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Abstract 
 

This study shows that in a two-player infinitely repeated game where one is 

patient and the other is impatient, Pareto-superior subgame perfect 

equilibrium can be achieved. An impatient player in this paper is depicted as 

someone who can truly destroy the possibility of attaining any feasible and 

individually rational outcome that is supported in equilibrium in repeated 

games, as asserted by the Folk Theorem. In this scenario, the main 

ingredient for the restoration of equilibrium is to introduce the notion of 

tolerant trigger strategy. Consequently, the use of the typical trigger strategy 

is abandoned since it ceases to be efficient as it only brings automatically 

the game to its punishment path, therefore eliminating the possibility of 

extracting other feasible equilibria. I provide a simple characterization of 

perfect equilibrium payoffs under this scenario and show that cooperative 

outcome can be approximated. 
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1. Introduction 
 

Apart from the inherent need of a credible threat of punishment, a central requirement for 

obtaining a cooperative outcome in repeated games is that players must be sufficiently patient. For 

if such condition is lacking, future payoffs will be valued less which makes it conducive to anyone 

to simply deviate from any long-term contract at the early stage. Even those who supposed to 

reprove a deviant may also find it less attractive to fulfill their duty of punishing if the payoff for 

doing so decreases rapidly over time. Thus, it makes sense why a certain level of patience is 

needed in the Folk Theorem with discounting – which asserts that all feasible and individually 

rational outcomes (i.e. outcomes that are Pareto-superior to the minimax payoff of the initial 

single-stage game) can be supported in equilibrium in an infinitely-repeated game
1
. 

 

When a certain player in a game is impatient, it is easy to see that any cooperative effort is hardly 

sustainable through time for that player wishes only to extract the highest gain the soonest 

possible. Such player does not even have to worry about future punishments since the future is less 

meaningful to him. And so, despite the good intentions others may have in leading the game to 

better results, their knowledge of the presence of the impatient player compels them not to attempt 

for any risky cooperative action from the very start. Thus, the game simply reverts to the unwanted 

equilibrium of the original single-stage game. However, some prospects of obtaining a better 

equilibrium may re-emerge, particularly when a different strategy is adopted during this kind of 

situation. 

 

Imagine a two-player infinitely-repeated game where players have different time preferences or, 

say simply, different temperaments: one is patient (with high discount factor) and the other is 

impatient (with low discount factor). Suppose further that the impatient one is so impatient that 

even the harshest punishment of penalizing him forever, in case he deviates from the typical 

trigger strategy
2
, would not matter to him since he only cares for the current period. He therefore 

cannot be trusted to cooperate since cheating in the first period is always more rewarding to him. 

On the other end, as the patient player is aware of this, she may simply apply at the outset a 

strategy that will minimize her opponent’s maximum payoff (i.e. minimax strategy) thus, 

eliminating any possibility of achieving a cooperative outcome. 

 

One can argue, however, that the end of this game depends so much on how the patient player will 

play the game. Being a patient person, she has the capacity to tolerate the other player initially, 

even at the expense of getting a very low payoff, provided that this gesture makes the other player 

cooperate in the succeeding stages. In this paper, I show that this set-up is possible for as long as 

both players are made better-off than in a situation when no such tolerance is initiated. More 

importantly, it can be shown that this strategy is subgame perfect in the sense that both players are 

deterred from deviating at any time since punishment is self-enforcing at every subgame.    

    

                                                 
1 Aumann & Shapley (1976) and Rubinstein (1979) showed that the equilibrium in the Folk Theorem without 

discounting is subgame perfect. Abreu (1988) and Fudenberg & Maskin (1986) showed later on that this also holds 

when minimal discounting on future payoffs is applied. 
2 The typical trigger strategy referred here is when both players continue to play the cooperative outcome for as long as 

no one has deviated in the past. In case either player deviates, both respond by defecting forever. 
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Lehrer and Pauzner (1999) examined this case of non-homogenous discount factors between two 

players, although they maintained that both remain very patient on the absolute scale. They 

showed that the difference in the discount factors could allow some trade between payoffs of 

players across time which broadens the set of feasible outcomes. This result is supported in this 

paper as certain individually rational equilibria can also be generated outside the typical convex 

hull of the stage-game payoffs using the above set-up. The main difference is that here, we explore 

the case where there exists an absolute impatient player who can single-handedly destroy the 

possibility of supporting a cooperative outcome in equilibrium. It is therefore shown how certain 

tolerant strategies can restore equilibrium and even approximate a cooperative outcome by using 

the disparity in the time preferences of the two players.  

 

Generally, the structure of a tolerant strategy along its (initial) contract path is a deterministic 

sequence of pure-strategy actions. In particular, we study those types that exhibit periodic structure 

over time under a perfect monitoring environment. For example, a patient player may agree to 

tolerate the other for two stages provided that a cooperative play is performed in the next three 

stages, and then tolerate again for the next two stages, and so on. This cyclical set-up works 

continuously ad infinitum for as long as no deviation has occurred in the past. A deviation at any 

time from either player leads the game to its punishment phase that imposes minimax strategies. 

We assume in this paper that such strategies are observable if these can only be implemented 

through mixed-strategy actions.   

 

When a cooperative outcome is not attained, it is true that some correlated strategies between the 

two players could still approximate it despite having a reduced set of equilibrium payoffs caused 

by the impatient player. However, employing tolerant strategies do no less. It can further be shown 

that even in an extreme case of “impatience”, when public randomization can no longer generate 

individually rational equilibrium payoffs under the normal trigger strategy, these tolerant trigger 

strategies can still continue to generate some of these equilibria.  

 

The next section illustrates the main idea of this paper through a concrete example. Section 3 

establishes the environment governing around the problem while sections 4-7 provide a formal 

analysis. Section 8 concludes by discussing some difficulties in generalizing some results. 

 

 

 

2. Example 
 

Consider a Prisoner’s Dilemma game with the following payoffs:  
      

     C                D 

  3,3   0,4 

  4,0   1,1 

 

The minimax point of this game is (1,1) and for 31<δ , an infinitely repeated game cannot obtain 

any equilibrium other than the players’ minimax point, which in this case is also the Nash 

equilibrium. Hence, each player will only settle to receive an average payoff of 1 in the repeated 

game. 

 

C 

D 
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Assume now that the two players have different valuation on time: 311 <δ  and 312 ≥δ . Then, 

suppose that Player 2 offers a strategy wherein she will always play C provided that Player 1 

alternates his actions between D and C, starting with D. Any deviation from this strategy from 

either player prompts both of them to play D forever after. In other words, Player 2 tolerates Player 

1 in stage one (and in all succeeding odd-number stages) and endures receiving 0, which is even 

lower than her minimax payoff.  

 

The rationale behind Player 2’s offer is that if this strategy succeeds, she will receive an average 

income
3
 of )1/(3 22 δδ +  3

2 2( . . 0 3 0 3 ...)i e δ δ+ + + +  which is greater than her average income when 

no such offer is made, provided that 212 >δ . On the part of Player 1, he will accept the offer since 

this strategy promises him an average payoff of  )1/()34( 11 δδ ++ 2 3

1 1 1( . . 4 3 4 3 ...)i e δ δ δ+ + + + , 

which is always a lot more than what he will get when he is not tolerated. 

 

This strategy is a subgame perfect equilibrium and is shown in the following manner:  

 

In this strategy, Player 1 will not think of deviating from playing D in the 1
st
 stage knowing that he 

will be tolerated by Player 2. If he were to think of deviating, it must be in the 2
nd

 stage where he is 

bound to get a lower payoff by reciprocating Player 2’s goodwill. Deviating in the 2
nd

 stage 

therefore becomes irresistible when his average income from the path 2 3

1 1 1
(4, 4 , , , ...)δ δ δ exceeds 

that of simply sticking to the strategy, i.e. 2 3

1 1 1
(4,3 ,4 ,3 , ...)δ δ δ . This condition is presented as:  

   ⎟⎟
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Solving for 1δ , Player 1 will deviate when 26.0
6

321
1 ≈

−
<δ .   

 

For Player 2, deviating in the 1
st
 stage, i.e. playing D, will only bring back the game to its minimax 

point which means that both players ended up playing (D,D) in every stage thereafter. Besides, she 

would not opt to deviate at this stage knowing that her offer will be rewarding in the long run, for 

as long as 212 >δ . The case is different in the 2
nd

 stage where there arises also a temptation for 

her to deviate. This possible deviation is realized when the path 2 3

2 2 2(0, 4 , , , ...)δ δ δ becomes more 

profitable than 3

2 2(0, 3 , 0, 3 , ...)δ δ . That is: 

     
2

2 2
2 2 2 2

2 2

3
(1 ) 4 (1 )

1 1

δ δδ δ δ
δ δ

⎛ ⎞⎛ ⎞
− + > − ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠

  013 2

2

2 <−−⇒ δδ  

Solving for 2δ , Player 2 will deviate when 77.0
6

113
2 ≈

+
<δ . 

 

One can check that the condition for deviating in all subsequent odd-number stages of the repeated 

game is similar to the respective condition each player face during the 1
st
 stage. Similarly, all 

succeeding even-number stages establish the same condition as in the 2
nd

 stage, respective to each 

player (see Lemma 1). Thus, the Nash equilibrium of this infinitely repeated game exists for: 

                                                 
3 Average income is computed in its discounted form over infinite stages as 

tt
t P

1
1)1(

−∞
=∑− δδ , where Pt is the payoff 

at stage t. Note also that the formula 
2 1

1 ... (1 ) / (1 )
n nδ δ δ δ δ−+ + + + = − −  will be extensively used in this paper. 
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      1

21 3 1
,
36

δ −⎡ ⎞
∈ ⎟⎢
⎣ ⎠

  and  2

13 1
, 1

6
δ +⎡ ⎞
∈ ⎟⎢
⎣ ⎠

. 

 

When either player deviates at any stage of the game, the strategy calls for each player a 

punishment path of minimaxing each other thereafter i.e. playing (D,D) from then on. And since 

(D,D) is a Nash equilibrium of the prisoner’s dilemma game, neither player can gain by deviating 

from this punishment path which establishes credibility in rendering punishment
4
. Therefore, the 

set of Nash equilibrium points of this strategy is also a subgame perfect equilibrium. 

 

By inputting all the equilibrium-generating values of 1δ  and  2δ  into the average income of each 

player, we illustrate the set of all possible perfect equilibrium payoffs in Figure 1 by the 

rectangular block. Notice that it is outside the typical feasible and individually rational set of 

payoffs generated in a repeated game with very patient players. 

 
                                        

 

               
 

 

 

3. Framework 
 

Consider an −∞ fold repeated game G ),( PM δδ∞ with two players, M (impatient) and P (patient), 

and their respective discount factors Mδ  and Pδ , where 0 1
M P

δ δ< < < . Write PMPM SSaa ×∈),(  

as a vector of outcomes/actions within the pure strategy space and ( , )
i M P

a aµ :
M P

S S× → \  as 

the continuous payoff function of i, where i= PM , . For convenience, we denote an unsubscripted 

bold symbol as a vector of two players (e.g. ( , )
M P

a a=a ) and denote ~i to refer to the other 

player.  Fix the minimax payoff for each player as ),(maxminˆ
~

~~

iii
SaSa

i aaV
iiii

µ
∈∈

= . For a set of feasible 

                                                 
4 This punishment path is known in the literature as the Cournot-Nash reversion which was employed extensively by 

Friedman (1971). In the example of a prisoner’s dilemma game, the Cournot-Nash punishment inherently coincides 

with the minimax punishment.        

   ( 3, 3 ) 

     (1,1) 

   ( 4, 0 ) 

   ( 0,4 ) 

Player 1 

Player 2

      Figure 1: In the above example, the set of equilibrium payoffs is depicted 

             by  the rectangular block that is outside the typical convex hull.  
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payoffs F, which is also defined as the convex hull of the set { ( , ) ( ) ( , ) ,M P M PV V V V=aµ  for   

some }M P
S S∈ ×a , denote a subset R to be the set of individually rational outcomes i.e. 

{ }ˆ( , ) , for bothM P i iR V V V V i= ∈ >F . Let ),( VV  be some vector payoff not in R, such that 

VVVV ii <<< ˆ  and which we shall be using later on for tolerant strategies. And without loss of 

generality, we set  VVi
ˆˆ =  and the cooperative outcome as RVV cc ∈),( . Finally, we assume that    

G ),( PM δδ∞  is played under a complete information environment.  

 

The game G ),( PM δδ∞ is played throughout a discrete time denoted by { }1, 2,3,...t∈ . Let its 

outcome path be { }
1

( ( ))t

t
t

∞

=
a σ , wherein a strategy )(tiσ  at stage t is chosen from iS  based on the 

history of the game at t-1, i.e.  ii S∈)1(σ  and for t>1, i

t

PMi SSSt →× −1)(:)(σ . This characterizes 

the player’s choice of action ( ( ))t

ia tσ  at stage t as a function of the information gathered from the 

previous t-1 actions. This history is public and is known to both players as each can observe the 

other’s action directly at every stage.  

 

Now, suppose the cooperative payoff cV  cannot be supported by any equilibrium in the repeated 

game, such that M  will always find it profitable to cheat in the first stage even if he has to bear the 

subsequent (minimaxing) punishment forever. That is: 

 

 

   2 2ˆ ˆ... ...c c M c M M MV V V V V Vδ δ δ δ+ + + < + + +   ⇔  
MMc VVV δδ ˆ)1( +−<     

      ⇔  
ˆ
c

M

V V

V V
δ δ −

< =
−

�  

 

 

Knowing that M cannot be trusted to cooperate since Mδ δ< � , P on her part will simply minimax M  

right from the start, inducing him to get only V̂  throughout the repeated game. And if P does not 

minimax M, she herself will be minimaxed by M by virtue of M’s impatience, and so on. Notice 

that this “mutual” minimaxing punishment scheme is enough to make the game always settle at 

)ˆ,ˆ( VV
5
.  The impact of the presence of impatient player on pure-strategy equilibria is drastic since 

once Mδ  moves a little lower than δ� , the Pareto optimal outcome ( , )c cV V  is immediately replaced 

by an inferior equilibrium )ˆ,ˆ( VV . Some individually rational payoffs for M may still be sustained 

in equilibrium despite his low discount factor (i.e. those average payoffs higher than cV ) if actions 

                                                 
5
 In some cases, a binding minimaxing punishment scheme )ˆˆ ,( VV demands that a continuously increasing penalty at 

every succeeding stage is established in order that punishment is surely inflicted to avoid being punished more 

severely in the next stage. This complication on higher-order punishments was resolved by Abreu (1988) by 

introducing a simple punishment strategy that does not depend on the previous sequence of deviations and which can 

be supported in perfect equilibrium. Furthermore, such minimaxing actions may require mixed strategies in general 

and one has to assume that they are observable to obtain the Folk Theorem result. However this assumption is not 

indispensable as argued by Fudenberg and Maskin (1991) since the same result can also be achieved by employing 

over time a cyclical set of alternating pure actions with the appropriate frequency. 
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are made contingent on the result of some public randomization. However, most of them still fail 

particularly those between V̂ and cV , since none these payoffs can do so much in deterring M from 

deviating in the first period. 

 

 

4. Tolerant Strategy  
 

The problem that some individually rational payoffs cannot anymore be sustained in equilibrium 

due to the presence of an impatient player is expected from the Folk Theorem that admits only the 

existence of sufficiently patient agents. This loss of equilibrium points is explained by the fact that 

both players continue to hold on to a trigger strategy that aims for the optimal cooperative outcome 

when it is no longer attainable. Consequently, the strategy ceases to be efficient since it 

automatically leads the game towards its punishment path that immediately penalizes both players 

and only eliminates the possibility of extracting some other feasible gains.  

 

This scenario, however, is changed when the patient player P (with Pδ δ> � 6
) abandons the original 

strategy and concedes to adopt a tolerant trigger strategy. Although this may provide unequal and 

suboptimal yields (for P) in general, the generation of Pareto-superior equilibria is shown to be a 

worthwhile consolation as this can even approximate the cooperative outcome. Formally, a tolerant 

trigger strategy is defined as follows:  

 

Definition 1. A tolerant trigger strategy (TTS) is an action profile { }
1

( ( ))t

t
t

∞

=
a σ  in a repeated 

game G ),( PM δδ∞  which satisfies the following conditions:  

 (i)  there exists a  certain  correlated strategy PMPM SStt ×∈))(),(( σσ  that  generates 

   stage  payoffs ( )t

M cVµ ′ >a  and ˆ( )t

P Vµ ′ <a  at some stages { }1, 2,3,t′∈ … , where 

 : ( ( ), ( ))t t

PM t tσ σ′ ′ ′ ′=a a .   

 (ii) 1

1

ˆ(1 ) ( )t t

P P Pt
Vδ δ µ∞ −

=
− >∑ a .    

 (iii) once a deviation occurs at any time d, a minimaxing punishment ˆ ˆ( , )V V  is played 

   from time 1d +  onwards. 

    

The first condition requires the existence of some stage-payoffs that are lower than the individually 

rational level (which allows the other player to earn higher than the cooperative yields) while the 

second guarantees that the average discounted payoff of the tolerant player over the entire repeated 

game is above the individually rational level. The third is the typical trigger punishment path.  

 

I characterize every TTS profile 1{ ( ( ))}t

i ta t
∞
=σ  as a combination of contract regime which is the 

phase when both players continue to play the game according to what they have initially agreed on 

and a punishment regime that immediately sets in after a breach from the contract regime or from 

the same punishment regime (as will be discussed in section 7) has occurred. At this stage, it 

would be convenient to focus our analysis on infinitely repeated prisoner’s dilemma game 

G ),( PMPD δδ∞  whose punishment regime is stable, being always a Nash equilibrium. This saves us 

from worries about the credibility of punishment and allows us to put more attention on the 

                                                 
6 We simply apply here a strict rather than weak inequality for the purpose of simplifying our results.    
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inherent difficulty that the contract regime of a TTS brings. One can see that unlike in the normal 

trigger strategy, the contract or the initial path of TTS no longer constitutes of playing the same 

action throughout its phase and can even take many different forms. Consequently, the 

continuation strategies at every subgame can differ since payoffs within the contract regime are not 

anymore the same. A simple classification of TTS profiles is presented below where we define 

payoffs during tolerant stages as ( )t

M
Vµ ′ =a and ( )t

P
Vµ ′ =a , where again ˆ

c
V V V V< < < .   

 

Definition 2.   (a) A periodic tolerant trigger strategy ),( ,, 〉〈〉〈 jk

P

jk

M σσ  (or PTTS) is a TTS profile 

that has a contract regime of playing alternately k stages of tolerance with stage payoff 

( )t′
aµ ),( VV=  and then j stages of cooperation with stage payoff  ),( cc VV  over the game 

G ),( PMPD δδ∞ . We write ),( ,, 〉〈〉〈 kj

P

kj

M σσ to denote a PTTS that starts with cooperative stages.  

  (b) A non-periodic tolerant trigger strategy is a TTS profile that starts with either k 

stages of tolerance followed by infinite stages of cooperation or with j stages of cooperation 

followed by tolerant stages thereafter.  

 

As our analysis is confined only on discrete time between stages, we shall set k and j to be finite 

elements of the set of positive integers, +] .  

 

Proposition 1.  For any 
M

δ δ< �  and 1
P

δ <  in  G ),( PMPD δδ∞
, it is impossible to sustain a non-

periodic tolerant trigger strategy in equilibrium. 

 

Proof: 

Suppose it is possible. Then, in any of the following two cases, there exists a scenario when both 

players prefer to stick to the non-periodic TTS than to deviate from it. 

 

Case A: (Tolerance before cooperation) 

Examine M’s behavior. Notice that if M were to deviate, it has to be in the stage of cooperation 

since deviating when he is tolerated will only give him a lower payoff (i.e. VVc< ). Thus, for M to 

remain faithful to the strategy, his payoff must be at least as much as the payoff he gets when he 

deviates at any cooperative stage. 

    ⎟
⎠

⎞
⎜
⎝

⎛
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∞
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−

=
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1

1

1

1)1(
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t
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k

t

t

MM VV δδδ  ⎟⎟
⎠
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⎝

⎛
+++−≥ ∑∑∑

∞

++=

−+
+

+=

−

=

−

2

1

1

1

1

1 ˆ)1(
qkt

t

M

qk

M

qk

kt

t

Mc

k

t

t

MM VVVV δδδδδ ,   

for all { }0,1, 2,...q∈ and k
+∈] , where q is the number of stages of cooperation just before 

defecting.      

 1ˆ)1()1( +++ +−+−≥⇒ qk

MM

qk

M

q

M

k

Mc

k

Mc VVVV δδδδδδ   

 )()ˆ(1

c

qk

M

qk

M VVVV −≥−⇒ +++ δδ  δδ ~

ˆ
=≥⇒

−

−

VV

VV c

M ,   a contradiction. 

Case B: (Cooperation before tolerance) 

Examine P’s behavior. For P to stick to the (non-periodic) tolerant strategy, the payoff must be at 

least as much as the payoff she gets in any possible stage of deviation. Consider the possible 

deviation at the stage when P is about to start tolerating M (i.e at t=j+1 and that no deviation has 

occurred in the past).  We see that the condition not to deviate at this stage, i.e. 
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∞
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−

1

1
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∞
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−

1
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t

PVδ , j
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Remark: 

The proof in case A is general since it considers all of M’s possible deviation in any of the 

cooperative stages, whereas case B picks up only a stage where P’s defection is imminent.  In both 

cases, it is shown that non-periodic TTS breaks down within a given player, independent of the 

other player’s capacity to hold on to the strategy.  

 

In the succeeding subsections, it is presented that perfect equilibrium can be generated under 

PTTS. 

 

(a) Tolerance before cooperation 

 

Definition 3.  In a game G ),( PMPD δδ∞ , any PTTS ),( ,, 〉〈〉〈 jk

P

jk

M σσ  is supported by a subgame perfect 

equilibrium, if for any strategy ii Sd ∈′ )(σ  that differs from strategy 〉〈 jk

i

,σ at time d onwards, 

,k j
+∀ ∈] and },{ PMi∈∀ , we have: 

       1 ,

1
(1 ) ( ( ))t t k j

i i it
δ δ µ∞ − 〈 〉

=
− ≥∑ a σ 1 ,

~1
(1 ) ( ( ( ), ))

d t t k j

i i i i it
dδ δ µ σ σ− 〈 〉

=
′− +∑ a     

                         ),()1( ~

1

1 iii

t

idti ϕϕµδδ −∞

+=∑− , 

 where ),( ~ii ϕϕ  is an action  vector of minimaxing punishment. 

This definition of subgame perfection suffices to hold for prisoner’s dilemma since its minimaxing 

punishment path is always Nash equilibrium. Thus, there is indeed no incentive for players to 

deviate during the punishment regime at any subgame. This leaves us now with the task of 

ensuring only that deviation from the contract path at any stage is never profitable.    

 

However, complexity still arises since continuation payoffs at any time d vary over the infinite 

period and most subgames within the contract regime are no longer identical to the original game. 

Apart from this, the stage payoffs of the two players are non-symmetric which impels us to deal 

with each one’s payoff incentives separately before pinning down the set of perfect equilibrium 

points. 

 

When the PTTS ),( ,, 〉〈〉〈 jk

P

jk

M σσ  is followed consistently over the entire game, the respective 

average discounted payoff to M and P are: 

 

 〉〈Π jk

M
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In order for the strategy ),( ,, 〉〈〉〈 jk

P

jk

M σσ to be sustained in the game G ),( PMPD δδ∞ , 〉〈Π jk

i

,  must be at 

least as much as the average discounted payoff of i for the entire game when he/she decides to 

deviate at some time d 
7
. Although this requires us to identify the condition for the possible 

deviation at each and every stage of the infinite game, the following lemmas (1-3) allow us to 

simplify our investigation. The first limits our investigation from infinite number of stages into just 

the first k+j stages. The second asserts that deviation cannot occur during tolerant stages (k stages) 

while the third shows the monotonic property of payoffs when deviating during the cooperative 

stages (j stages). 

 

Lemma 1. 

The condition not to deviate at the n
th

 stage of a PTTS, where n is an integer from 1 to k+j, is the 

same condition that holds for any n+T(k+j) 
–th

 stage, where T is any positive integer.   

 

Proof: 

Let  jk

ssx +
=>< 1)(  be an arrangement of payoffs for the first jk+  stages with a discounted sum of 

1

)()2()1(, ... −+
+>< +++= jk

jkjk xxxS δδ . When no deviation occurs from the periodic tolerant 

strategy, ( ) 1

k j

s sx +
=< >  is repeated infinitely times and has a discounted sum of 

...)(2

,,, +++ +
><

+
><><

jk

jk

jk

jkjk SSS δδ  . A deviation at n
th

 stage, where jkn +≤ , has a payoff 

profile of 
1

( ) ( ) ( )1 1
ˆ, ,

n

s n ss s n
x x x

− ∞

= = +
, where )(nx  is the payoff from deviating at n and x̂  is the 

subsequent punishment payoff  the deviant receives. Denoting the discounted sum of this deviation 

path as DS , we write the condition for sticking to the strategy at stage n as 

D

jk

jk

jk

jkjk SSSS ≥+++ +
><

+
><>< ...)(2

,,, δδ . 

Now, observe that when deviation occurs at n+(k+j) 
-th

 stage, the discounted sum of the deviation 

path is jk

Djk SS +
>< + δ, ; while at n+2(k+j) 

-th
 stage, it is jk

jkjk SS +
><>< + δ,, + )(2 jk

DS
+δ ; and so on. 

Thus, the condition for not deviating at n+T(k+j) 
-th

  stage, for any positive integer T, is as follows: 
)())(1(

,,,

)(2

,,, ...... jkT

D

jkT

jk

jk

jkjk

jk

jk

jk

jkjk SSSSSSS
++−

><
+

><><
+

><
+

><>< ++++≥+++ δδδδδ . 

 

Cancelling the first T  terms on both sides, we get:       
)())(2(

,

))(1(

,

)(

, ... jkT

D

jkT

jk

jkT

jk

jkT

jk SSSS
+++

><
++

><
+

>< ≥+++ δδδδ . Then, by dividing  both sides by 

)( jkT +δ , we obtain the same condition D

jk

jk

jk

jkjk SSSS ≥+++ +
><

+
><>< ...)(2

,,, δδ .           ■ 

 

Lemma 2.  

Both players will not find it profitable under PTTS to deviate during any stage of tolerance. 

  

Proof:  

By definition, player P’s average payoff in sticking to the strategy is higher than the minimax 

level, V̂ . Clearly, to deviate during any of the prescribed tolerant stages will give her an average 

                                                 
7
 This method of comparing the entire-game yield between the no-deviation and the dth period-deviation case should 

provide same result as when comparing only their continuation payoffs from d, since their average discounted payoff 

before d are the same. I refrain from the typical use of continuation payoffs for computational simplicity.  

T  number of terms



 11

payoff of at most V̂ , that is, 1 1

1 1

ˆ ˆ(1 )   
k

t t

P P P

t t k

V V Vδ δ δ
′ ∞

− −

′= = +

⎛ ⎞
− + ≤⎜ ⎟

⎝ ⎠
∑ ∑ , where k k′≤  is the number of 

tolerant stages conceded before deviating in the next stage. If 0k′ = , then the game reverts to the 

minimax equilibrium where P gets exactlyV̂ . For player M, to deviate at the stage when he is 

tolerated only gives him a lower payoff VVc< . Moreover, the fact that his future stage payoffs are 

reverted to the minimax level after such deviation only deprives him of getting higher average 

income.  ■ 

 

The moment P deviates during one of these tolerant stages, she loses the possibility of getting the 

cooperation of M in the future which could give her greater payoff, enough to even cover her 

losses during those tolerant stages. Similarly, M would not think of deviating during periods of 

tolerance since he is being tolerated to get high returns.  

 

This left us to examine only the possible deviation over the cooperative stages. In particular, we 

seek for the highest payoff one can derive from all these possible deviations during the cooperative 

stages. This is presented formally as follows: 

  

  
{ } ( ), 1

0,1,... 1
1

ˆ(1 ) max ( ), , ,
k

k j t

M M M M c M
q j

t

D V V q V Vδ δ θ δ−

∈ −=

= − +∑  , where  

   )( ⋅Mθ  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++− ∑∑

∞

++=

−+
+

+=

−

2

1

1

1 ˆ)1(
qkt

t

M

qk

M

qk

kt

t

McM VVV δδδδ   

  
{ } ( ), 1

0,1,... 1
1

ˆ(1 ) max ( ), , ,
k

k j t

P P P P c P
r j

t

D V V r V Vδ δ θ δ−

∈ −=

= − +∑  , where 

    )( ⋅Pθ  = ⎟
⎠

⎞
⎜
⎝

⎛
++− ∑∑

∞

++=

−+
+

+=

−

2

1

1

1 ˆ)1(
rkt

t

P

rk

P

rk

kt

t

PcP VVV δδδδ . 

The function ( )iθ ⋅  depicts the average discounted payoff from deviating during the cooperative 

stages while the imbedded parameters q and r are the players’ respective number of stages given to 

cooperation just before deviating from the strategy. Note that when q and r are equal to j, this 

means that deviation occurs at the stage of tolerance which was already ruled out in Lemma 2. 

Lemma 3 allows us to determine the maximum entire-game payoff one can obtain from deviating 

at any time during the cooperative stages.   

    

Lemma 3.  (Monotonicity)  

 (i)  )( ⋅Mθ is monotone decreasing in q. 

 (ii) )( ⋅Pθ  is monotone increasing in r. 

 

Proof:  

(i) )( ⋅Mθ  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++− ∑∑

∞

++=

−+
+

+=

−

2

1

1

1 ˆ)1(
qkt

t

M

qk

M

qk

kt

t

McM VVV δδδδ   

     =  1ˆ)1()1( +++ +−+− qk

MM

qk

M

q

M

k

Mc VVV δδδδδ  =  1)ˆ()( +++ −−−+ qk

M

qk

Mc

k

Mc VVVVV δδδ  

     =  ])ˆ()[( Mc

qk

M

k

Mc VVVVV δδδ −−−+ +    =   ˆ( ) ( )k k q

c M M MV V Vδ δ δ δ++ − −�  
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Both terms in the last right-hand equation are positive. And since 10 << Mδ , qk

M

+δ decreases in 

q and so as )( ⋅Mθ . 

(ii) )( ⋅Pθ  = ⎟
⎠

⎞
⎜
⎝

⎛
++− ∑∑

∞

++=

−+
+

+=

−

2

1

1

1 ˆ)1(
rkt

t

P

rk

P

rk

kt

t

PcP VVV δδδδ   

      = 1ˆ)1()1( +++ +−+− rk

PP

rk

P

r

P

k

Pc VVV δδδδδ   =   ])ˆ()[( Pc

rk

P

k

Pc VVVVV δδδ −−−+ +  

      = ˆ( ) ( )k k r

c P P P
V V Vδ δ δ δ++ − −�  

 Given that δδ ~
1 >> P , the last term is always negative and therefore any increase in r reduces 

the negative value of the last term which increases )( ⋅Pθ . ■ 

 

By Lemma 3, we obtain the highest values of )( ⋅Mθ  and )( ⋅Pθ  when q=0 and r=j-1, respectively, 

hence: 

        

       ( ), 1ˆk j k

M M
D V V V δ += − −    and  ( ) ( ) ( ), 1 ˆk j k k j k j

P c P c P P
D V V V V V V Vδ δ δ+ − += − − + − − − . 

 

Thus, the no-deviation condition for the strategy ),( ,, 〉〈〉〈 jk

P

jk

M σσ , for any ,k j
+∈] , is characterized 

by the inequality 〉〈Π jk

i

, ,k j

i
D≥ , for both i. Consequently, this condition provides a range of values 

of 
M

δ  and 
P

δ  that can support the fidelity of players to a periodic tolerant contract parameterized 

by k and j. Caution however should be made that this does not always lead to an equilibrium since 

some outcomes induced by certain periodic contracts may even fail to be individually rational. 

 

(b) Cooperation before tolerance 

 

An impatient player can also be made to cooperate initially despite having M
δ δ< � , provided that 

the contract ensures that he be tolerated afterwards, in a periodic fashion i.e. ),( ,, 〉〈〉〈 kj

P

kj

M σσ .  An 

immediate question that can arise is how different is this strategy from the previously discussed 

),( ,, 〉〈〉〈 jk

P

jk

M σσ  in characterizing the set of no-deviation outcomes. One can observe immediately 

that their payoff yields are different in the sense that when a PTTS
,,( , )

j kj k

M P
σ σ〈 〉  is followed 

faithfully over the entire game, the respective average discounted payoff to M and P are: 

 

 〉〈Π kj

M

,  = ∑ ∑∑
∞

=Τ

+Τ+

+=

−

=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

0

)(

1

1

1

1)1(
kj

M

kj

jt

t

M

j

t

t

McM VV δδδδ  = V
VV

kj

M

j

Mc +
−

−−
+δ
δ

1

)1()(
  

and      

 〉〈Π kj

P

,  = ∑ ∑∑
∞

=Τ

+Τ
+

+=

−

=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

0

)(

1

1

1

1)1( kj

P

kj

jt

t

P

j

t

t

PcP VV δδδδ    = V
VV

kj

P

j

Pc +
−

−−
+δ
δ

1

)1()(
 

 

Notice that these results are different from the earlier presented values of ,k j

M

〈 〉Π  and ,k j

P

〈 〉Π . 

Interestingly however, the conditions that allow the strategy ),( ,, 〉〈〉〈 kj

P

kj

M σσ to generate no-deviation 

outcomes are the same with the strategy ),( ,, 〉〈〉〈 jk

P

jk

M σσ . In brief, we say that 〉〈Π jk

i

, ,k j

i
D≥ and 

, ,j k j k

i i
D∏ ≥  are identical, as shown in the following proposition. 
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Proposition 2. (Equivalence) For any ,k j
+∈] , the PTTS ),( ,, 〉〈〉〈 jk

P

jk

M σσ  and ),( ,, 〉〈〉〈 kj

P

kj

M σσ  

constitute the same range of values of 
M

δ  and 
P

δ  that can support  the no-deviation condition 

during the contract regime of the repeated game. These values are defined by the following 

conditions: 

 For player M:     
1

j M
M k

M

δ δδ
δ δ +

−
≥

−

�
�      

 For player P:     
( )1

1 k
j k P

P P k

P P

A
δδ δ

δ δ δ
−

−

−
≤ +

− �
, where 0A <   

Proof:   Appendix 

 

From the results of Lemmas 1-3 and Proposition 2, the characterization of the set of perfect 

equilibrium outcomes can now be expressed in the following theorem.   

 

Theorem 1.   In a game G ),( PMPD δδ∞ , where PM δδδ <<
~

 and where δ~  is the minimum level of 

discount factor that can support a cooperative outcome, there exists a (subgame) perfect 

equilibrium characterized by PTTS ),( ,, 〉〈〉〈 jk

P

jk

M σσ and
, ,( , )j k j k

M Pσ σ〈 〉 〈 〉 , where k and j are finite 

elements of +] , 

(a) for all ( , )MMδ δ δ∈ �  and )1,( PP δδ ∈ , where ,
1

M

δδ δ
δ

⎛ ⎞
∈⎜ ⎟+⎝ ⎠

� �
�  and ( ,1)Pδ δ∈ �  and 

(b) with average discounted payoffs of  
〉〈Π jk

M

, , ,j k

M

〈 〉Π ),( VVc∈  and 
〉〈Π jk

P

, , ,j k

P

〈 〉Π ),ˆ( cVV∈ . 

Clearly, by the assertion of Theorem 1(b), the classic Folk Theorem result is not obtained here 

since payoffs between V̂ and cV  are not feasible to M. Nonetheless, the set of perfect equilibrium 

points are well depicted by the range of discount factors that supports them.  

 

Proof:   

 

(a) 

(Step 1) Recall first that any deviation at any stage of a prisoner’s dilemma is responded by a 

minimaxing Nash punishment, making the punishment regime always binding. Thus, one only 

needs to guarantee that there will also be no incentive to deviate during the contract regime. By 

Lemmas 1, 2, and 3, we reduce this condition of no-deviation to ,k j

i

〈 〉Π ,k j

iD≥ . Proposition 2 

shows us that this condition is similar to that of ,j k

i

〈 〉Π ,j k

iD≥  and is brought down to the 

following equilibrium constraints for each player:  

 (1.1) For player M:     
1

j M
M k

M

δ δδ
δ δ +

−
≥

−

�
�      

 (1.2) For player P:     
( )1

1 k
j k P

P P k

P P

A
δδ δ

δ δ δ
−

−

−
≤ +

− �
,  where 

 
0

ˆ
cV V

A
V V

−
= <

−
  

We complete the characterization of perfect equilibrium payoffs by invoking the definition of TTS, 

i.e. 
, ˆk j

P VΠ >  and 
, ˆj k

P VΠ >  (individually rational condition (IRC)). We show later in the proof of 

Theorem 1 (b) that these payoffs above V̂ , along with the requirement (1.2), do certainly exist.  
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Our goal in the next step is to pin down the lowest possible values of 
Mδ  and Pδ  on which perfect 

equilibrium can still be satisfied. A key to this is the result of Lemma 5, presented at the end of the 

proof.  

 

(Step 2.1)  Let  a correspondence ( )( ): 0,
M

δ+ +× → �^ ] ] P
8
 defined by  

       
1

( , ) (0, )  ,  for a given ( , )  and (0,1)j M
M M M k

M

k j k j
δ δδ δ δ δ
δ δ

+ +
+

⎧ ⎫−
= ∈ ≥ ∈ × ∈⎨ ⎬

−⎩ ⎭

�� �^ ] ]� . 

Note that inf ( , )M
k j^  is defined by some 

M
δ  that solves the equality part of (1.1) while 

sup ( , )M
k j^ = δ� . 

(i) Fix  j at oj .Then, as k increases, inf ( , )
M o

k j^  decreases (by Lemma 5(i)), which expands the 

set ( , )
M o

k j^ . Thus, 
M

^  is monotone increasing in k, i.e. ( , )
M o

k j^ ( 1, )
M o

k j⊂ +^ . 

(ii) Fix k at 
o

k . Then, as j increases, inf ( , )
M o

k j^  increases (by Lemma 5(i)) and approachesδ� . 

Thus, M
^  is monotone decreasing in j,  i.e. ( , )

M o
k j^ ( , 1)

M o
k j⊃ +^ . 

From (i) and (ii), 
M

^  is biggest when k →∞  and j=1; hence, we solve from (1.1) that the least 

M
δ ,  i.e. Mδ ,  is 

1

δ
δ+

�
�  . Thus, for any finite ,k j

+∈] ,  ( , ) ,
1

M k j
δ δ
δ

⎛ ⎞
⊆ ⎜ ⎟+⎝ ⎠

� �^ � . 

(iii) Finally, we show that P can likewise admit a profile where j=1 and k →∞  by satisfying (1.2) 

and the IRC. Consider the strategy profile 
1,kσ . Then, k →∞ 1, 1, ˆk k

P P
D V⇒ Π ≥ > , making  (1.2) 

the only binding constraint. We write (1.2) as 
(1 )

1  
( )

k
k j P P
P

P

A
δ δδ
δ δ

+ −
≤ +

− �
 and as k →∞ , this 

implies that 
1,kσ  is supported for as long as 1

P

A
δ
δ

≥ − +
�

. 

(Step 2.2)   Similarly, we set a correspondence ( )( ): ,1
P

δ+ +× → �^ ] ] P  defined by  

    

1

1
( , ) ( ,1)  , where ( , ) , (0,1),and 

ˆ( )

k
j k cP

P P P P k

P P

V V
k j A k j A

V V

δδ δ δ δ δ
δ δ δ

− + +
−

⎧ ⎫−−
= ∈ ≤ + ∈ × ∈ =⎨ ⎬

− −⎩ ⎭
� �^ ] ]� .  

We argue in a similar fashion as above where in this case sup ( , )P
k j^ =1 and inf ( , )

P
k j^ is 

solved by the equality condition of (1.2).  By Lemma 5 (ii), it implies that inf ( , )
P o

k j^  increases 

in k, therefore ( , )P
k j^  is monotone decreasing in k i.e. ( , )

P o
k j^ ( 1, )

P o
k j⊃ +^ . On the other 

hand, ( , )P
k j^  is monotone increasing in j i.e. ( , )

P o
k j^ ( , 1)

P o
k j⊂ +^  since inf ( , )

P o
k j^  

decreases in j. Thus, set ( , )P
k j^ is largest when k=1 and j →∞ (and this can easily pass the IRC, 

e.g. 
,1 ˆj

P
VΠ >  for j →∞ ). By plugging in these values in the equality of (1.2), we obtain the 

lowest 
P

δ  as 
2( 1) ( 1) 4

2
P

A A A

A

δ
δ

+ ± + −
=

�
. Since lim 1P

A
δ

→−∞
=  > 

1
lim P
A

δ δ
→−

= �  > 
0

lim P
A

δ δ
→

= � , this 

                                                 
8 ( )( )0,δ�P  reads as the power set of the interval ( )0,δ� . 
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implies that for any finite ,k j
+∈]  and A<0, ( )( , ) , 1

P
k j δ⊆ �^ . Finally, we show that strategy 

profiles 
,1jσ and 

1, jσ , where j →∞ , are both admissible to player M. Suppose 
M

δ δ→ � , then we 

see that 
2

j M
M

M

δ δδ
δ δ
−

≥
−

�
�  0jδ⇔ ≥�  is satisfied even if j →∞ . 

 

(b)    

Since 〉〈Π jk

M

,  = 
( ) (1 )

1

k

c M
ck j

M

V V
V

δ
δ +

′− −
+

′−
 and 

1
(0,1)

1

k

M

k j

M

δ
δ +

′−
∈

′−
 for any ,k j

+∈] and ( , )MM
δ δ δ′ ∈ � , we 

obtain 〉〈Π jk

M

, ),( VVc∈ . A similar argument also allows us to show that ,j k

M

〈 〉Π ),( VVc∈ . 

For player P with ( ,1)PP
δ δ′ ∈ , the IRC is binding only for some pairs of ,k j

+∈] , such that 

〉〈Π jk

P

, =
( ) (1 ) ˆ

1

k

c P
ck j

P

V V
V V

δ
δ +

′− −
+ >

′−
 ⇔  

1 1
( ) log

log 1 j

P P

k k j
η

δ ηδ
⎛ ⎞ ⎛ ⎞−

< = ⎜ ⎟ ⎜ ⎟′ ′−⎝ ⎠ ⎝ ⎠
 where 

ˆ
(0,1)c

c

V V

V V
η −
= ∈

−
. 

This shows that when ( )k k j< , we have 〉〈Π jk

P

, >V̂  and since 
1

(0,1)
1

k

P

k j

P

δ
δ +

′−
∈

′−
, we clearly have 

〉〈Π jk

P

, ),ˆ( cVV∈ . Similarly, it can be shown that the IRC is satisfied for profile ,j k

P
σ 〈 〉  iff ( )j j k< =  

1
log

log 1 (1 ) k

P P

η
δ η δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′− −⎝ ⎠ ⎝ ⎠

. Thus, when ( )j j k< , we have ,j k

P

〈 〉Π ),ˆ( cVV∈  since
1

(0,1)
1

j

P

j k

P

δ
δ +

′−
∈

′−
. 

■ 

 

Lemma 5. 

The real roots 
M

δ  and 
P

δ  of the equations 
1

j M
M k

M

δ δδ
δ δ +

−
=

−

�
�  and 

( )1

1 k
j k P

P P k

P P

A
δδ δ

δ δ δ
−

−

−
= −

−�
, 

respectively,  that exist and belong to the interval (0,1), behave in the following manner with 

respect to k and j , for any ,k j
+∈] . 

 

  (i)  < 0 M

k

δ∂
∂

and > 0M

j

δ∂
∂

     (ii) > 0 P

k

δ∂
∂

and  < 0 P

j

δ∂
∂

 

 

Proof :  Appendix 

 

 

(c) Sets of perfect equilibrium payoffs 

 

The result in Theorem 1 shows that for any combination of finite number of stages of tolerance (k) 

and cooperation (j), perfect equilibrium payoffs can be achieved for any discount factors between 

the interval ,
1

δδ
δ

⎛ ⎞
⎜ ⎟+⎝ ⎠

��
�  for M and between ( ,1)δ�  for P. Each combination of k and j therefore 

generates a distinct set of possible equilibrium payoffs for both players under the strategies 

),( ,, 〉〈〉〈 jk

P

jk

M σσ  and , ,( , )j k j k

M P
σ σ〈 〉 〈 〉 . Through the results of Lemma 4, we graph some of these sets in 

Figure 2. Note however that for some combinations of k and j, it is possible for P to generate 
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payoffs lower than V̂ and yet satisfies the condition in Proposition 2. These strategy profiles that 

yield such payoffs violate the definition of TTS (individually rational condition) and are therefore 

not equilibrium outcomes. On the other hand, there is no danger for M to fail the individually 

rational condition since its payoff structure is always above 
c

V .     

 

Lemma 4.  For any given ,k j
+∈] , \{1}α +∈] , )

~
,( δδδ MM ∈ ,  and )1,( PP δδ ∈ : 

 (i)   〉〈Π jk

M

,  > ,j k

M

〈 〉Π  

 (ii)  〉〈Π kj

P

,  > 〉〈Π jk

P

,  

 (iii) ,j k

M

〈 〉Π > ,j k

M

α α〈 〉Π  and ,k j

M

〈 〉Π < ,k j

M

α α〈 〉Π   

 (iv) ,j k

P

〈 〉Π > ,j k

P

α〈 〉Π  and 〉〈Π jk

P

, > ,k j

P

α〈 〉Π  

 

Proof :   Appendix 

 

Remark:  

Lemma 4 illustrates well how the use of strategies ,k j〈 〉σ and ,j k〈 〉σ  and the level of k and j affect 

the players average payoffs. The patient player, for instance, obtains higher payoff under the 

strategy ,j k〈 〉σ than in ,k j〈 〉σ  for any given k and j. Moreover, she is always better off when the 

number of tolerant stages (k) is kept as low as possible. 

 

 

 

Player P

Player M

ˆ ˆ( , )V V

( , )V V ( , )V V

( , )V V

( , )c cV V

Player M

Player P

#

#
#

#

#

ˆ( , )cV V ( , )c cV V

2; 2j k= =

1; 1j k= =

1; 2j k= =

3; 2j k= =
4; 2j k= =

2; 1j k= =

3; 1j k= =

1; 2k j= =
1; 3k j= =

1; 1k j= =

2; 3k j= =

2; 1k j= =
2; 2k j= =

ˆ( , )V V

 
 

 

 

 

 

 

 

 

 

Figure 2: Each rectangular block in the figure corresponds to a set of perfect equilibrium 

      payoffs generated by the strategy 
,k j〈 〉σ or 

,j k〈 〉σ . The label 2; 1j k= = ,  for     

      example, signifies that the strategy 
2, 1j k〈 〉= =σ is used. 
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5. Limit Tolerance, Optimal Tolerance, and Cooperative Tolerance   
 

In this section, we study the case where a fixed 
M

δ ′  is set within the range ( , )Mδ δ�  vis-à-vis a 
P

δ  

that is very close to 1. The idea here is to answer the question how long can a very patient player 

tolerate a given impatient person in such a way that they still maintain an equilibrium payoff better 

than what they will receive in a single stage-game. This notion of limit tolerance explores the 

boundary to which PTTS can remain effective and enforceable. Moreover, it is also an interest to 

know how a patient player, in the course of setting offers of tolerance to the other, optimizes her 

returns. Thus, apart from generating superior equlibria, she is also concerned of maximizing her 

average income without making the other defect at any time of the game. Notice however that as 

the patient player tries to increase her payoff towards 
c

V , the other’s payoff sinks towards 
c

V  from 

above. This, in the end, leads us to conjecture the attainability of a cooperative outcome. 

 

Proposition 3.  For a given )
~

,( δδδ MM ∈′  and any 
P

δ  close to 1:  

 

(a) (Limit Tolerance) the maximum level of tolerance P can render to M for any j′ number of 

cooperative stages (regardless of payoffs) , is   

    
ˆ( )

ˆ( )

cV V
k j

V V

∗ ⎛ ⎞−′= ⎜ ⎟⎜ ⎟−⎝ ⎠
] ,  

  where ( )x] is defined as the greatest integer less than x. 

 

 (b) (Optimal Tolerance) player P maximizes her income from a PTTS by offering
∗

j stages of 

cooperation and a 1-stage tolerance, i.e. 
〉〈 ∗

Π=Π 1,max j

PP  , where   

 

     
2

1
log

log

M

M M

j
δ δ

δ δ δ
∗ ⎛ ⎞⎛ ⎞′−
= ⎜ ⎟⎜ ⎟⎜ ⎟′ ′−⎝ ⎠⎝ ⎠

�
] � ,  

  and where ( )x] is the greatest integer less than or equal to x. 

 

(c) (Cooperative Tolerance) the cooperative outcome ( ),
c c

V V can be approximated as 
M

δ δ′ → � . 

 

 

Despite the asymmetric payoffs earned by players through a tolerant strategy profile, cooperative 

outcome can almost be reproduced under certain conditions (i.e. when 
M

δ ′  approaches δ�  and 

when j is set at a high level). This result is appreciated better when we recall that under the usual 

trigger strategy, when 
M

δ ′  becomes just belowδ� , the effect is evident as the once achievable 

cooperative outcome can no longer be supported by pure strategies and the game immediately 

drops to a lower equilibrium ˆ ˆ( , )V V . Hence, in situations when 
M

δ δ′ < � , the PTTS not only can 

offer superior equilibria than the normal trigger strategy, but also can achieve an almost-

cooperative outcome.   
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Proof: 

(a) We are interested in finding { } { }{ },, , ˆsup , for any 
j kj k j k

P P Pk k D V j
∗ + 〈 〉 〈 〉 += ∈ Π ≥ Π > ∈] ∩ ] as 

we consider the profile 
,j k

P
σ . As 1

P
δ → , the condition { },, j kj k

P P
D

〈 〉Π ≥ { }, ˆj k

P
V

〈 〉Π >∩  leads to the 

inequality requirement ,j k

P

〈 〉Π = ( )c

j
V V V

j k
− +

+
 V̂> , for any ,j k

+∈] . Rearranging, we obtain 

ˆ

ˆ
c

V V
k j

V V

⎛ ⎞−
< ⎜ ⎟⎜ ⎟−⎝ ⎠

. In the case of profile
,k j

P
σ , the condition { },, k jk j

P P
D

〈 〉Π ≥ { }, ˆk j

P
VΠ >∩  leads to 

,k j

P

〈 〉Π  = ( )c c

k
V V V

k j
− +

+
 V̂>  as 1

P
δ →  and for any ,j k

+∈] . Rearranging, we get an identical 

result to profile
,j k

P
σ  above.   Thus, k

∗  is the highest integer less than 
ˆ( )

ˆ( )

cV V
j

V V

−
−

, for any j
+∈] . 

And since profiles 
,j k∗σ and 

,k j∗

σ could easily pass the equilibrium requirements for M, we have 

completed the proof for (a). 

 

(b)  By Lemma 4(ii), P receives a higher payoff from the profile 
,j kσ  than from

,k jσ . Moreover, 

for any j, ,j k

P

〈 〉Π  is highest when k=1 by Lemma 4(iv). Now, we apply the condition 

{ },1,1 jj

i iD
〈 〉Π ≥ ∩ { },1 ˆj

i V
〈 〉Π > for both players. For P, we see from (a) that as 1Pδ → , this implies 

that 
ˆ

ˆ
cV V

k j
V V

⎛ ⎞−
< ⎜ ⎟⎜ ⎟−⎝ ⎠

 . Once this is satisfied, any further increase in the number of cooperative 

stages, j, would never induce P to deviate. This is not so, however, for M whose incentive not to 

deviate is given by 
1

j M
M k

M

δ δδ
δ δ +

′−′ ≥
′−

�
� 1

1
log

log

M

k

M M

j
δ δ

δ δ δ +

⎛ ⎞⎛ ⎞′−
⇔ ≤ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′−⎝ ⎠⎝ ⎠

�
� . Thus, for k=1, the highest j 

that could still make M abide is 
2

1
log

log

M

M M

j
δ δ

δ δ δ
∗ ⎛ ⎞⎛ ⎞′−
= ⎜ ⎟⎜ ⎟⎜ ⎟′ ′−⎝ ⎠⎝ ⎠

�
] � , where ( )x]  is the greatest integer 

less than or equal to x . 

 

(c) Since P is never constrained by any increase of the number of cooperative stages for as long as 

ˆ

ˆ
cV V

k j
V V

⎛ ⎞−
< ⎜ ⎟⎜ ⎟−⎝ ⎠

, then we see that ,

1

( ) (1 )
lim

1P

j
j k c P

P cj k

Pj

V V
V V

δ

δ
δ

〈 〉
+→

→∞

− −
Π = + =

−
. On the other end, one can 

also observe that ,lim j k

M
j

〈 〉

→∞
Π  = cV . However, M has to satisfy the condition 

1

j M
M k

M

δ δδ
δ δ +

′−′ ≥
′−

�
�  to 

generate perfect equilibrium points. Observe that even if j →∞ , this condition for M can still be 

satisfied when  Mδ δ′ → �  since 
1

lim 0
M

M

k

M
δ δ

δ δ
δ δ +′ →

′−
=

′−�

�
�  , for any k

+∈] .  ■ 
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6. Equilibrium Restoration 
 

As in the previous discussion, δ�  is defined as the smallest value of Mδ  that can support the 

cooperative outcome cV  in equilibrium under the normal trigger strategy. In fact, as long as 

Mδ δ> � ,  not only cV  but all  MV s  in R and that are above cV  can be sustained in equilibrium when 

there is public randomization. Notice also that each of these MV s has its corresponding threshold 

discount factor that decreases as MV  increases. Now, we define: 

 

      ( )inf (0,1) ,  for all  such that vector ,
ˆ
M

M M

V V
V V R

V V
δ δ δ

⎧ ⎫−
= ∈ = ∈ ⋅ ∈⎨ ⎬

−⎩ ⎭
 

 

Therefore, when M is extremely impatient such that Mδ δ< , there is no more payoff MV  in R (i.e. 

feasible and individually rational) that can achieve equilibrium. This complete loss of equilibrium 

payoffs can nonetheless be restored using PTTS which only manifests its greater efficiency over 

the normal trigger strategy in situations when an impatient player exists.   

 

Theorem 2.  (Equilibrium Restoration) For some Mδ δ<  such that there is no more individually 

rational payoff that can be sustained in equilibrium by the normal trigger strategy, there still exist 

some individually rational equilibria using PTTS. 

 

Proof: 

 

Let MV R
∗ ∈  be the highest average payoff for M that can be sustained in perfect equilibrium using 

the normal trigger strategy with public randomization, if needed. Denote its corresponding 

discount factor threshold as δ , such that for every Mδ δ ε= − , for small 0ε > , there is no more 

MV in R that can be supported in equilibrium by the normal strategy. Pick two pure strategy 

payoffs:  V  being the highest possible and cV  being any pure strategy payoff in R. Consider MV ′  as 

an average payoff generated by a PTTS 
,j kσ , such that ( ),

, , , ,
j k

M M c MV V V k jδ′ = Π . By Theorem 

1(a), we see however that equilibrium for M can still be obtained for all 

2

1

δε
δ

≤
+

�
� .

9
 By Theorem 

1(b), the individually rational condition is satisfied for both players. Thus, P receives 

simultaneously a payoff ( ),  , , , ,j k

P P c PV V V k jδ〈 〉′ = Π  greater than V̂ , for some ,k j
+∈] . And since 

payoff function is continuous in 2\ , the vector ( , )M PV V′ ′  always exists for any Mδ ε δ δ− ≤ <  and 

1Pδ < .  ■ 

 

 

                                                 
9 By Proposition 2, the same result applies for both players if 

,k jσ instead of  
,j kσ  is used. 
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7. Generalization of G ),( PM δδ∞ into any Two-person Game 

 

The main result in this section is presented in the following theorem. 

 

Theorem 3.  The results in Theorem 1 continue to hold for any two-person game G ),( PM δδ∞ . 

 

Theorem 1 restricts the result to prisoner’s dilemma game where punishment regime is intrinsically 

a Nash equilibrium while Theorem 3 generalizes the result to any two-person infinitely repeated 

game. The main feature of the proof of the latter is the typical simple punishment strategy 

proposed by Abreu (1988) that imposes the same punishment for any deviation and which does not 

lead to an escalating hierarchy of punishments as a result of dependence on past deviations. 

Fudenberg and Maskin (1986) used this method in a form of limited punishment which the proof 

of the above theorem tries also to employ. 

 

The use of the minimaxing payoff ˆ ˆ( , )V V  in prisoner’s dilemma simplifies significantly the 

generation of equilibrium. In general, however, employing minimaxing payoff during the 

punishment regime may require mixed or correlated strategies since direct pure-strategy actions 

may not be possible. In this scenario, we simply assume that mixed strategies are observable or 

that there exists a public randomization device that can attain the minimaxing payoff ˆ ˆ( , )M PV V  so 

that any deviation from these strategies can be detected. Unfortunately, the result of Fudenberg and 

Maskin (1991), which shows the possibility of attaining it through a cyclical set of pure-strategy 

actions, cannot be applied here since that result requires all players to be very patient. 

 

Proof:  

Define a punishment regime (ála Fudenberg and Maskin, 1986) where both players play their 

respective minimaxing payoffs ˆ ˆ( , )M PV V  once a deviation occurs. Play this for z number of stages, 

enough to fully remove whatever the deviant has gained, then both move back to the contract path. 

If there is any deviation while in the punishment regime, then restart the punishment regime. 

 

We conclude from Lemmas 1-3 that any deviation could only be made most rewarding for M 

during the very first stage of cooperation, while for P, it is during the last stage of cooperation. 

This means that under a strategy profile ),( ,, 〉〈〉〈 jk

P

jk

M σσ , the punishment regime could independently 

set in on the (k+1)
th

 stage and on the (k+j)
 th

 stage for M and P, respectively. As before, to 

guarantee a no-deviation game scenario, each player’s payoff over the entire game must be at least 

as much as their respective highest (entire-game) deviation payoffs.  Hence, 

 

〉〈Π jk

M

,  =  1 1( ) (1 )
    (1 )

1

k
k kc M

c M Mk j

M

V V
V V

δ δ ϕ δ
δ

+ +
+

− −
+ ≥ − +

−
,                            (3.1) 

  where ,ˆ(1 )z z k j

M M M M MVϕ δ δ < >= − + Π  

 

〉〈Π jk

P

,  = ( ) ( ) 1( ) (1 )
   

1

k
k k j k jc P

c c P P c P P Pk j

P

V V
V V V V V V V

δ δ δ δ ϕ δ
δ

+ − +
+

− −
+ ≥ + − + − − +

−
,            (3.2) 

  where ,ˆ(1 )z z k j

P P P P PVϕ δ δ < >= − + Π  
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In case a deviation occurs, Mϕ  and Pϕ  will be the respective discounted average payoffs of the 

two players during punishment regime, as computed based on the mechanics described in the first 

paragraph of this proof. Notice that whenever a player deviates during this regime, z increases 

since punishment regime starts again. And since both Mϕ  and Pϕ  decline continuously as z 

increases, both players will find no gain from deviating (or from not punishing) at this phase, thus, 

making the punishment regime binding.  

 

By the minimum level of z that satisfies equations (3.1) and (3.2), we are assured that any gain 

from a one-shot deviation is neutralized and therefore not worth taking in the end. Now, think of a 

largest one-shot deviation that requires an almost infinite number of stages, z, to wipe out the gain 

that the deviant has obtained. This pushes down Mϕ  and Pϕ  to their respective limit value of  MV̂  

and PV̂  (i.e. since ˆlim i i
z

Vϕ
→∞

= ). By substituting MV̂  and PV̂  respectively to equations (3.1) and (3.2), 

we reached the same no-deviation conditions given in Proposition 2 and can show subsequently 

the similar conditions, as in Theorem 1(b), that generate individually rational outcomes.  And since 

this result analogously applies to profile , ,( , )j k j k

M Pσ σ〈 〉 〈 〉 , we have completed the proof.  ■ 

 

 

8. Final Remarks  
 

The PTTS presented here are not the only types of TTS that are sustainable in perfect equilibrium. 

Other tractable forms of TTS, though maybe quite complex in structure, may still prove to generate 

sets of equilibrium payoff (an escalating contract path ( , , , , , , , , , , , ,...)c c c c c cV V V V V V V V V V V V  is one 

example). Moreover, even within the realm of cyclical TTS, certain structures that are different 

from the presented PTTS may also generate sets of equilibrium payoffs. The problem, however, is 

that some of them may not have a monotonic property (as in Lemma 3) which makes it difficult to 

characterize the timing of the highest-yielding possible deviation. Consider the strategy profile 

with a recurrent contract structure ( ), , , , , , , ,c c c cV V V V V V V V V . For some values of Mδ  and Pδ , it is 

possible for M to have its highest temptation on the 5
th

 period (instead of 3
rd

) while for P on the 6
th

 

period (instead of 9
th

). Therefore, when one is presented with a long unsystematic contract path 

that is infinitely repeated, the greatest possible temptation to deviate may lie somewhere in the 

middle of the contract regime which would be laborious to characterize. In the end, our treatment 

of equilibrium outcomes for TTS in this paper is not exhaustive and is limited only to simple 

periodic strategies.  

 

Furthermore, our study is confined only to two-player games. It would still be possible to find 

equilibrium payoffs in an n-player case, provided that a periodic contract that exhibits monotonic 

payoff streams is adopted (although not the only means). However, the characterization of perfect 

equilibria may prove to be elusive as it may require a more sophisticated punishment system when 

there is more than one impatient player in a game. In this scenario, it seeks to determine how the 

number of impatient players influence the equilibrium outcomes of an n-player game, given the 

players’ varying discount factors. We leave these questions at this moment open for further 

research. 
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Appendix: 
 

Proposition 2: (Equivalence) For any ,k j
+∈] , the PTTS ),( ,, 〉〈〉〈 jk

P

jk

M σσ  and ),( ,, 〉〈〉〈 kj

P

kj

M σσ  

constitute the same range of values of Mδ  and Pδ  that can support  the no-deviation condition 

during the contract regime of the repeated game. These values are defined by the following 

conditions: 

 For player M:     
1

j M
M k

M

δ δδ
δ δ +

−
≥

−

�
�      

 For player P:     
( )1

1 k
j k P

P P k

P P

A
δδ δ

δ δ δ
−

−

−
≤ +

− �
, where 0A <   

 

Proof: We prove this directly by showing that the simplified form of 
, ,k j k j

i iD∏ ≥  and 

, ,j k j k

i iD∏ ≥  are the same for each i. 

 

(A)  
, ,k j k j

i iD∏ ≥ : 

      a1)   For player M :  

 ,k j

M

〈 〉Π  = ( ) 1( ) (1 ) ˆ  
1

k
kc M

c Mk j

M

V V
V V V V

δ δ
δ

+
+

− −
+ ≥ − −

−
 = 

,k j

MD     

           
1

( ) (1 )
 1

ˆ( ) ( )

k
k jc M
Mk

c M

V V

V V V V

δ δ
δ

+
+

− −
⇒ ≥ −

− − −
(The denominator is always positive 

      since 1( )

ˆ( )

kc
M

V V

V V
δ δ +−

= >
−

�  and so the sign “≥ ” is maintained ) 

           
1

(1 )
 1

( )

k
k j M
M k

M

δ δδ
δ δ

+
+

−
⇒ ≥ −

−

�
�    

1
 j M

M k

M

δ δδ
δ δ +

−
⇒ ≥

−

�
� . 

      a2)  For player P :  

,k j

P

〈 〉Π  = ( ) ( ) ( )1( ) (1 ) ˆ  
1

k
k k j k jc P

c c P c P Pk j

P

V V
V V V V V V V V

δ δ δ δ
δ

+ − +
+

− −
+ ≥ − − + − − −

−
 =   

,k j

P
D    

          ( )( ) ( ) ( )1( ) (1 ) ˆ 1
1

k
k k j k jc P

c P c P Pk j

P

V V
V V V V V V

δ δ δ δ
δ

+ − +
+

− −
⇒ ≥ − − + − − −

−
 

          1( ) (1 ) ( )
 (1 )

ˆ ˆ( )(1 ) ( )

k
k k j k jc P c
P P Pk j

P

V V V V

V V V V

δ δ δδ δ
δ

+ − +
+

− − −
⇒ ≥ − + −

− − −
�  

          
( ) (1 ) ( )

 
ˆ( )(1 )

k

c P P

k j
PP

V V

V V

δ δ δ
δδ +

− − −
⇒ ≥

− −

�
 

( ) (1 )
1  

ˆ ( )( )

k
k j c P P
P

P

V V

V V

δ δδ
δ δ

+ − −
⇒ ≤ +

−− �  

          
( )1

1 k
j k P

P P k

P P

A
δδ δ

δ δ δ
−

−

−
⇒ ≤ +

− �
, where 

 
0

ˆ
c

V V
A

V V

−
= <

−
 

(B)  
, ,j k j k

i i
D∏ ≥ : 

First, we note that in a no-deviation scenario, the strategy 
,,( , )

j kj k

M P
σ σ〈 〉  yields:  
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 〉〈Π kj

M

,  =  V
VV

kj

M

j

Mc +
−

−−
+δ
δ

1

)1()(
 and 〉〈Π kj

P

,  =  V
VV

kj

P

j

Pc +
−

−−
+δ
δ

1

)1()(
. 

Then, we write as follows the discounted payoff over the entire game of a one-shot deviation 

scenario. We note, from the analogue of  Lemma 2 that starts with cooperation, that it is never 

profitable to deviate during the stages of tolerance, thus, 

 
, 1 1

1 2

ˆ(1 )
q

j k t q t

M M c M M M

t t q

D V V Vδ δ δ δ
∞

− −

= = +

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
∑ ∑  and 

 
, 1 1

1 2

ˆ(1 )
r

j k t r t

P P c P P P

t t r

D V V Vδ δ δ δ
∞

− −

= = +

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
∑ ∑ ,  

where q and r are again the numbers of stages given to cooperation by M and P, respectively, just 

before defecting in the next stage. From Lemma 3, observe that 
,

( )
j k

i i
D θ= ⋅ when k is set to 0, for 

both i. This shows that 
,j k

i
D  is also monotonic in q and r, in a same manner specified in Lemma 

3, thus:  

 

      (b1)   For player M, the highest deviation payoff occurs when q = 0: 

 〉〈Π kj

M

,  =  V
VV

kj

M

j

Mc +
−

−−
+δ
δ

1

)1()(
   ˆ(1 )

M M
V Vδ δ≥ − +   =  

,j k

M
D  

            (1 ) (1 )j k j

M M M
δ δ δ δ +⇒ − ≤ −� 1k j j

M M M
δ δ δ δδ+ +⇒ ≤ − +� �  

                       1( )j k

M M M
δ δ δ δ δ+⇒ − ≤ −� �     

1

j M
M k

M

δ δδ
δ δ +

−
⇒ ≥

−

�
�  . 

      (b2)   For player P, the highest deviation payoff occurs when r = j-1: 

 ,j k

P

〈 〉Π   =  V
VV

kj

P

j

Pc +
−

−−
+δ
δ

1

)1()(
   1 ˆ( ) ( )j j

c c P P
V V V V Vδ δ−≥ + − − −   = 

,j k

P
D  

            1 ˆ( )(1 ) ( ) ( ) ( ) (1 )j j j j k

c P c c P P P
V V V V V V V Vδ δ δ δ− +⎡ ⎤⇒ − − ≥ − + − − − −⎣ ⎦  

            1 ˆ( )( 1) ( )(1 )j k j j k

P c P P c P P P
V V V V V Vδ δ δ δ δ δ− +⇒ − − ≥ − − + −  

            
( )

(1 ) ( )( 1)
ˆ( )

k j kc
P P P P

V V

V V
δ δ δ δ δ +−

⇒ − ≥ − −
−

�   
(1 )

1
( )

k
j k P

P P

P

A
δδ δ

δ δ
+ −

⇒ ≤ +
− �

.      

            
( )1

1 k
j k P

P P k

P P

A
δδ δ

δ δ δ
−

−

−
⇒ ≤ +

− �
, where 0A < . 

Comparing the results of (a1) with (b1) and (a2) with (b2), we conclude that the conditions 
,j k

i

〈 〉Π ,j k

iD≥  and ,k j

i

〈 〉Π ,k j

iD≥ constitute the same range of values for Mδ  and Pδ  for every 

given k and j.   ■ 

 

Lemma 4: For any given ,k j
+∈] , \{1}α +∈] , )

~
,( δδδ MM ∈ ,  and )1,( PP δδ ∈ : 

 (i)   〉〈Π jk

M

,  > ,j k

M

〈 〉Π  

 (ii)  〉〈Π kj

P

,  > 〉〈Π jk

P

,  

 (iii) ,j k

M

〈 〉Π > ,j k

M

α α〈 〉Π  and ,k j

M

〈 〉Π < ,k j

M

α α〈 〉Π   

 (iv) ,j k

P

〈 〉Π > ,j k

P

α〈 〉Π  and 〉〈Π jk

P

, > ,k j

P

α〈 〉Π  



 25

Proof: 

(i)  Suppose −Π 〉〈 jk

M

, 0, ≤Π 〉〈 kj

M . Then, −+
−

−−
+ cjk

M

k

Mc V
VV

δ
δ

1

)1()(
0

1

)1()(
≤−

−
−−
+ V

VV
kj

M

j

Mc

δ
δ

. 

     01
1

1

1

1
)( ≤⎥

⎦

⎤
⎢
⎣

⎡
−

−
−

+
−
−

−⇒ ++ jk

M

j

M

jk

M

k

M

cVV
δ
δ

δ
δ

( )(1 )(1 ) 0j k

c M MV V δ δ⇒ − − − ≤ .  

Since 0>− cVV  and that , (0,1)k j

M Mδ δ ∈  for any finite ,k j
+∈] , the above inequality is a 

contradiction, thus −Π 〉〈 jk

M

, 0, >Π 〉〈 kj

M .   

(ii) Suppose −Π 〉〈 kj

P

, 0, ≤Π 〉〈 jk

P .Then, −+
−

−−
+ V

VV
kj

P

j

Pc

δ
δ

1

)1()(
0

1

)1()(
≤−

−
−−
+ cjk

P

k

Pc V
VV

δ
δ

. 

      01
1

1

1

1
)( ≤⎥

⎦

⎤
⎢
⎣

⎡
−

−
−

+
−
−

−⇒ ++ kj

P

k

P

kj

P

j

P

c VV
δ
δ

δ
δ

  ( )(1 )(1 ) 0k j

c P PV V δ δ⇒ − − − ≤ .  

Since VVc >  and with the similar argument as (i) above, we have a contradiction. Therefore, 

−Π 〉〈 kj

P

,  0, >Π 〉〈 jk

P . 

(iii)  Suppose ,j k

M

〈 〉Π  ,j k

M

α α〈 〉≤ Π . Then, we have: 

        ,j k

M

〈 〉Π =
( ) (1 )

1

j

c M

j k

M

V V
V

δ
δ +

− −
+

−
 

( )

( ) (1 )

1

j

c M

j k

M

V V
V

α

α

δ
δ +

− −
≤ +

−
 = ,j k

M

α α〈 〉Π  

        
(1 )

(1 )

j

M

j k

M

δ
δ +

−
⇒

−
 

( )

(1 )

(1 )

j

M

j k

M

α

α

δ
δ +

−
≥

−
since 0cV V− <   

        
2( ) ( 1)( )(1 )(1 )

(1 )

j k j k j k j k

M M M M

j k

M

αδ δ δ δ
δ

+ + + − +

+

− + + + +
⇒

−
…

 
2 ( 1)(1 )(1 )

(1 )

j j j j

M M M M

j

M

αδ δ δ δ
δ

−− + + + +
≥

−
…

 

        2 2 ( 1) ( 1)(1 ) (1 ) (1 ) 0j k j k j k

M M M M M M

α αδ δ δ δ δ δ− −⇒ − + − + + − ≤… , which is a contradiction since all 

 terms are positive for ( )0,1Mδ ∈ , ,k j
+∈] , and \{1}α +∈] . Hence, ,j k

M

〈 〉Π > ,j k

M

α α〈 〉Π . 

         Similarly, suppose ,k j

M

〈 〉Π  ,k j

M

α α〈 〉≥ Π . Then,  

         ,k j

M

〈 〉Π =
( ) (1 )

1

k

c M
ck j

M

V V
V

δ
δ +

− −
+

−
 

( )

( ) (1 )

1

k

c M
ck j

M

V V
V

α

α

δ
δ +

− −
≥ +

−
 = ,k j

M

α α〈 〉Π  

         
2( ) ( 1)( )(1 )(1 )

(1 )

k j k j k j k j

M M M M

k j

M

αδ δ δ δ
δ

+ + + − +

+

− + + + +
⇒

−
…

  
2 ( 1)(1 )(1 )

(1 )

k k k k

M M M M

k

M

αδ δ δ δ
δ

−− + + + +
≥

−
…

 

         2 2 ( 1) ( 1)(1 ) (1 ) (1 ) 0k j k j k j

M M M M M M

α αδ δ δ δ δ δ− −⇒ − + − + + − ≤… , also a contradiction. 

(iv)  Suppose ,j k

P

α〈 〉Π  ,j k

P

〈 〉≥ Π . Then ,j k

P

α〈 〉Π =
( ) (1 )

1

j

c P

j k

P

V V
Vα

δ
δ +

− −
+

−
( ) (1 )

1

j

c P

j k

P

V V
V

δ
δ +

− −
≥ +

−
 

        
1 1

(1 ) (1 )j k j k

P P

αδ δ+ +⇒ ≥
− −

j k j k

P P

αδ δ+ +⇒ ≥ , a contradiction for all ( )0,1Pδ ∈ , ,k j
+∈] , and        

        \{1}α +∈] . Hence, ,j k

P

α〈 〉Π < ,j k

P

〈 〉Π . 

        Suppose ,k j

P

α〈 〉Π  ,k j

P

〈 〉≥ Π . Then, ,k j

P

α〈 〉Π =
( ) (1 )

1

k

c P
ck j

P

V V
V

α

α

δ
δ +

− −
+

−
( ) (1 )

1

k

c P
ck j

P

V V
V

δ
δ +

− −
≥ +

−
 

         (1 )(1 ) (1 )(1 )k k j k j k

P P P P

α αδ δ δ δ+ +⇒ − − ≤ − − ,  since 0cV V− <  

         (1 )( ) 0j k k

P P P

αδ δ δ⇒ − − ≤ , which is not true for any ( )0,1Pδ ∈ and \{1}α +∈] . ■ 
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Lemma 5:  

The real roots Mδ  and Pδ  of the equations 
1

j M
M k

M

δ δδ
δ δ +

−
=

−

�
�  and 

( )1

1 k
j k P

P P k

P P

A
δδ δ

δ δ δ
−

−

−
= −

−�
, 

respectively,  that exist and belong to the interval (0,1), behave in the following manner with 

respect to k and j , for any ,k j
+∈] . 

 

  (i)  < 0 M

k

δ∂
∂

and > 0M

j

δ∂
∂

     (ii) > 0 P

k

δ∂
∂

and  < 0 P

j

δ∂
∂

 

Proof: 

(i) Let the first equation be redefined as an implicit function ( )
1

, , :
1

k j

M M
M j

M

F k j
δ δδ δ

δ

+ +−
= =

−
� . Then,       

     = M

M

F
k

Fk

δ

δ

∂∂ ∂−
∂∂

∂
 and = M

M

F
j

Fj

δ

δ

∂
∂ ∂−

∂∂
∂

, where 0
M

F

δ
∂

≠
∂

 for any (0,1)Mδ ∈  and ,k j
+∈] . 

By differentiating,  

    
2

(1 )(1 ( 1) ) (1 )

(1 )

j k j k j j

M M M M

j

M M

k j jF δ δ δ δ
δ δ

+ +− − + + + −∂
=

∂ −
=

2

( 1)( 1) ( 1) 1

(1 )

k j j j

M M M

j

M

k j jδ δ δ

δ

+ ⎡ ⎤+ − − + − +⎣ ⎦
−

  

We start by setting k=j=1 which gives us,  
3 2

2

2 3 1
0

(1 )

M M

M M

F δ δ
δ δ

− +∂
= >

∂ −
, for any (0,1)Mδ ∈ . We 

show that the numerator, denoted as z, further increases away from zero when either k or j 

increases. First, ( )( 1) ln ( 1)(1 )k j j j

M M M M
z k j

k
δ δ δ δ+∂ ⎡ ⎤= − − + − +⎣ ⎦∂ . For this expression to be 

positive, it must be that:  

  ( )( 1) ( 1)(1 ) lnj j

M M Mk jδ δ δ− > + − +  
1

( 1)
ln (1 )j

M M

j
k

δ δ
−

⇔ < + +
−

.  

Note that ln 0,  (0,1)M Mδ δ< ∀ ∈ , and that the right hand side is least when k=j=1, i.e. 

1 1
2

ln (1 )M Mδ δ
−

< +
−

, which is always true for all (0,1)Mδ ∈ . Thus, increasing k only increases the 

right hand side, making 0z
k

∂ >∂ . Next, we show that 0z
j

∂ >∂ . Observe that 

 ( 1)( 1) ( 1) 1k j j j

M M Mz k j jδ δ δ+ ⎡ ⎤= + − − + − +⎣ ⎦  > ( 1)( 1) ( 1) 1k j j k j

M M Mk j jδ δ δ+ +⎡ ⎤+ − − + − +⎣ ⎦   

                >  ( 1)( 1) 1 1k j j

M Mkδ δ+ ⎡ ⎤+ − − +⎣ ⎦   > 0  when  k=j=1, (0,1)Mδ∀ ∈ . 

Although the first term is always negative, it approaches zero as j increases. Thus, 0z >  for any 

,k j
+∈] and (0,1)Mδ ∈ , which implies that 0

M

F
δ

∂ >∂ . 
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Now, since ln 0,  (0,1)M Mδ δ< ∀ ∈ , we see that 
1 ln

0
1

k j

M M

j

M

F
k

δ δ
δ

+ +−∂ = >∂ −
 and F

j
∂

∂  

( )
( )

1

2

1 ln
0

1

j k

M M M

j

M

δ δ δ

δ

+ −
= <

−
, for any ,k j

+∈] and (0,1)Mδ ∈ . Following the formula above, we obtain 

0M

k

δ∂
<

∂
and > 0M

j

δ∂
∂

 .  

(ii) Let the second equation be redefined as an implicit function ( ), , :PG k j δ =  

( )
( )

1
1

1

k

P

P k j

P

A δ
δ δ

δ +

⎛ ⎞−
⎜ ⎟+ =
⎜ ⎟−⎝ ⎠

� . Then,
2

ˆ
1

(1 )k j

P P

G Az

δ δ +

∂
= +

∂ −
, ( )( ) ( )ˆ 1 1 ( 1) ( ) 1k j k k k j

P P P Pz k k jδ δ δ δ+ += − − + + + − . 

We will show that 0
P

G

δ
∂

>
∂

 for any ,k j
+∈] . First, observe that: 

  2ˆ 1 ( 1) ( 1) ( 1)k k j k j

P P Pz k k j jδ δ δ+ += − + + + − − −  1 ( 1)k j k

P Pk kδ δ+> + − +  

      ( )1 ( 1)k j

P Pk kδ δ= + − +  >  0  for k=j=1. 

 As k increases, ẑ remains positive and approaches 1; while as j increases, ˆ 0z >  for as long as 
1/

1

1

k

P
k

δ ⎛ ⎞< ⎜ ⎟+⎝ ⎠
, otherwise if ˆ 0z ≤ , we are done with 0

P

G
δ

∂ >∂  since A is negative. Thus, when 

ˆ 0z > , 0
P

G
δ

∂ >∂  iff 
2(1 )

ˆ

k j

PA
z

δ +−
≥ − . To determine the least lower bound of A, see that (a) as 

k →∞  for any j , 1A≥ − ; (b) as j →∞ , the bound is least when k=1,  i.e. 
1

1 2 P

A
δ

≥ −
−

;  and (c) 

for k=j=1, 2(1 )PA δ≥ − + . By (b), A →−∞  as (1/ 2)Pδ −→  and so 0
P

G
δ

∂ >∂  for any  

,k j
+∈]  and for 0A< . Next, we see that 

1

2

( 1) ln
0

(1 )

k j

P P P

k j

P

AG
k

δ δ δ
δ

+

+

−∂ = <∂ −
 and G

j
∂ =∂  

1

2

(1 ) ln
0

(1 )

k j k

P P P

k j

P

Aδ δ δ
δ

+ +

+

−
>

−
 for all (0,1)Pδ ∈  and ,k j

+∈] . Hence, from the analogous formula in 

(i), we have > 0 P

k
δ∂

∂ and < 0 P

j
δ∂

∂ .   ■ 

 

 

 

 


