvector is the M th row vector )(n

Mz  of )()( 
T 

)()( nnnn PZPZ
×≡ , 

where ],,[diag ])([])([)( nLnLn ZZZ L≡× , ])([ nLZ  is an L(n)-by-L(n) DFT matrix,  where 

nKnL 2/)( ≡ ,  
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 The 1+n  th bifurcation for the homogeneous consumer case (i.e., +∞→θ ) occurs 

at the critical value )(nr of the SDF at which the largest eigenvalue )(n

Mg  changes sign, 

that is, )(nr  is the solution of 

(6.23)   0)(lim )( =
+∞→

rG n

θ
 ( 0)(ˆ  )( =⇔ rG n ). 

In order for the SPDB to occur in the course of decreasing τ  (i.e., increasing r), the 

critical value )(nr  must be an increasing function of n: 

(6.24)   )1()( +< nn rr  for 1log,...,2,1 2 −= Kn . 

The following lemma helps to determine whether the condition of (6.24) holds: 

Lemma 6.2.4: The function )(ˆ )( rG n  of the SDF r has the following properties: 

(i) )(ˆ )( rG n
 is a monotonically increasing function of 1] ,0[∈r . 

(ii) =)0(ˆ )(nG })2(1{ 111 −−− −+− hhb nσ ,  0)1(ˆ )( >= bG n
. 

(iii)  For any 1≥n , )(ˆ)(ˆ )1()( rGrG nn +≥   1] ,0[∈∀r . (The equality holds only if 

1=r .) 

From properties (i) and (ii) of )(ˆ )( rG n  in Lemma 6.2.5, (6.23) has a unique solution 

1] ,0[)( ∈nr  if and only if 0)0(ˆ )( <nG , which is equivalently written as 

 (6.25)   ))2(1)(1( 11 −− −+< nh σ . 

Furthermore, if this condition holds, then it can be concluded from property (iii) of 

)(ˆ )( rG n  that the inequality of (6.24) holds, i.e., the SPDB occurs in the CP model. 

Note that the condition of (6.25) for the occurrence of the SPDB is very similar to the 

no-black-hole condition (for the homogeneous consumer case), )1( 1−+< σh , 

obtained in Proposition 5.1. The right-hand side of (6.25) increases with n (i.e., the 

requirement in (6.25) becomes “weak” with the increases of n), and the condition of 

(6.25) reduces to the no-black-hole condition as n becomes large. Therefore, we can 

predict that, if the no-black-hole condition is satisfied and the first bifurcation occurs, 

then the succeeding SPDB necessarily occurs in the CP model. 

 Finally, it is easily verified that the associated agglomeration pattern that emerges 

at the 1+n  th bifurcation is consistent with the SPDB. The direction of movement 

away from )(n
h  at this bifurcation is the 2/KM ≡ th eigenvector )(n

Mz  of )(nZ . 

Accordingly, the pattern of agglomeration is given by  

    )(
 

)( n

M

n
zhh δ+=  )20( hn≤≤ δ , 

    ]0,0,1,0,0,1,,0,0,1,0,0,1[

2222

)(

43421 L321 LLL43421 L321 L
nnnn

n

M −−=z  

which means that alternate halves of nK 2/  core regions in )(n
h  absorb skilled 
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workers from the neighboring core regions. Further decreases in the transportation 

cost τ  increase the deviation δ  from the nK 2/ -centric pattern )(n
h  and eventually 

lead to a 12/ +nK -centric agglomeration pattern )1( +n
h . This is consistent with the 

SPDB rule. Thus, we can confirm the occurrence of the SPDB in the CP model: 

Proposition 6.4: Consider the bifurcation process of the CP model with homogeneous 

consumers in the RE with K regions in the course of decreasing transportation cost τ .  

(i) The nK 2/ -centric pattern )(n
h  becomes unstable at the 1+n  th break point (in 

terms of the SDF) )(nrr =  given by the solution of (6.23). 

(ii) If the CP model satisfies (6.25), then the CP model exhibits a series of spatial 

period doubling bifurcations, in which the number of core regions is reduced by half 

and the spacing between each pair of neighboring core-regions doubles after each 

bifurcation, and the recursive bifurcations continue until a mono-centric 

agglomeration is reached. 

6.3. Numerical Examples 

We present a number of numerical examples to illustrate the theoretical results. We 

show the cases of (i) homogeneous consumers and (ii) heterogeneous consumers. In 

(ii), we demonstrate two examples, (ii-1) and (ii-2), which correspond to the cases 

with single re-dispersion and multiple re-dispersions, respectively. For the 

computation of these examples, we use the algorithm developed by Ikeda et al. (2009), 

which applies the computational bifurcation theory to the multi-regional CP model. 

This algorithm allows us to obtain a complete picture of the evolutionary process of 

the agglomeration patterns, which includes not only the theoretical results but also 

transition processes of (i) and agglomeration patterns of (ii). The results of the 

numerical analysis are shown in Figure 6, in which the horizontal axis denotes the 

SDF r and the curve represents the fraction Hhi /  of the skilled workers in the most 

populous region.  

Case (i) The parameter values in this case are ,1.2=σ  ,3000=θ  ,6.1=H  and 

16=K  (θ  is sufficiently large, so that the equilibrium configurations can be regarded 

as those of the homogeneous consumer case). The evolutionary process of the 

agglomeration pattern in the course of increasing r  is illustrated in Figure 6(a). This 

figure shows the occurrence of the SPDB. Specifically, the recursive bifurcations lead, 

in turn, to the 8-centric, 4-centric, duocentric and monocentric patterns. Furthermore, 

it is confirmed that each break point )(nr  derived from the numerical analysis 

coincides with the theoretical prediction (i.e., the solution of (6.23)). These results are 

consistent with Proposition 6.4. 
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     (a) Case (i): Homogeneous consumer        (b) Case
 
(ii-1): Heterogeneous consumer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Case (ii-2): Heterogeneous consumer case with multiple re-dispersions 

Figure 6. Evolution of the agglomeration patterns 

Case (ii-1) The parameter values are 16and,2.3,10,1.2 ==== KHθσ . The 

evolutionary process of this case, which is illustrated in Figure 6 (b), is qualitatively 

the same as that of the case (i). The agglomeration patterns of both cases evolve from 

a uniform distribution toward the 8-centric, 4-centric, duocentric, and monocentric 

patterns in turn as r increases. However, there are two main differences between this 
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and case (i). As shown in Proposition 5.3 (iii), the re-dispersion from the monocentric 

pattern occurs at )( *
−τr , and the population of any region never becomes zero.  

Case (ii-2) The parameter values are identical to those of case (ii-1), except for 

5.2=σ . As illustrated in Figure 6(c), multiple re-dispersions occur in the course of 

increasing r. The first re-dispersion is observed at the boundary )( **
−τr  between range 

A and B. That is, unlike case (ii-1), the increase in r from range A to range B causes 

the collapse of the duocentric agglomeration, which leads to the uniform distribution. 

After the emergence of a monocentric pattern in range C, the second re-dispersion 

occurs at the boundary )( *
−τr  between range C and range D. These results are 

consistent with Proposition 5.3 (iii). 

 

7. Concluding Remarks 

 We have presented an approach to capture the bifurcation properties of the multi-

regional core-periphery (CP) model. The presented method is characterized by three 

key tools: a spatial discounting matrix (SDM), discrete Fourier transformation (DFT), 

and a discrete racetrack economy (RE). An effective combination of these tools 

overcomes the limitations of the Turing (1952) approach, enabling an examination of 

whether agglomeration of mobile factors emerges from a uniform distribution and 

allowing the evolution of spatial agglomeration patterns exhibited by the CP model 

when the transportation cost steadily decreases to be traced analytically. Through the 

analysis, we revealed a number of interesting behaviors of the CP model, and notably, 

we proved analytically the occurrence of spatial period doubling bifurcation, in which 

the number of core regions reduces by half and the spacing between each pair of 

neighboring core-regions doubles after each bifurcation, and the recursive bifurcations 

continue until a mono-centric agglomeration is reached. 

 Although we restricted ourselves to the analysis of the CP model, the approach 

presented herein can be used for a wide class of models involving spatial 

agglomeration of economic activities. For instance, analyzing the other variants of the 

CP model, such as that by Ottaviano et al. (2002), is straightforward. Note that the 

application area of the proposed approach is not restricted to inter-regional migration 

models but also covers the analysis of a variety of urban land-use (internal structure of 

cities) models, in which the formation of urban centers is endogenized (see, for 

example, Fujita and Thisse (2002, Chapters 6 and 7)). A typical example of such an 

application can be found in Akamatsu and Takayama (2009b). 

 In order to deal with agglomeration models having more complex structure/ 
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circumstances, the proposed method may be extended in several ways. A 

straightforward extension would be to apply the method in two-dimensional space. 

This may be achieved in a relatively straightforward manner by replacing the one-

dimensional DFT in the present method with the two-dimensional DFT. Another 

interesting extension would be to allow for multiple types of mobile agents. There are 

a number of spatial economic models of this type. Examples include NEG models 

with multiple industry sectors, models of the emergence of new cities (Fujita and 

Mori (1997)), and self-organizing urban structure models in which the spatial 

interactions between mobile firms and consumers result in the formation of CBDs 

(e.g., Fujita and Ogawa (1982), Fujita (1988), Berliant et al.(2002), Lucas and Rossi-

Hansberg (2002), Berliant and Wang (2008)). This extension would be challenging, 

but would greatly enhance our understanding of the nature of agglomeration 

economies. 
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   Appendix 1: Proofs of Lemma 4.1 and Proposition 4.1 

Proof of Lemma 4.1: A calculation of (4.5) yields that 

(A1.1a) 
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2
1

1 )(1

))1(1)(1(
)()1(1

rwwr

rr
rwwrf

mm

Mm
M

k

kmkmkMm
m ++−

−−−
=++−+= −

−
=

−∑       

),...,1,0( Mm = . 

(A1.1b) 
mKm ff −=        )1,...,2,1( −= Mm . 

Substituting )]/2(iexp[ Kw π≡  into (A1.1a), we obtain (4.6a). QED 

Proof of Proposition 4.1: 

(i) Since D is diagonalized by the similarity transformation shown in (4.4), the k-th eigenvector is 

given by (4.7) in Proposition 4.1. 

(ii) Using d/0Zdf =  and Lemma 4.1, we can obtain (4.8).  

(iii) If m is even, differentiating 
mf  with respect to r yields 
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)cos21(

)cos1)(1(2

rr

r

dr

fd

m

mm

+−
−−

−= , 

where )/2cos(cos Kmm π≡ . Since 1cos1 ≤≤− m
, 0/ <drfd m

. If m is odd, we can rewrite the 
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condition 0/ <drfd m
 as  

(A1.2) 
2)1(2

)2(
1cos

rMrx

yMr
M

M

m −−
−

+< , 

where 2)1()1(,0)1)(1( 2222 <+−≡>−−≡ rrryrrx M . Since the second term of the right-hand 

side of (A1.2) is positive, this inequality is always satisfied. Therefore, 
mf  is a monotonically 

decreasing function of r for )1,0[∈∀r . 

(iv) Since cm(r) is a increasing function of cosm, 
mf  is also a increasing function of cosm. Thus, we 

obtain 
0}{max ffmm = , 

Mmm ff =}{min . 

(v) From the facts that 
mf  is a increasing function of cosm , 11 ≤f  and 

MMM cf ε2
1 >− , we obtain 

the inequalities in (v). QED 

   Appendix 2: Proofs of Lemmas 4.2 and 4.3 

Proof of Lemma 4.2: From the definition of M, 1−≡ DΔM , we can reduce M at h  to 

DhM
1)()( −= hd . Substituting this into (3.19) yields (4.11). Substituting hh =  into (3.18), we 

obtain (4.10).  

Proof of Lemma 4.3: We examine each of )(hv∇  and )(hJ  in turn. The right-hand side of (4.11) 

consists only of additions and multiplications of the circulant matrix D. It follows from this that 

)(hv∇  is a circulant. (4.10) clearly show that )(hJ  is a circulant because I and 11
T
 in the right-

hand side are obviously circulants. Thus, both )(hv∇  and )(hJ  are circulants, and this concludes 

that the Jacobian matrix )( hF∇  at the configuration h  is a circulant. 

   Appendix 3: Sustain points for 
*

h  and 
**

h   

We will show the derivation of sustain points for *
h  and **

h , in turn.  

(1) For the M-centric pattern ]0 ,2,,0 ,2 ,0 ,2[* hhh L=h , we can easily obtain the indirect utility 

for each city by substituting *
hh =  into (3.12): 
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where 
)0()1( / ddx ≡ , 1d ⋅≡ )(

0)(
i

id . To obtain the sustain point for *
h , we represent the utility 

difference between the “core” cities and the “periphery” cities as a function of the SDF: 
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Differentiating )(01 rv  with respect to r, we have 
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It follows from (A3.1) and (A3.2) that )(rα  is a monotonically decreasing function of r, 0)0( >α  

and 0)1( <α . This implies that drrdv /)(01
 changes sign only once. That is, )(01 rv  is a unimodal 
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function of r. From this fact, we see that )(01 rv  takes zero value at 1=r
 
and *

01rr =  > 0 (i.e., the 

equation 0)(01 =rv  has two positive solutions 1 and *

01r ) and that 
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any r larger than *

01r ; that is, *

01rr =  is the sustain point for ]0 ,2,,0 ,2 ,0 ,2[* hhh L=h . 

(2) The sustain point for the M/2-centric pattern ]0 ,0 ,0 ,4 , ,0 ,0 ,0 ,4[** hh L=h  can be obtained 

by the similar manner. The indirect utility at **
h  is given by 
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where 
)()( / jiij ddx ≡ . Define the following utility difference functions at **

h : 
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From the fact that )(0 riα  is a monotonically decreasing function of r, 0)0(0 >iα  and 0)1(0 <iα , 

)(0 rv i
 is a unimodal function of r. Therefore, we can show that 

   ,0and),2,1(
1for    0

0for    0
)( **

02
**

01**
 0

**
 0

 0 rri
rr

rr
rv

i

i
i <<=

⎪⎩

⎪
⎨
⎧

<≤≥

<<<
 

where **
 0 ir  is the solution of )2,1(0)( 0 == irv i

. That is, the equilibrium condition for **
h , 

)}({max)( ****

0 hh k
k

vv = , is satisfied for any r larger than **

02r , and **

02rr =  is the sustain point for 

**
h . 

   Appendix 4: Proof of Lemmas 6.1.1 and 6.1.2 

Proof of Lemma 6.1.1: We prove that each of the submatrices J
(ij)

 and V
(ij)

 is a circulant in turn. 
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(1) Let each of 
)0(p  and 

)1(p  denotes the location choice probability of the subset of cities 

)0(0 =iC  and )1(1 =iC  at the agglomeration pattern h
*
, respectively: 

(A4.1)  

⎩
⎨
⎧

=
=−

=
−+−

−
≡

)1(           /

)0(   /)1(

)]}(exp[)]({exp[ 

)](exp[
*

1 
*

0 

*
 

)(
iM

iM

vvM

v
p i

i ε
ε

θθ
θ

hh

h
. 

A straightforward calculation of the definition (6.6a) of T 

)1( 
*

)1(

* )()( PhJPhJ ≡×  reveals that the 

submatrices )1,0,()( =jiij
J  are circulants whose first row vector is given by 

   
⎪⎩

⎪
⎨
⎧

≠−−−

=−−−
=

)(     ] ,..., ,[

)(  ] ,..., ,1[

)()()()( 

)()()()( 
)(

0

 

jipppp

jipppp

jjji

jjjiji

θ

θ
J . 

(2) As is shown in (3.19), the Jacobian matrix )( *
hv∇  consists of additions and multiplications of 

1** )}({)( −≡ hΔDhM . It follows from this that the Jacobian matrix T 

)1( 
*

)1(

* )()( PhvPhv ∇≡∇×  

defined in (6.6b) consists of those of T 
)1( 

*
)1( )( PhMP , which in turn is composed of submatrices 

)(ij
M  (i, j = 0,1): 

   T 
)1( 

*
)1( )( PhMP ⎥

⎦

⎤
⎢
⎣

⎡
≡

)11()10(

)01()00(

2

1

MM

MM

h
. 

Therefore, in order to prove that )1,0,()( =jiij
V  are circulants, it suffices to show that the 

submatrices )(ij
M  )1,0,( =ji  are circulants. Note here that T 

)1( 
*

)1( )( PhMP  can be represented as 

(A4.2)  T 
)1( 

*
)1( )( PhMP ])}({][[ T 

)1(
1*

)1(
T 
)1( )1( PhΔPPDP

−= . 

The first bracket of the right-hand side of (A4.2) is given in (6.4), and a simple calculation of the 

second bracket yields 

   T 
)1(

1*
)1( )}({ PhΔP −

1

)1( )1(

)0( )0(

]...,,[diag

]...,,[diag

2

1
−

⎥
⎦

⎤
⎢
⎣

⎡
=

dd

dd

h 0

0
, 

where )1(
1

1
2

2
)0(

0)0(

Mr
r

r
d −

−
+

=⋅≡ 1d  and )1(
1

2
2

)1(

0)1(

Mr
r

r
d −

−
=⋅≡ 1d . Thus, we have 

 (A4.3)  T 
)1( 

*
)1( )( PhMP

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −−

−−

)0(
1  

)1()1(
1  

)1(

)1(
1  
)0()0(

1  
)0(

  

  

2

1

DD

DD

dd

dd

h
, 

which shows that the submatrices )(ij
M  )1,0,( =ji  are circulants. QED 

Proof of Lemma 6.1.2: Consider the Jacobian matrix )( *
hF

×∇  defined in (6.5): 

(A4.4a)  I
FF

FF
IhvhJPhFPhF −⎥

⎦

⎤
⎢
⎣

⎡
≡−∇=∇≡∇ ×××

)11()10(

)01()00(
*

 
*

 
T

 
*

 
*  )()()()( MH , 

(A4.4b)  ∑ =
≡

1,0

) () () (

k

jkkiji
VJF   )1,0,( =ji . 

Note here that the submatrices F
(ij)

 of the Jacobian matrix )( *
hF

×∇  are circulants because all 

submatrices J
(ij)

 and V
(ij)

 )1,0,( =ji  are circulants. This enables us to diagonalize each of the 
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submatrices F
(ij)

 by using a M  by M  DFT matrix Z[M]: 

(A4.5)  I
ff

ff
ZFZ −⎥

⎦

⎤
⎢
⎣

⎡
=∇ ××−×

][diag][diag

][diag][diag
   )(

)11()10(

)01()00(
1 M , 

where )(ij
f  is the eigenvalues of F

(ij)
, and ],[diag ][][ MM ZZZ ≡× . It also follows that applying the 

similarity transformation based on 
][MZ  to both sides of (A4.4b) yields 

(A4.6)  ∑ =
⋅=

1,0

) () () ( ][][
k

jkkiji
ef δ   )1,0,( =ji , 

where T)(
1

)(
1

)(
0

)( ],..., ,[
ij

M
ijijij

−≡ δδδδ  and T)(
1

)(
1

)(
0

)( ] ,..., ,[
ij

M
ijijij eee −≡e  denote the eigenvalues of the 

Jacobian matrices J
(ij) 

 and V
(ij) 

 )1,0,( =ji , respectively. The former eigenvalues δ(ij)
 can be given 

analytically by the DFT of the first row vector  J0
(ij)

  of the submatrix J
(ij)

: 

(A4.7)  )(

0][

)(   ji

M

ji JZ=δ    )1,0,( =ji , 

Substituting (A4.1) into (A4.7), we have 

  T
  

)00( ]11)[1)(/( Lεεθ −= Mδ , T
     

)11( ]111[)/( Lεεθ −= Mδ , 

  T
  

)01( ]00)[1)(/(  Lεεθ −−= Mδ , T
    

)10( ]001[)/( L−= εεθ Mδ . 

It follows from this that 

   

⎩
⎨
⎧ ==

==
→→ otherwise                                 

0if   ] 1  1  1  0 )[/(
 .lim .lim

T
)(

0

)(

2/1

  

)0( 0

jiMjiji

p

Lθ
ε

δδ . 

Substituting these δ(ij)
 )1,0,( =ji  into (A4.6) yields 

   

⎩
⎨
⎧

=

=
=

→ 1 if                                             

0 if  ]     0 )[/(
 .lim

T)0(
1-

)0(
2

)0(
1)(

2/1

 

)0( i

ieeeM
j

M
jj

ji

p 0
f

Lθ
  )1,0( =j . 

Thus, when 2/1)0( →p , (A4.5) reduces to 

  I
00

ZFZ −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=∇ ××−× ]     0 [diag]     0 [diag

   )(

)01(

1-

)01(

2

)01(

1

)00(

1-

)00(

2

)00(

11 MM eeeeee LL
θ . 

Converting this into the original coordinate system, we obtain 

   *
 

1*1T )( ] )[( ZFZPZFZP ∇=∇ −××−×
Ieee −= − ]ˆˆˆ[diag 110 MLθ  

where PZPZ ×≡  
T* ; ⎥

⎦

⎤
⎢
⎣

⎡
≡

00

00
ˆ

0e  and ⎥
⎦

⎤
⎢
⎣

⎡
≡

00
ˆ

)01()00(

kk

k

ee
e    )1,...,2,1( −= Mk . 

Since eigenvalues of an upper-triangular matrix (
kê ) are given by the diagonal entries, we can 

conclude that the eigenvalues of the Jacobian )( *
hF∇  are given by 

(A4.8)  

⎩
⎨
⎧

−

−
=

)odd:(             1

)even:(  1 
)00(

2/

k

ke
g k

k

θ
. 

   Appendix 5: Proof of Lemma 6.1.3 and Proposition 6.1 

Proof of Lemma 6.1.3: Substituting (3.19) and (A4.3) into the definition of )( *
hv

×∇  in (6.6), we 



44 

obtain (6.8a) in lemma 6.1.3. Since the right-hand side of (6.8a) consisting only of circulants D
(0)

, 

D
(1) 

and D
(1)T

, we have the associate eigenvalues e
(00)

 by (6.8b). QED 

Proof of Proposition 6.1: Each of the eigenvalues )1,0()( =iif  of 
)(

)( / i
i dD  is obtained by DFT of 

vectors )(
0
i

d : 

(A5.1)  
)0(

)0(
0][)0( / dM dZf = ,   

)1(
)1(

0][)1( / dM dZf = ,   
)1(

)T1(
0][)T1( / dM dZf = . 

A straight-forward calculation of (A5.1) yields that 

(A5.2)  22)0(

2/ )(rcfM = ,   0)T1(

2/

)1(

2/ == MM ff ,   0)T1()1(

 >mm ff   )1,...,2,1,0( −= Mm . 

Substituting these into (6.8b) yields  

(A5.3a)  .)1 ,1()00()00(

0 constGe == ,  )0 ,)(( 22)00()00(

2/ rcGeM = , 

(A5.3b)  ) ,( )T1(

 

)1(

 

)0()00()00()00(

mmmmMm fffGee == −   )1,...,2,1,0( −= Mm , 

where ] )21[( ),( 2

1 
)00( yxhaxbyxG ++−≡ . It follows from (A5.3) that 

  )0 ,)(()}(.{max 22)00(* rcGxem
m

= . 

Combining this with (A4.8) in Lemma 6.1.2, we obtain (6.9a).QED 

   Appendix 6: An Example of the division of the set C 

 We show an example of the division of the set C and the associated permutation n

Kσ  for the 

case of 16=K . For an 8-centric configuration *
h  that emerges after a first bifurcation from the 

flat earth equilibrium )1( =n , the set C with 16 elements is divided into 2 subsets, C0 and C1, each 

of which is a set of core regions and that of periphery regions, respectively. After a second 

bifurcation from the 8-centric configuration h
*
 )2( =n , a 4-centric configuration **

h  emerges, 

and then each of the subsets Ci )1,0( =i  is divided into 2 subsets: 

  :0=i   }12,8,4,0{00 =C  and  }14,10,6,2{01 =C , 

  :1=i   }13,9,5,1 {10 =C  and  }15,11,7,3{11 =C , 

where C00 is the set of core regions, and all other subsets are the sets of periphery regions in the 4-

centric configuration **
h . For a duo-centric configuration h

(3)
, which emerges after a third 

bifurcation )3( =n , each of the subsets )}1 ,0 ,( { 10 10
=iiC ii  is further divided into 2 subsets: 

 001 0 =ii : }8 ,0{000 =C  and }12,4{001 =C , 011 0 =ii : }10,2{010 =C  and }14,6{011 =C , 

 101 0 =ii : }9 ,1 {100 =C  and  }13,5 {101 =C , 111 0 =ii : }11,3{110 =C  and  }15,7{111 =C . 

where only the two regions in the subset C000 has skilled workers. Thus, after the third bifurcation, 

C is divided into 823 =  subsets )}1 ,0 , ,({ 210  
210

=iiiC iii
. Accordingly, the permutation 3

16σ  

corresponding to this division of C is given by 

  ⎥
⎦

⎤
⎢
⎣

⎡
157

1514

113

1312

135

1110

91

98

146

76

102

54

124

32

80

10
:3

16σ . 

It is readily verified that )(kn

Kσ  is given by the bit-reversal operation; for example, 12=k  is 

written as “1100”
 

(mod
 

2), whose bit-reversal yields “0011”
 

(mod
 

2), and hence, 

3)2(mod  0011)12(3

16 ==σ . This also shows that the first component of 
110C  is given by the bit 
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reversal of  “110”(mod
 
2). 

   Appendix 7: Proof of Lemmas 6.2.1 and 6.2.2 

Proof of Lemma 6.2.1: We prove that the submatrices ))(,0( na
J  and ))(,0( na

V  are circulants in turn. 

(1) Let p(a(n)) denotes the location choice probability of the subset of cities 
1210 ... −niiiiC  at )(n

hh = : 

  

⎩
⎨
⎧ =

=
−

−
=

∑ otherwise0

0)(if/2

}]exp[{2/

]exp[ )(

))((

naK

vK

v
p

n

k k
n

na

na θ

θ
. 

Substituting this into (6.18a), we have 

(A7.1) 

⎩
⎨
⎧ ==−

=
otherwise

0if))(/2( T
)(

0

11I
J

jiKn
ji θ . 

This shows that the submatrices ))(,0( na
J  are circulants. 

(2) Since )( )(n
hv∇  consists of additions and multiplications of 1)()( )}({)( −≡ nn

hΔDhM , 

)( )(n
hv

×∇  defined in (6.18b) also consists of those of T
)(

)(
)( )( n

n
n PhMP . From this, in order to 

prove that ))(,0( na
V  are circulants, it is suffices to show that the submatrices ),( ji

M  of 

T
)(

)(
)( )( n

n
n PhMP  are circulants. T

)(
)(

)( )( n
n

n PhMP  is expressed as 

(A7.2) ])}({][[)( T
)(

1)(
)(

T
)()(

T
)(

)(
)( n

n
nnnn

n
n PhΔPDPPPhMP

−= . 

The submatrices ),( jiΔ  of the second bracket of (A7.2) is given by 

  
⎪⎩

⎪
⎨
⎧ ==

=
−

otherwise

)(if][diag)2( ))((
1

),(

0

1
Δ

najidh na
n

ji , 

where )1(
1

2/

2

)(2)(
))((

0))((
K

nana
na

na r
r

rr
d

n

n

−
−

+
=⋅≡

−

1d , and this shows that ),( jiΔ  are circulants. As is 

shown in Section 6.2, the submatrices of the first bracket of the right-hand side of (A7.2) defined 

in (6.15) are circulants. Thus, ),( ji
M  are circulants. QED 

 

Proof of Lemma 6.2.2: The Jacobian matrix )( )(n
hF

×∇  defined in (6.17) is given by  

  I

FFF

FFF

FFF

hvhJhF −

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡∇=∇

−−−−

−

−

×××

)2,2()1,2()0,2(

)2,1()1,1()0,1(

)2,0()1,0()0,0(

)()()(

1111

1

1

)()()()(

nnnn

n

n

nLH nnn

L

MOMM

L

L

, 

where ∑≡
k

jkkiji ),(),(),(
VJF , nKnL 2/)( ≡ . Since ),( ji

F  are circulants, these submatrices are 

diagonalized by L(n)-by-L(n) DFT matrix 
)]([ nLZ : 

(A7.3)  I

fff

fff

fff

ZhFZ −

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∇

−−−−

−

−

××−×

]diag[]diag[]diag[

]diag[]diag[]diag[

]diag[]diag[][diag

)()()(

)2,2()1,2()0,2(

)2,1()1,1()0,1(

)2,0()1,0()0,0(

)(1

1111

1

1

)()(

nnnn

n

n

nn nLn

L

MOMM

L

L

, 
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where ],...,,[diag )]([)]([)]([)( nLnLnLn ZZZZ ≡× , and ),( ji
f  is the eigenvalues of ),( ji

F , which is given 

by 

(A7.4) ∑ ⋅=
k

jkkiji ][][ ),(),(),(
eδf . 

T),(
)(

),(
1

),(
0

),( ],...,,[ ji
nL

jijiji δδδ=δ  and T),(
)(

),(
1

),(
0

),( ],...,,[ ji
nL

jijiji eee=e  denote the eigenvalues of ),( ji
J  

and ),( ji
V , respectively. Applying the similarity transformation based on 

)]([ nLZ  to both sides of 

(A7.1), we have 

  

⎩
⎨
⎧ ==

=
otherwise

0if]1,,1,1,0))[(/( T
),(

0
δ jinLji Lθ . 

Substituting this into (A7.4) yields 

  
⎪⎩

⎪
⎨
⎧ =

=
otherwise

0if],,,,0))[(/( T),0(
)(

),0(
2

),0(
1),(

0
f

ieeenL j
nL

jj
ji Lθ

. 

Thus, converting (A7.3) into the original coordinate system, we obtain 

 

 Iee0ZhFZPZhFZP −=∇=∇ ×−××−× ]ˆ,...,ˆ,[diag)()()()( )(
)(

)(
1

*)(1*
)(

)(1T
)( )()()()(

n
nL

nn
n

n
n nnnn θ , 

where 
)(

T
)(

*
)()( nn nn PZPZ

×≡ , and  

  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡

−

000

000
ˆ

)2,0()1,0()0,0(

)(

1

L

MOMM

L

L
n

kkk

n
k

eee

e         ))(,...,2,1( nLk = . 

Since eigenvalues of an upper-triangular matrix ( )(ˆ n
ke ) are given by the diagonal entries, we can 

conclude that the eigenvalues of the Jacobian are given by (6.19). 

   Appendix 8: Proof of Lemma 6.2.3 and Proposition 6.3 

Proof of Lemma 6.2.3: Substituting (3.19) and (A7.2) into the definition of )( )(nhv×∇  in (6.18b), 

we obtain (6.20a) in lemma 6.2.3. Since the right-hand side of (6.20a) consisting only of circulants 

D
(0)

, ))(( naD  and T))(( }{ na
D , we have the associate eigenvalues e

(00)
 by (6.20b). QED 

Proof of Proposition 6.3: We see from Lemmas 6.2.2 and 6.2.3 that proposition 6.3 is equivalent 

to 

(A8.1) )(}{ .max.arg  
1 0 )0,0( nMEEe mmm

m
=−≡ , 12/2/)()( +≡≡ nKnLnM , 

(A8.2) ),(/ 0

 

)0(

)0(

)( nrcdf nM = , =⋅∑
−

=

12

1)(

2  

))((

T))((

)(

))((

)( / 

n

na

na

na

nM

na

nM dff ∑
−

=

12

1

0 ),( ),(

n

j

j nrcnrc , 

where )}/)(21(){/(  

)0(

)0(
 

 

)0(

)0(
 

0 dfhabdfE m

n

nmm +−≡ ,  

 ∑
−

=

⋅≡
12

1)(

2  

))((

T))(())((1 / 

n

na

na

na

m

na

mnm dffaE   )1)(,,1,0( −= nLm L . 
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To prove these, we first derive analytical expressions of the eigenvalues ))(( na

mf  and T))(( na
mf  

)1)(,,1,0( −= nLm L . Since D
(a(n)) 

is a circulant, the eigenvalues { ))(( na

mf } are obtained by DFT of 

d0
(a(n))

: ))((

0 )]([

))(( na

nL

na
dZf = . Substituting (6.16) into this and some calculation yields 

(A8.3a)  )()]( i)([     ))(( nnnf mmm

na

m γβα ⋅+= , 

where  ))(/(2cos(cos nLmm π≡ , ))(/(2sin(sin nLmm π≡ , 
n

n rR 2≡ , )(na

n rA ≡ , 

  
211

)cos1()cos1()( nmnnmnnm RRARAn ⋅−⋅−−⋅≡ −−α ,  

  )sin)(( )(
1

mnnnm RAAn
−−≡β ,    0

 cos21

 )1(1
)(

2

)(

>
+−

−−
≡

nmn

nM
n

m

m
RR

R
nγ , 

In a similar manner, we obtain the eigenvalues of D
(a(n)) T

 as 

(A8.3b)  )()]( i)([  T))(( nnnf mmm
na

m γβα ⋅−= . 

From (A8.3a) and (A8.3b), we have 

(A8.4)  2T))(())(( )( ]cos)()([ nnnff mm
na

m
na

m γβα ⋅+=⋅ , 

where 0)2()1())(1()( 221
 

2 ≥++−+≡ −
nnnnnn RRARARnα ,  

  0)()1(2)(
22

 
2

 
1

 ≥−−≡ −
nnnnn ARAARnβ . 

To prove (A8.1), it suffices to show that  

  )(}.{max.arg 0 nMEm
m

=  and )(}.{min.arg 1 nMEm
m

= .  

The former is true since it is readily verified from (A8.3) that )(}{ .min.arg )0( nMfm
m

= . The latter is 

also evident from the fact that )(}.{min.arg T))(())(( nMff na
m

na
m

m
=⋅  )12,,2,1)(( −= nna L , which is 

obvious from (A8.4) since 0)( ≥nα , 0)( ≥nβ , 0)( ≥nmγ . Thus, (A8.1) has been proved. (A8.2) 

can be easily proved by calculating 
))(( nad  and Tna

nM
na
nM ff

))((
)(

))((
)( ⋅ : 

(A8.5)  
n

K
nannana

na

r

r
rrd

2

2/
)(2)())((

0))((

1

1
)(

−

−
+=⋅= −d1 , 

(A8.6)  
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≥
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−

1)(for                    )( 
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)(
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)(

nMrr

nM
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r
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ff
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n

K
nanna
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nM
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nM

 

Setting 0)( =na  in (A8.3) and (A8.5) yields the first equality of (A8.2). The second equality of 

(A8.2) also can be readily verified by substituting (A8.5) and (A8.6) into the LHS. QED. 

   Appendix 9: Proof of Lemma 6.2.4 

(i) Defining )(ˆ)()(
2/2

rrCr nnn εε +≡ , ∑
−

=

≡
1)2/2(

1
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Since 0/),(0 <drnrdc  and 0/)( <drrd nε 1] ,0(∈∀r , we can conclude that the first derivative of 

the RHS of (A9.1) is negative, that is, 0/)(ˆ )( <drrGd n 1] ,0(∈∀r . 

(ii) Substituting 1)0( =kC  and 12}1)2/2{(21)0( −=−+= nn

nε  into (A9.1), we obtain (6.32).  

Substituting 0)1( =kC  and 0)1( =nε  into (A9.1) yields 0)1(ˆ )( >= bG n . 

(iii) It follows from (A9.1) that 
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To prove 0)(ˆ)(ˆ )1()( ≥− + rGrG nn , it suffice to show that 02 1 ≥−+ nn εε  since it is obvious that 

),()1,( 00 nrcnrc ≥+ (the equality holds only if r = 1). From the definition of )(rnε ,  

(A9.3)  )ˆ2ˆ(222  12/122/12
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It also follows from the definitions of )(ˆ rnε and )(rCk
 that 
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Substituting (A9.4) into (A9.3), we have 
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Since )()( rCrC kk ≥+l  0, >∀ kl , for any 1  ,10 ≥≤≤ nr , we conclude that 02 1 ≥−+ nn εε  

(the equality holds only if r = 1). QED. 
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