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Abstract

This article describes the R package DEoptim, which implements the differential evolu-
tion algorithm for global optimization of a real-valued function of a real-valued parameter
vector. The implementation of differential evolution in DEoptim interfaces with C code
for efficiency. The utility of the package is illustrated by case studies in fitting a Parratt
model for X-ray reflectometry data and a Markov-Switching Generalized AutoRegressive
Conditional Heteroskedasticity (MSGARCH) model for the returns of the Swiss Market
Index.
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1. Introduction

Optimization algorithms inspired by the process of natural selection have been in use since the
1950s (Mitchell 1998). John Holland invented the genetic algorithm in the 1960s, which uses
biology-inspired operations of crossover, mutation, and selection on a population comprised of
bit strings in order to minimize an objective function over the course of successive generations
(Holland 1975). Genetic algorithms proved themselves to be useful heuristic methods for
global optimization, in particular for combinatorial optimization problems. In the 1990s
Rainer Storn and Kenneth Price developed a variation on genetic algorithms they termed
differential evolution (DE) (Storn and Price 1997). DE uses floating-point instead of bit-string
encoding of population members, and arithmetic operations instead of logical operations in
mutation. DE is particularly well-suited to find the global optimum of a real-valued function
of real-valued parameters, and does not require that the function be either continuous or
differentiable. In the roughly fifteen years since its invention, DE has been successfully applied
in a wide variety of fields, from computational physics to operations research, as Price, Storn,
and Lampinen (2006) catalogue.

Many implementations of DE are currently available. A web-based list of DE programs for
general purpose optimization is maintained by Rainer Storn at http://www.icsi.berkeley.
edu/~storn/code.html. Programs from this list for which the source code is readily available
are summarized in Table 1. Commercial software such as Mathematica, MATLAB’s GA tool-
box, and a variety of special-purpose programs for optical and X-ray physics also implement
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Program Language Authors Cross-platform

DeApp java Storn Yes
DeWin MS Visual C++ Storn No
DeMat MATLAB Storn No
DiffEvol scilab Di Carlo & Jarausch Yes
DESolver MS Visual C++ Godwin No
DE Fortran90 Fortran 90 Wang Yes
DeMat for Pascal Pascal Geldon & Gauden Yes
DEoptim R Ardia & Mullen Yes

Table 1: Implementations of differential evolution for general purpose optimization.

DE1.

The DEoptim implementation of DE was motivated by our desire to extend the set of al-
gorithms available for global optimization in the R language and environment for statisti-
cal computing (R Development Core Team 2009). R enables rapid prototyping of objective
functions, access to a wide array of tools for statistical modeling, and ability to generate
customized plots of results with ease (which in many situations makes use of R prefer-
able over the use of programs in languages like java, MS Visual C++, Fortran 90 or Pas-

cal). Furthermore, R is released in open-source form under the terms of the GNU General
Public License, meaning that packages implemented for it do not require the purchase of
commercial software. R also has a large and growing user base interested in optimization.
DEoptim has been published on the Comprehensive R Archive Network and is available at
http://cran.r-project.org/web/packages/DEoptim/. Since becoming publicly available
it has been used by a variety of authors, e.g., Börner, Higgins, Kantelhardt, and Scheiter
(2007), Higgins, Kantelhardt, Scheiter, and Boerner (2007), Cao, Vilar, and Devia (2009),
and Opsina Arango (2009), to solve optimization problems arising in diverse domains.

In the remainder of this manuscript we elaborate on DEoptim’s implementation and use. In
Section 1.1, the package is introduced via a simple example. Section 2 describes the underlying
algorithm. Section 3 describes the R implementation and serves as a user manual. DEoptim

is then illustrated via two cases studies, involving fitting a Parratt recursion model for X-
ray reflectometry data (in Section 4) and a Markov-Switching Generalized Autoregressive
Conditional Heteroscedasticity(MSGARCH) model for log-returns of the Swiss Market Index
(in Section 5).

1.1. An introductory example

Minimization of the Rastrigin function of x ∈ ℜD

f(x) =
D

∑

j=1

(

x2
j − 10 cos (2πxj) + 10

)

1Certain commercial equipment, instruments, or materials are identified in this paper to foster understand-

ing. Such identification does not imply recommendation or endorsement by the National Institute of Standards

and Technology, nor does it imply that the materials or equipment identified are necessarily the best available

for the purpose.
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Figure 1: A contour plot of the two-dimensional Rastrigin function f(x). The global minimum
f(x) = 0 is at (0, 0) and is marked with an open white circle.

for D = 2 is a common test for global optimization algorithms.

This function is possible to represent in R as

R> rastrigin <- function(x) 10 * length(x) + sum(x^2 - 10 * cos(2 *

+ pi * x))

As shown in Figure 1, for D = 2 the function has a global minimum f(x) = 0 at the point
(0, 0).

In order to minimize this function using DEoptim, the R interpreter is invoked, and the
package is loaded with the command

R> library("DEoptim")

DEoptim searches for minima of the objective function between lower and upper bounds on
each parameter to be optimized. Therefore in the call to DEoptim we specify vectors that
comprise the lower and upper bounds; these vectors are the same length as the parameter
vector. The call to DEoptim can be made as

R> est.ras <- DEoptim(rastrigin, lower = c(-5, -5), upper = c(5,

+ 5), control = list(storepopfrom = 1, trace = FALSE))

Note that the vector of parameters to be optimized must be the first argument of the objective
function fn passed to DEoptim. The above call specifies the objective function to minimize,
rastrigin, the lower and upper bounds on the the parameters, and, via the control ar-
gument, that we want to store intermediate populations from the first generation onwards
(storepopfrom = 1), and do not want to print out progress information each generation
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Figure 2: The population associated with various generations of a call to DEoptim as it searches
for the minimum of the Rastrigin function (marked with an open white circle). The minimum
is consistently determined within 200 generations using the default settings of DEoptim.

(trace = FALSE). Storing intermediate populations allows us to examine the progress of the
optimization in detail. Upon initialization, the population is comprised of 50 vectors x of
length two (50 being the default value of NP), with xi a random value drawn from the uniform
distribution over the values defined by the associated lower and upper bound. The operations
of crossover, mutation, and selection explained in Section 2 transform the population so that
the members of successive generations are more likely to represent the global minimum of the
objective function. The members of the population generated by the above call are plotted at
the end of different generations in Figure 2. DEoptim consistently finds the minimum of the
function within 200 generations using the default settings. We have observed that DEoptim

solves the Rastrigin problem more efficiently than the simulated annealing method found in
the R function optim.

2. The differential evolution algorithm

We sketch the classical DE algorithm here and refer interested readers to the work of Storn
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and Price (1997) and Price et al. (2006) for further elaboration. The algorithm is an evolu-
tionary technique which at each generation transforms a set of parameter vectors, termed the
population, into another set of parameter vectors, the members of which are more likely to
minimize the objective function. The variable NP represents the number of parameter vectors
in the population. At generation 0, NP guesses for the optimal value of the parameter vector
are made, either using random values between upper and lower bounds for each parameter
or using values given by the user. Each generation involves creation of a new population
from the current population members xi,g, where g indexes generation, i indexes the vectors
that make up the population, and j indexes the values in each population member vector.
This is accomplished using differential mutation of the population members. A trial mutant
parameter vector vi,g is created by choosing three members of the population, xr0,g, xr1,g and
xr2,g, at random. Then vi,g is generated as

vi,g = xr0,g + F ∗ (xr1,g − xr2,g) (1)

where F is a positive scale factor. Effective values of F are typically less than 1.

After the first mutation operation, mutation is continued until either length(x) mutations
have been made or rand > CR, where CR is a crossover probability CR ∈ [0, 1], and where
here and throughout rand is used to denote a random number from U(0, 1). The crossover
probability CR controls the fraction of the parameter values that are copied from the mutant.
CR approximates but does not exactly represent the probability that a parameter value will
be inherited from the mutant, since at least one mutation always occurs.

If an element vj of the parameter vector is found to violate the bounds after mutation and
crossover, it is reset. In the implementation DEoptim, if vj > upperj , it is reset as vj =
upperj − rand ∗ (upperj − lowerj), and if vj < lowerj , it is reset as vj = lowerj + rand ∗
(upperj − lowerj). Then the objective function values associated with the children v are
determined. If a trial vector vi,g has equal or lower objective function value than the vector
xi,g, vi,g replaces xi,g in the population; otherwise xi,g remains. Variations on this theme are
possible, some of which are described in the following section. Values of rand and CR that
have been found to be most effective for a variety of problems are described in Price et al.

(2006). Reasonable default values for many problems are given in the following section.

3. Implementation

DEoptim was first published on the Comprehensive R Archive Network (CRAN) in 2005.
Early versions were written in pure R. Since version 2.0-0 (published to CRAN in 2009) the
package has relied on an interface to a C implementation of DE, which is significantly faster
on most problems as compared to the implementation in pure R. Since version 2.0-3 the C

implementation dynamically allocates the memory required to store the population, removing
limitations on the number of members in the population and length of the parameter vectors
that may be optimized.

The implementation is used by calling the R function DEoptim, the arguments of which are:

❼ fn: The objective function to be minimized. This function should have as its first
argument the vector of real-valued parameters to optimize, and return a scalar real
result.
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❼ lower, upper: Vectors specifying scalar real lower and upper bounds on each parameter
to be optimized, so that the ith element of lower and upper applies to the ith parameter.
The implementation searches between lower and upper for the global optimum of fn.

❼ control: A list of control parameters, discussed below.

❼ ...: allows the user to pass additional arguments to the function fn.

The control argument is a list, the following elements of which are currently interpreted:

❼ VTR: The value to reach. Specify the global minimum of fn if it is known, or if you wish
to cease optimization after having reached a certain value. The default value is -Inf.

❼ strategy: This defines the differential evolution strategy used in the optimization pro-
cedure, described below in the terms used by Price et al. (2006):

– 1: DE / rand / 1 / bin (classical strategy). This strategy is the classical approach
described in Section 2.

– 2: DE / local-to-best / 1 / bin. In place of the classical DE mutation given in (1),
the expression

vi,g = oldi,g + (bestg − oldi,g) + xr0,g + F ∗ (xr1,g − xr2,g)

is used, where oldi,g and bestg are the ith member and best member, respectively,
of the previous population. This strategy is currently used by default.

– 3: DE / best / 1 / bin with jitter. In place of the classical DE mutation given in
(1), the expression

vi,g = bestg + jitter + F ∗ (xr1,g − xr2,g)

is used, where jitter is defined as 0.0001 ∗ rand + F .

– 4: DE / rand / 1 / bin with per vector dither. In place of the classical DE mutation
given in (1), the expression

vi,g = xr0,g + dither ∗ (xr1,g − xr2,g)

is used, where dither is calculated as dither = F + rand ∗ (1 − F ).

– 5: DE / rand / 1 / bin with per generation dither. The strategy described for 4 is
used, but dither is only determined once per-generation.

– any value not above: variation to DE / rand / 1 / bin: either-or algorithm. In the
case that rand < 0.5, the classical strategy described for 1 is used. Otherwise, the
expression

vi,g = xr0,g + 0.5 ∗ (F + 1.0) ∗ (xr1,g + xr2,g − 2 ∗ xr0,g)

is used.
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❼ bs: If FALSE then every mutant will be tested against a member in the previous gen-
eration, and the best value will survive into the next generation. This is the standard
trial vs. target selection described in Section 2. If TRUE then the old generation and
NP mutants will be sorted by their associated objective function values, and the best NP
vectors will proceed into the next generation (this is best-of-parent-and-child selection).
The default value is FALSE.

❼ NP: Number of population members. The default value is 50.

❼ itermax: The maximum iteration (population generation) allowed. The default value
is 200.

❼ CR: Crossover probability from interval [0,1]. The default value is 0.9.

❼ F: Stepsize from interval [0,2]. The default value is 0.8.

❼ trace: Logical value indicating whether printing of progress occurs at each iteration.
The default value is TRUE.

❼ initialpop: An initial population used as a starting population in the optimization
procedure, specified as a matrix in which each row represents a population member.
May be useful to speed up convergence. Defaults to NULL, so that the initial population
is generated randomly within the lower and upper boundaries.

❼ storepopfrom: From which generation should the following intermediate populations
be stored in memory. Default to itermax+1, i.e., no intermediate population is stored.

❼ storepopfreq: The frequency with which populations are stored. The default value is
1, i.e. every intermediate population is stored.

❼ checkWinner: Logical value indicating whether to re-evaluate the objective function
using the winning parameter vector if this vector remains the same between gener-
ations. This may be useful for the optimization of a noisy objective function. If
checkWinner=TRUE and avWinner=FALSE then the value associated with re-evaluation
of the objective function is used in the next generation. Default to FALSE.

❼ avWinner: Logical value. If checkWinner=TRUE and avWinner=TRUE then the objec-
tive function value associated with the winning member represents the average of all
evaluations of the objective function over the course of the ‘winning streak’ of the best
population member. This option may be useful for optimization of noisy objective
functions, and is interpreted only if checkWinner=TRUE. The default value is TRUE.

The default value of control is the return value of DEoptim.control(), which is a list (and
a member of the S3 class DEoptim.control) with the above elements and specified default
values.

The return value of the DEoptim function is a member of the S3 class DEoptim. Members
of this class have a plot method that accepts the argument plot.type. When retVal is
an object returned by DEoptim, calling plot(retVal, plot.type = "bestmemit") results
in a plot of the parameter values that represent the lowest value of the objective function
each generation. Calling plot(retVal, plot.type = "bestvalit") plots the best value of
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Figure 3: XRR measurements of Pt layers on SiO2 substrate.

the objective function each generation. Calling plot(retVal, plot.type = "storepop")

results in a plot of stored populations (which are only available if these have been saved by
setting the control argument of DEoptim appropriately). A summary method for objects
of S3 class DEoptim also exists, and returns the best parameter vector, the best value of the
objective function, the number of generations optimization ran, and the number of times the
objective function was evaluated.

4. Application I: X-ray reflectometry

X-ray reflectometry (XRR) is a measurement method that uses the interference of X-rays (i.e.,
photons with a wavelength in the approximate range of 0.01 nm–10 nm) caused by changes
in a material’s electron density to characterize thin films or other layered structures at the
nanometer to micrometer scale. The data collected consists of pairs of incident/scattered
angle and scattered X-ray intensities, {(θk, Ik)}, typically over a range of about 5 degrees.
Information regarding the density and thickness of each layer, and on the roughness of the
interface between layers and at the surface of the material is extracted by fitting a parametric
model to the measurements.

In the supplementary information we provide the full description of a model function used
by DEoptim to obtain physically realistic parameter estimates from the data shown in Figure
3. This model is based on the Parratt recursion (Parratt 1954), which, as Als-Nielsen and
McMorrow (2001) describe in detail, is often used to model each of the layers in the multi-
layered materials. For the data here, the Parratt recursion is used to describe reflection and
transmission of X-rays from two thin layers of Pt (with each layer having a possibly distinct
thickness, density, and roughness at the interface) atop an infinitely thick layer of SiO2. A
schematic description of the model for this multilayered material is depicted in Figure 4.

The free parameters of the applied Parratt recursion model are the thicknesses d1 and d2 of
each Pt layer, the density σ1 and σ2 of each Pt layer, terms ρ1, ρ2 and ρ3 descriptive of the
roughness of the interfaces between layers and at the surface, a parameter b describing a linear
background, and a multiplicative scaling parameter m. The model function can be understood
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Figure 4: Schematic description of two layers of Pt on a substrate of SiO2. A Parratt recursion
model representing this structure will be fit to the XRR measurements, with free parameters
including the thickness of the Pt layers (d1 and d1), and terms (ρ1, ρ2, and ρ3) describing the
roughness of the interfaces between layers.
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Figure 5: XRR measurements (black) of Pt layers on SiO2 substrate with model fit (red).
For comparison, the model has also been evaluated at the lower and upper bounds on the
parameters used in the call to DEoptim (solid and dashed grey, respectively).
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qualitatively by considering the the case of a single layer on a substrate. In this case, the
position of the abrupt drop-off in scattered intensity after the initial plateau is determined by
the density of the layer. The period of the subsequent oscillation fringes is set by the thickness
of the layer, whereas the decay of the oscillations is a function of the roughness of the layer.
Because the amplitudes of reflected and transmitted waves interfere, this qualitative view
cannot be extended to multilayered systems and model fitting is a necessity.

The objective function R to minimize is formulated as the sum of the squared differences
between the log of the data and the log of the Parratt recursion model function. The surface of
objective function values in the 9-dimensional parameter space contains many local minima.
Discovery of parameter estimates that represent a qualitatively good fit requires a global
optimization algorithm such as DE. Treatment of global optimization problems such as these
have been successfully addressed for many years in the XRR community using DE as, e.g.,
Wormington, Panaccione, Matney, and Bowen (1999), Taylor, Wall, Loxley, Wormington,
and Lafford (2001), and Bowen and Tanner (2006) describe. Special purpose programs, e.g.,
the GenX program developed by Björck and Andersson (2007) and the MOTOFIT program
developed by Nelson (2006), have been implemented for XRR model fitting problems of this
sort.

The XRR measurements shown in Figure 3 are included in DEoptim as the dataset xrrData,
with the vector of data to be fit represented by the vector counts. We have encoded the
objective function R as the function rss. Using knowledge of the physical system underlying
the measurements in order to set plausible lower and upper bounds on the parameters to
optimize, and to set fixed values for beta, wavelength, and delta, the objective function is
minimized with the call

R> parrattFit <- DEoptim(lower = c(d_1 = 5.5e-10, d_2 = 1.5e-08,

+ rho_1 = 2.1e-10, rho_2 = 5.0e-12, rho_3 = 2.2e-10,

+ alpha_1 = 10, alpha_2 = 10, b = 40, m = .90e7),

+ upper = c(d_1 = 5.5e-09, d_2 = 1.5e-07,

+ rho_1 = 2.1e-09, rho_2 = 5.0e-11, rho_3 = 2.2e-09,

+ alpha_1 = 21.46, alpha_2 = 21.46, b = 55, m = 1.1e7),

+ fn = rss, theta_r = theta_r, delta = delta,

+ beta = beta, wavelength = wavelength, data = counts,

+ control = list(itermax = 1500, NP = 90))

Table 2 gives parameter estimates arrived at via the above call, along with the associated
lower and upper bounds. The resulting fit of the model to the data is shown in Figure 5. The
upper bound for the density of the Pt layers was set at 21.46 g·cm−3, the density of Pt in
bulk. The estimates for the densities (19.6 g·cm−3 and 20.9 g·cm−3) are slightly lower than
for the bulk material. The remaining parameter estimates are also plausible from physical
first principles, though the evaluation of the ability of the model to describe the material
underlying the XRR measurements is beyond the scope of this paper. As shown in Figure
5, the model fit captures the qualitative features of the dataset well. The robustness of the
estimates has been validated via initialization of DE using a variety of starting populations;
the estimates presented in Table 2 reliably represent the best results obtained.

The function rss encoding the objective function can easily be customized to the dataset at
hand, allowing, for instance, inclusion of more or fewer free parameters. Note that in this
example, the population size, NP, was set to 90 since in practice it has been observed that
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d1 d2 ρ1 ρ2 ρ3 σ1 σ2 b m
/ nm / g·cm−3 / counts

lower 0.55 15.0 0.21 0.005 0.22 10.0 10.0 40.0 0.90e7
upper 5.50 150.0 2.10 0.050 2.20 22.0 22.0 55.0 1.20e7
bestmem 1.69 45.6 0.62 0.0053 0.69 20.0 21.0 48.0 1.1e7

Table 2: Parameter estimates (bestmem) and lower and upper bounds associated with the
call to DEoptim that results in the fit of Parratt recursion model to XRR data shown in
Figure 5. Parameters d1 and d2 represent the thickness of the Pt layers, parameters ρ1,
ρ2, ρ3 describe the roughness of the interfaces between layers, and parameters σ1 and σ2

represent the density of the Pt layers. Parameter b represents an additive background term,
and parameter m represents a multiplicative scaling factor for the intensity. Estimates are
reported to two significant figures, except for t1 and t2, which are reported to three.

convergence to the global optimum is facilitated if NP is at least ten times the number of
parameters being optimized (Price et al. 2006).

5. Application II: Log-returns of the Swiss Market Index

In this section, we address in some detail the problem of estimating the parameters of MS-
GARCH models, which are GARCH models subject to structural changes in the parameters.
In the MSGARCH framework, a hidden Markov sequence {st} with discrete state space
{1, . . . ,K} allows discrete changes in the model parameters.

MSGARCH models have received much attention in recent years as they provide an expla-
nation for the high persistence in volatility observed in single-regime GARCH models (see,
e.g., Lamoureux and Lastrapes 1990). Furthermore, these models allow for a sudden change
in the (unconditional) volatility level which may lead to significant improvements in volatility
forecasts (Dueker 1997). These features make the models attractive for various applications
in financial modeling, such as risk management.

While MSGARCH models are attractive for the description of a variety of phenomena, we face
practical difficulties when attempting to fit their parameters to data. The maximization of
the likelihood function is a constrained optimization problem since some (or all) of the model
parameters must be positive to ensure a positive conditional variance. It is also common to
require that the covariance stationarity condition holds; this leads to additional complicated
non-linear inequality constraints which render the optimization procedure cumbersome. Op-
timization results are often sensitive to the choice of starting values. Finally, convergence is
hard to achieve if the true parameter values are close to the boundary of the parameter space
and if the underlying process is nearly non-stationary. For these reasons, a robust optimizer
is required. DE offers an adequate approach to finding the maximum likelihood parameter
estimates in this framework.

In order to illustrate the robustness of DEoptim compared to traditional estimation tech-
niques, we consider the asymmetric MSGARCH model investigated in Ardia (2008, chapter
7). The author illustrated the poor performance of traditional local optimizers when esti-
mating such sophisticated models. Only computationally demanding MCMC techniques were
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able to provide meaningful results.

A K-regime Markov-switching asymmetric GARCH(1,1) model with Student-t innovations
for the log-returns {yt} may be written as

yt = εt

√

ν−2

ν
σst,t t = 1, . . . , T

εt
i.i.d.
∼ S(0, 1, ν)

σ2
i,t = ωi +

(

α+

i 1{yt−1≥0} + α−
i 1{yt−1<0}

)

y2
t−1 + βi σ

2
i,t−1 ,

(2)

where ωi > 0, α+

i , α−
i , βi ≥ 0 (i = 1, . . . ,K) and ν > 2. The restriction on the degrees of

freedom parameter ensures that the conditional variance σ2
i,t remains finite; the restrictions

on the GARCH parameters guarantee its positivity. 1{·} denotes the indicator function which
is equal to one if the constraint holds and zero otherwise. The sequence {st} is assumed to be
a stationary, irreducible Markov process with discrete state space {1, . . . ,K} and transition
matrix P = [pij ] where pij = P(st+1 = j | st = i). Finally, S(0, 1, ν) denotes the standard
Student-t density with ν degrees of freedom and

√

(ν − 2)/ν is a scaling factor which ensures
that the conditional variance is given by σ2

st,t
.

Model specification (2) allows reproduction of the so-called volatility clustering observed in
financial returns, i.e., the fact that large changes tend to be followed by large changes (of either
sign) and small changes tend to be followed by small changes. Moreover, it allows for sudden
changes in the unconditional variance of the process; in the ith regime, the unconditional
variance is

ωi

1 − (α+

i + α−
i )/2 − βi

,

provided that (α+

i + α−
i )/2 + βi < 1 (i.e., the process is covariance stationary). Finally, it

allows determination of whether or not an asymmetric response, referred to as the leverage
effect in the financial literature, is present (i.e., α−

i > α+

i for at least one i) and is different
between the regimes (i.e., α−

i 6= α−
i′ ).

The use of a Student-t instead of a Normal distribution is quite popular in standard single-
regime GARCH literature. For Markov-switching models, a Student-t distribution might be
seen as superfluous since the switching regime can account for large unconditional kurtosis in
the data. However, as empirically observed by Klaassen (2002), allowing for Student-t inno-
vations within regimes can enhance the stability of the states and emphasizes the conditional
variance’s behavior instead of outliers.

To illustrate the utility of DEoptim, we fit a two-regime (K = 2) asymmetric MSGARCH
model to daily log-returns of the Swiss Market Index (SMI). The sample period is from
November 12, 1990, to October 20, 2000, for a total of 2500 observations and the log-returns
are expressed in percent. The data set was downloaded from http://www.finance.yahoo.

com and is available when DEoptim is loaded using the command data(SMI). Note that the
two-regime specification is used for illustrative purposes only; checking for possible model
misspecification is beyond the scope of the present paper.

In addition to the positivity constraints on the model parameters, we require covariance
stationarity to hold in the two regimes, i.e., (α+

i + α−
i )/2 + βi < 1 for i = 1, 2. We also

require the transition probabilities p11 and p22 of the state variable to lie within the [0, 1]
interval. The constraints on the domain are set using the arguments lower and upper of
DEoptim, while the covariance stationarity constraints are tested within the objective function
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Figure 6: SMI daily log-returns.

which then returns Inf if not satisfied. The eleven parameters are regrouped into the vector
θ = (ω1, ω2, α

+
1 , α+

2 , α−
1 .α−

2 , β1, β2, p11, p22, ν) for notational purposes.

In order to find the maximum likelihood estimator θ̂mle we minimize the negative value of
the natural logarithm of the likelihood function (NLL) corresponding to the model (2) with
K = 2. The likelihood function of the MSGARCH model is obtained by applying the filtering
approach of Hamilton (1989). The objective function is implemented in C to speed up the
optimization procedure. DEoptim is run with the default parameters except that we set
itermax = 400 and NP = 110.

For comparison purposes, the objective function is also optimized using various other functions
available in R. More specifically, we use the function optim with all methods available and the
function nlminb, employing the default values of the control parameters of all the methods
(except for optim with method = SANN where we set itermax = 1e5). Estimation results are
reported in Table 3. All methods except DEoptim converged to local minima (various starting
values were used, all leading to local optima); NLL is clearly lower than the value obtained by
DE. Also, notice that the parameter estimates are different between the optimization methods.
In the case optim with method = "L-BFGS-B" the algorithm did not converge (since in this
approach the objective function must return finite values).

The model parameters estimated by DEoptim clearly indicate two different regimes for the
conditional variance process. More precisely, the values of ω̂i and β̂i are far apart between
the regimes. We note the presence of leverage effect in both regimes (i.e., α̂+

i < α̂−
i ), with

similar levels. The unconditional variance of the first regime is 0.554, about four times smaller
than in the second regime; we will therefore refer to regime one as the low-volatility regime
and to regime two as the high-volatility regime. The estimated transition probabilities p̂11

and p̂22 are respectively 0.995 and 0.997 indicating infrequent mixing between states. Finally,
the estimated degrees of freedom parameter suggests heavy tails for the distribution of the
conditional log-returns.

In Figure 7 we display the filtered probabilities of the high-volatility state implied by the model
parameters estimated with DEoptim (in blue), nlminb (in green) and optim with method =

"SANN" (in red) together with the log-returns (in small circles). The parameters obtained with
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Method NLL ω̂1 ω̂2 α̂+

1 α̂+

2 α̂−

1 α̂−

2 β̂1 β̂2 p̂11 p̂22 ν̂

optim
1 3384.0 0.004 0.094 0.024 0.055 0.045 0.421 0.963 0.745 0.366 0.387 5.37

optim
2 3380.6 0.042 0.042 0.041 0.041 0.165 0.165 0.862 0.862 0.500 0.500 8.41

optim
3 3387.7 0.044 0.044 0.046 0.046 0.177 0.177 0.864 0.864 0.500 0.500 5.33

optim
4 n.c. - - - - - - - - - - -

optim
5 3381.1 0.211 0.037 0.205 0.026 0.231 0.184 0.192 0.878 0.916 0.998 5.10

nlminb 3374.3 0.000 0.093 0.024 0.033 0.047 0.301 0.964 0.758 0.297 0.555 9.12

DEoptim 3353.6 0.332 0.190 0.003 0.007 0.275 0.228 0.262 0.786 0.995 0.997 9.40

Table 3: Optimization results of the asymmetric MSGARCH model estimation. NLL: negative
log-likelihood function at optimum. n.c.: non-convergence of the algorithm. optim: output
of the function optim with method: 1"Nelder-Mead", 2"BFGS", 3"CG", 4"L-BFGS-B", 5"SANN"

with control parameter itermax = 1e5. DEoptim: DE optimization with control parameters
NP = 110 and itermax = 400. Starting values for optim and nlminb were set to ω1 = 0.1,
ω2 = 0.1, α+

1 = 0.05, α+
2 = 0.05, α−

1 = 0.05, α−
2 = 0.05, β1 = 0.8, β2 = 0.8, p11 = 0.5,

p22 = 0.5 and ν = 5. Lower boundaries were set to 0.0 (2.0 for ν) and upper boundaries to
1.0 (50 for ν).

DEoptim lead to a clear separation of regimes in the filtering probabilities. The beginning of
year 1991 is associated with the high-volatility state. Then, from the second half of 1991 to
1997, the returns are clearly associated with the low-volatility regime, with the exception of
1994. From 1997 to 2000, the model remains in the high-volatility regime with a transition
during the second semester 2000 to the low-volatility state. On the contrary, the two other
methods do not capture any clear regime separation in the state variable’s behavior.
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Figure 7: Filtered probabilities of the high-volatility state. Estimations obtained by DEoptim

are given in blue, nlminb in green and optim with method = "SANN" in red. Small circles
depict SMI log-returns.

6. Summary and conclusions

Differential evolution is a heuristic evolutionary method for global optimization that is effec-
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tive on many problems of interest in science and technology. By implementing the package
DEoptim we have made this algorithm possible to easily apply in the R language and envi-
ronment. As Section 3 details, we have also made available many variations on the classical
DE strategy. These variations as well as the classical strategy are due to Price, Storn and
Lampinen, and we have referred the interested reader to their textbook (Price et al. 2006) on
DE for details.

We have described herein the use of the package for fitting the Parratt recursion models for
X-ray reflectometry and an MSGARCH model for the log-returns of the Swiss Market Index.
These case studies showcase the power of the DE algorithm underlying DEoptim. We hope
that readers will find the package to be a valuable tool for optimization. Finally, if you use R

or DEoptim, please cite the software in publications.

Computational details

The results in this paper were obtained using R 2.10.0 (R Development Core Team 2009) with
the packages DEoptim version 2.0-4 (Ardia and Mullen 2009). Computations were performed
on a Genuine Intel dual core CPU T2400 1.83Ghz processor and on a quad core Intel Xeon
Processor E5410.

DEoptim relies on repeated evaluation of the objective function in order to move the popula-
tion toward a global minimum. Users interested in making DEoptim run as fast as possible
should ensure that evaluation of the objective function is as efficient as possible. Using pure
R code, this may often be accomplished using vectorization. Writing parts of the objective
function in a lower-level language like C or Fortran may also increase speed.
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