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Abstract 

This thesis tries to explore the profitability of the dispersion trading strategies. We 

begin examining the different methods proposed to price variance swaps.  We have 

developed a model that explains why the dispersion trading arises and what the main 

drivers are. After a description of our model, we implement a dispersion trading in the 

EuroStoxx 50. We analyze the profile of a systematic short strategy of a variance swap 

on this index while being long the constituents. We show that there is sense in selling 

correlation on short-term. We also discuss the timing of the strategy and future 

developments and improvements. 
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1 Introduction

Traditionally, investors have tried to maximize returns by taking directional
positions1 of equities, �xed income securities and currencies based on their vi-
sion on future return. However the rapid development of derivatives markets
brings about new investment opportunities. With the help of these deriva-
tives investors can obtain exposure to Gamma or Vega of underlying security.
So instead of (or in addition to) just taking directional positions based on
predictions of underlying prices, investor with foresight of volatilities might
also add value to their portfolio by engaging in option positions in a delta
neutral way. Under this view, the volatility itself, as the correlation, have
become in tradable assets in the �nancial markets.
There are several means of getting exposure to volatility. One way is

trading options. However we are interested in volatility (or correlation as
we will discuss below) exposure rather than stock price exposure. It is well-
known that trading stock options produces exposure to both the volatility
movement but also to the price. Di¤erent authors has showed that the price
of the stock in equities does not follow a lognormal distribution and that
the volatility of the stock is not constant. Therefore problems with hedging
emerge if we use Black-Scholes market assumptions (volatility is constant, no
transaction costs, no jumps in the asset dynamics, no liquidity problems, the
stocks can be traded continuously and we have an in�nite number of di¤erent
strikes). Moreover, the high transaction cost due to dynamic hedging is the
major shortcoming for such a strategy. New �nancial products more adapted
to the preferences of the market participants have emerged in the last years
in order to set up successful strategies to gain pure exposure to volatility:
Variance Swap, Variance (Volatility) Forward (Future), Forward Variance
Swap and Option on volatility. Among them Variance (Volatility) Swaps are
the most heavily traded kind and hence most interesting to study2.
Variance swaps are forward contracts on the future realized variance. Its

payo¤ is the di¤erence between the subsequent realized variance and the �xed
variance swap rate, which can be implied from option prices as the market�s
risk neutral expectation on future variance. Therefore, by logging in these
contracts, investors do not bet on future return, they will bene�t if they have
a good view or intuition on the di¤erence between the future variance and

1A directional position try to take into account the view of the investor on the under-
lying asset. For example, if the investor thinks the future price of the stock will increase
he will buy the stock today. If his view is that the price will decrease, he will sell the stock
today. A more sophisticated strategy should be use options with the stock as underlying
asset.

2Mainly because the pricing and hedging can be done with calls and puts options.
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the current variance swap rate.
Some authors have discussed that the spread between the index implied

volatility and the realized volatility have been in average positive and it has
exceeded the subsequent realized spread for single stocks. Carr and Wu3

showed that the variance risk premium is much more signi�cant for equity
indices than for individual stocks suggesting that correlation risk could be
the reason. As a result of this higher variance risk premium for equity
indices, it is tempted to systematically short variance swap on equity indices
rather than on individual stocks. The way to implement this view is known
as dispersion trading strategy (correlation trading or volatility trading are
also common names in the market for this type of strategy). The name of the
strategy (dispersion trading) emerges as an attempt to capture the essence
of the trading: how the constituents of a basket disperse themselves around
a level that is set by the investor.
In this paper we implement the dispersion strategy and we show that the

systematically short of correlation has positive average returns. However,
the distribution function exhibits highly negative skew of return due to large
losses happening during crashes environments4. Moreover, we show that the
weights of the elements in the portfolio created will be crucial in order to
get higher returns with the strategy implemented. We also conclude that
dispersion trading implemented with variance swaps has sense as a position
risk management tool rather than a pro�t generator in lower volatility envi-
ronments.
This paper is organized in four parts: Part I is a survey of the volatil-

ity models, dispersion trading basis as well as a simple model to explain
the drivers and the intuition behind the trading. Part II reviews the di¤er-
ent methods proposed to trade volatility as well the pricing and replication
strategies for the variance swaps. Part III shows the implementation of a
dispersion trading. We analyze the pro�le of a systematic short strategy of
a variance swap on the EuroStoxx 50 being long on the constituents of this
index. Part IV contains the conclusions and future improvements and/or
advances.

3"A Tale of Two Indices", P Carr, L Wu, February 23, 2004.
4This is consistent with the empirical fact that the volatility is negatively correlated

with the underlying price process.
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Part I

Volatility Models

The aim of this section is to provide a review of the di¤erent models proposed
for the volatility. We will derive a simple model in order to understand how
the correlation arises as the main driver of the pro�t and loss in the dispersion
trading strategies. The volatility of a stock is the simplest measure of its
risk or uncertainty. Formally, the volatility �R is the annualized standard
deviation of the stock�s returns during the period of interest5. In this paper
we will compute the realized volatility as the annualized volatility of the daily
underlying returns on the underlying over the contract period assuming zero
mean for the returns:

�R =

sP
i log(

Si+1
Si
)2

n� 1 � 252 (1)

Here Si is the price of the underlying in day i and the factor 252 is set in
order to get the annualized volatility.
The Black-Scholes model assumes that the volatility is constant. This

assumption is not always satis�ed by real-life options as the probability dis-
tribution of the equity has a fatter left tail and a thinner right tail than the
lognormal distribution is incompatible with derivatives prices observed in the
market. Data show that the volatility is non-constant6 and can be regarded
as an endogenous factor in the sense that it is de�ned in terms of the past
behavior of the stock price. This is done in such a way that the price and
volatility form a multidimensional Markov process7.
Di¤erent authors have presented di¤erent approaches to explain the skew

observed in the market8. Merton extended the concept of volatility as a deter-
ministic function of time. This approach is followed by Wilmott (1995). This
is a deterministic volatility model and the special case where the volatility

5We can distinguish amongst three kinds of values: realized (�R), implied (�I), and
theoretical (�) volatility. Realized values can be calculated on the basis of historical market
data in a speci�ed temporal horizon. Implied values are values implied by the option prices
observed on the current day in the market. Theoretical values are values calculated on
the basis of some theory.

6This e¤ect is known as skew in equities and smile in currencies.
7A random process whose future probabilities are determined by its most recent val-

ues. A formal de�nition given by Papoulis (1984, p. 535) is: A stochastic process is
called Markov if for every n and t1<t2<. . .<tn we have that: p(x(tn) � xn8t � tn�1) =
p(x(tn) � xn j x(tn�1))

8See Frey (1997) for an excellent survey of stochastic volatility models.
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is a constant reduces to the well-known Black-Scholes model, that suggests
changes in stock prices are lognormal distributed. But the empirical test by
Bollerslev (1986) seems to indicate otherwise. Hull (2000) assumes that the
volatility is not only a function of time but also a function of the stock price
at time t; where the stock price is driven by an Itô di¤usion equation with
a Brownian motion. Bu¤ and Heston developed a model in which the time
variation of the volatility involves an additional source of randomness besides
fW1(t)g, represented by fW2(t)g:

dS(t) = �S(t)dt+ �(t; S(t))S(t)dW1(t) (2)

d�(t) = �(t; �(t))dt+ b(t; �(t))dW2(t) (3)

Here both Brownian motions can be correlated processes. Elliot and
Swishchuk (2002) consider that the volatility depends on a random para-
meter x such as �(t) = �(x(t)):The value x(t) is is some random process.
Bu¤ (2002) develops another approach based on Avellaneda (1995) called
uncertainty volatility scenario. In Bu¤�s model a concrete volatility surface
is selected among a candidate set of volatility surfaces. This approach ad-
dresses the sensitivity question by computing an upper bound for the value
of the portfolio under arbitrary candidate volatility, and this is achieved by
choosing the local volatility �(t; S(t)) among two extreme values �max and
�min. such that the value of the portfolio is maximized locally. Wu (2002)
proposed a new approach in which the volatility depends on a stochastic
volatility delay �(t; S(t+�)) where the delay is given by � 2 [�� ; 0]. The ad-
vantage of this model is that replicates better the behaviour of the historical
volatility.
The last three approaches or stochastic volatility models introduce a sec-

ond �non-tradable" source of randomness. These models usually obtain a
stochastic volatility model, which is general enough to include the deter-
ministic model as a special case. The concept of stochastic volatility was
introduced by Hull and White (1987), and subsequent development includes
the work of Wiggins (1987), Johnson and Shanno (1987), Scott (1987), Stein
and Stein (1991) and Heston (1993). However, the main drawback of the
stochastic volatility models is that appears preferences of the investors in the
speci�cation of the models and the calibration is quite more complicated and
subjective.

2 The Heston model

The Heston model is one of the most widely used stochastic volatility mod-
els today. Its attractiveness lies in the powerful duality of its tractability
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and robustness relative to other stochastic volatility models. Therefore we
will discuss this one in great detail. In the Black-Scholes-Merton model, a
derivative is dependent on one or more tradable assets. The randomness in
the option value is solely due to the randomness of these underlying assets.
Since the assets are tradable, the option can be hedged by continuously trad-
ing the underlying. This makes the market complete, i.e.,every derivative can
be replicated. In a stochastic volatility model, a derivative is dependent on
the randomness of the asset and the randomness associated with the volatil-
ity of the asset�s return. Heston modelled the asset price and the volatility
by use of the following stochastic di¤erential equation:

dS(t) = �S(t)dt+
p
S(t)dW1(t) (4)

d = �(� � )dt+ �pdW2(t) (5)

dW1dW2 = �dt (6)

� is the drift,  is the volatility that is modelled with a mean reversion
process, � is the speed of reversion to the level � and � is the volatility of
the volatility mean reversion process. � is the correlation coe¢cient between
both the stock and the volatility uncertainty source.
There are many economic, empirical, and mathematical reasons for choos-

ing a model with such a form. Empirical studies have shown that an asset�s
log-return distribution is non-Gaussian. It is characterized by heavy tails and
high peaks (leptokurtic). There is also empirical evidence and economic ar-
guments that suggest that equity returns and implied volatility are negatively
correlated (also termed �the leverage e¤ect�)9. This departure from normality
plagues the Black-Scholes-Merton model with many problems. In contrast,
Heston�s model can imply a number of di¤erent distributions. � which can
be interpreted as the correlation between the log-returns and volatility of the
asset, a¤ects the heaviness of the tails. Intuitively, if � > 0 then volatility
will increase as the asset price/return increases. This will spread the right
tail and squeeze the left tail of the distribution creating a fat right-tailed
distribution. Conversely, if � < 0 then volatility will increase when the asset
price decreases, thus spreading the left tail and squeezing the right tail of the
distribution creating a fat left-tailed distribution (emphasizing the fact that
equity returns and its related volatility are negatively correlated).
The e¤ect of changing the skewness of the distribution has also an impact

on the shape of the implied volatility surface. This fact can be captured by
the introduction of the correlation parameter �. The model can incorporate
a variety of volatility surfaces and hence addresses another shortcoming of

9See Cont 2001 for a detailed statistical and empirical analysis.
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the Black-Scholes-Merton model, that is, constant volatility across di¤ering
strike levels.
� a¤ects the kurtosis (peak) of the distribution. When � is zero the

volatility is deterministic and hence the log-returns will be normally distrib-
uted. Increasing � will then increase the kurtosis only, creating heavy tails
on both sides. Again, the e¤ect of changing the kurtosis of the distribu-
tion impacts on the implied volatility. Higher � makes the skew/smile more
prominent. This makes sense relative to the leverage e¤ect. Higher � means
that the volatility is more volatile. This means that the market has a greater
chance of extreme movements. So, writers of puts must charge more and
those of calls, less, for a given strike.
� is the mean reversion parameter. It can be interpreted as the degree

of "volatility clustering". This is something that has been observed in the
market, for example, large price variations are more likely to be followed by
large price variations10. The aforementioned features of this model enable it
to produce a big amount of distributions. This makes the model very robust
and hence addresses the shortcomings of the Black-Scholes-Merton model.
It also provides a framework to price a variety of options incorporating
dynamics closer to real ones observed in the market.

3 Why Dispersion Trading?

We will assume a �ltered probabilistic space (
; F; fFtgt2[0;T ]; P ) where 
 is
the sample space, F is a sigma-algebra, fFtgt2[0;T ] is the �ltration associates
to the sigma-algebra and P is the probability measure.
An index measures the price performance of a portfolio of selected stocks.

It allows us to consider an index as a portfolio of stock components. Assume
that we have an index composed by two stocks: S1 and S2 in proportions w1
and w2, where w1+w2 = 1. We will model both stock prices with a di¤usion
process fSigi=1;2. The index is traded as an asset in our market and also
follows a di¤usion process fSindexg: We want to replicate the index creating
a basket Bk with the two assets S1 and S2 and in the same proportions w1
and w2: If the weights to create the replicated portfolio are the same as the
weights in the index replicated, then the �index should be equal to the �basket:
The replication strategy is just given by �nding two processes fh(t)g and
fg(t)g that replicate the payo¤ function considered:

HT = H0 +

Z

[t;T ]

h(t)dSt +

Z

[t;T ]

g(t)dPt (7)

10See Cont (2001) for an excellent study.
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The dynamics of the element considered are given by:

dSi = �iSidt+ �iSidWi; i = 1; 2 (8)

dSindex = �indexSindexdt+ �indexSindexdWindex (9)

dWindex = �dW1 + (1� �)dW2; � 2 [0; 1] (10)

Sindex = w1S1 + w2S2 (11)

The dynamics of the replicated basket is given by applying Itô�s lemma
on (w1S1 + w2S2):

d(w1S1 + w2S2) = dBk (12)

We will assume that the sources of uncertainty present in both asset prices
processes are correlated with parameter �. The Brownian motion presents in
the index dynamics process will be a linear combination of both uncertainty
sources fW1g and fW2g. We can review both processes as a function of
two independent Brownian motions, that is, dW1 = �dZ2 +

p
1� �2dZ1

and dW2 = dZ2, where fZ1g and fZ2g are uncorrelated Brownian motions.
Moreover, the same decomposition can be applied to:

dWindex = �(�dZ2 +
p
1� �2dZ1) + (1� �)dZ2 (13)

Then the dynamics of the basket and the index are given by:

dSindex = Sindex[�indexdt+ �indexdM ] (14)

dM � N [0; (��+ (1� �))2t+ �2(1� �2)t] (15)

dBk = Bk[(�1w1S1 + �2w2S2)dt+ dÂ] (16)

dÂ � N [0; (w1�1S1�+ w2�2S2)
2t+ (w1S1�1

p
1� �2)2t] (17)

fÂg is a random process with mean zero and the variance of the replicated
portfolio. Because the basket is created synthetically and the index is traded
itself as an asset, there exists a new component in the volatility of the repli-
cated portfolio: the correlation coe¢cient (or more generally, the correlation
matrix). That is, a prior, the �index should be equal to the �basket if we have
chosen the components of the basket in the same proportion as in the index;
but because the new synthetically created portfolio takes into account the
correlation coe¢cient between assets, the volatility of the basket can di¤er
of the volatility of the index. This is the essence of the dispersion trading
and the main driver of the pro�t and loss in the strategy. This is the reason
why dispersion trading is sometimes also known as correlation trading. The
pro�tability of this broadly depends on the realized correlation versus the
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correlation implied by the original set of prices. Moreover, it shows that the
dispersion trading itself is not an arbitrage opportunity. It is straightforward
to understand that depending on the values of the correlation coe¢cient (or
matrix in a multidimensional case) the betting in the future evolution of the
correlation will allow us to make or lose money. That is, there is risk when
we take a position in the strategy. A second order driver is the volatility of
the elements in the portfolio: how the volatility of the volatility changes on
time11.
This is consistent with the empirical evidence that shows that index op-

tions are more expensive than individual stock option because they can be
used to hedge correlation risk12. The explanation is that the correlations
between stock returns are time varying and will blow up when the market is
su¤ering big losses. During market crisis a higher correlation between com-
ponents would increase the volatility of the index, leading into higher index
volatility than individual stock 13. From an economic point of view, the pre-
mium in the index is the premium that the investors pay in excess in order
to reduce the risk of their portfolios taking positions in the index.
Suppose that the correlation is 1, then the theoretical volatility of the

index should be given by the volatility of the basket, that is, �index =
(w1�1S1 + w2�2S2)

2. Because the correlation is bounded between [�1; 1],
this theoretical value should be the upper bounded of the maximum disper-
sion in the volatility. In the same way we can get a lower bound to the
dispersion given by zero correlation. So the dispersion bounds are given by
0 � �spread �

p
j�2index � (

P
iwiSi�i)

2j and we can take positions in the the
spread between implied volatility and realized volatility. Now the spread has
become in a tradable asset.
Therefore we have shown that dispersion has two components: volatility

and correlation. If we are short in correlation and real correlation goes to
one we can still make money if volatilities are high enough. The e¤ect of the
two (correlation and volatility) are not really separable. If we implemented
a short dispersion trade, we would not make money, unless we sold so much
index gamma that our break-even correlation decreased so much, that we
would be vulnerable to spikes in correlation.
An extension of the model with three assets is considered. Let us assume

11For a detailed explanation see "Realized Volatility and Correlation", Andersen 1999.

12"The relation between implied and realized volatility". Christensen, B.J., & Prabhala,
N.R. Journal of Financial Economics(1998).
13We use the term volatility trading as well as dispersion trading or correlation trading

in equivalent way, but the reader do not must to forget that in the end the correlation is
the main driver of the dispersion strategy as we aforesaid.
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that the index dynamics is described by the di¤usion equation aforemen-
tioned, and the three assets also follow di¤usion processes. The assets are
correlated with (known) correlation matrix � instead of a number � . The
uncertainty of the index is given by the linear combination of the assets� un-
certainty sources as before. We replicate the index by buying the stocks in
the same proportion of this. Note that now the correlation is a 3x3 matrix.
As a previous step, we want to rewrite the correlated Brownian motions as a
function of independent Brownian motions. Then the decomposition is given
by:

W = CTZ (18)

0

@
W1(t)
W2(t)
W3(t)

1

A =

0

@
c11 c21 c31
0 c22 c32
0 0 c33

1

A

0

@
Z1(t)
Z2(t)
Z3(t)

1

A (19)

Here the vector W is composed by the correlated Brownian motions and
Z is given by the independent Brownian motions. The matrix CT is a direct
result of the Choleski�s decomposition of �. Note the correlation matrix is
a symmetric and positive de�nite matrix, it can be e¢ciently decomposed
into a lower and upper triangular matrix following Cholesky�s decomposition,
that is:

� = CT :C (20)

Then the task is to get the coe¢cients cij that will give the expression
of the correlated Brownian motions as a function of independent Brownian
motions. The coe¢cients are given by:

cii =

vuut
 

aii �
i�1X

k=1

c2ik

!

(21)

cji =

 

aji �
i�1X

k=1

cjkcik

!

cii
(22)

The uncertainty source of the index is given by the following linear rela-
tionship between the stocks� Brownian motions:

dWindex = �dW1 + �dW2 + (1� �� �)dW3; �; � 2 [0; 1] (23)
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Then we can compute the dynamics of the portfolio replicated as:

d(w1S1 + w2S2 + w3S3) = dBk (24)

And the dynamics is given by:

dBk = Bk[(�1w1S1 + �2w2S2 + �3w3S3)dt+ dG] (25)

dG � N [0; (w1�1S1c11)
2t+ (w1�1S1c21 + w2�2S2c22)

2t (26)

+(w1�1S1c31 + w2�2S2c32 + w3�3S3c33)
2t]

fGg is a random process with mean zero and the variance of the replicated
portfolio. The coe¢cients cji take into account the e¤ect of the correlation
between assets. They are expressed as:

c11 =
p
�11 = 1 (27)

c21 =
�21p
�11

= �21 (28)

c22 =

s

�22 �
�
�21p
�11

�2
=
q
1� �221 (29)

c31 =
�31p
�11

= �31 (30)

c32 =
�32 � �31p

�11

�21p
�11r

�22 �
�
�21p
�11

�2 (31)

c33 =

vuuuuut�33 �
�
�31p
�11

�2
�

0

BB
@
�32 � �31p

�11

�21p
�11r

�22 �
�
�21p
�11

�2

1

CC
A

2

(32)

This procedure can be used to construct a model for N assets correlated
with matrix �. The conclusions are, in essence, the same as with three assets.
We observe that as the basket´s size increases, the dispersion e¤ect can be
higher (or lower). In fact, the dominant term in the volatility of the basket
is the squared weighted sum of individual volatilities, where the weights are
given by both the product of the correlation between stocks and the weight of
the assets in the index. The main driver is the correlation and it is introduced
in the basket�s volatility by the choice of the weights. Another conclusion is
that the bigger is the portfolio the bigger is the dispersion e¤ect. Again a
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second order e¤ect is the individual stocks� volatility. However, it can play
an important role in the dispersion when the volatility spikes suddenly.

Part II

Trading volatility

As we have remarked before, volatility and correlation themselves, have
becoming tradable assets the �nancial markets. There are two main ap-
proaches: hedging strategies versus econometric models. In the �rst ap-
proach we distinguish four type of strategies to trade volatility14: 1) sell
index vanilla options and buy options on some components in the index; 2)
sell index straddles or strangles15 and buy straddles on the components in
the index; 3) sell variance swaps on the index and buy variance swaps on
the components, and 4) buy or sell correlation swaps16. By keeping a delta-
neutral position, volatility trades attempt to eliminate the random e¤ect of
the underlying asset prices and try to get only exposure to the volatility (or
correlation).
Positions in call and put options in order to trade volatility have the

disadvantage not only that it is a very expensive trade to execute (delta
hedging, roll the strikes...) but it is also di¢cult to keep track of the sen-
sitivities (Greeks and second order Greeks). The same problem arise when
we are dealing with straddles and strangles: if you want to gain exposure to
the volatility, you will be long, and if you want to decrease your exposure,
you will be short of at-the-money options. Again this trade is very expensive
to execute and to keep track of the sensitivities (like calls and puts options,

14Other instruments as gamma swaps have appeared in a dispersion trade, because
gamma swaps eliminate the natural short "spot cross-gamma" (when spot price goes down
or up you end up with a volatility position) you get exposed to when using variance swaps.
The reason for this can be seen in some limiting cases, in which for example a stock

drops massively and gets volatile. You need to have a vega position that matches the
index weight, but that index weight has just dropped. So you can trade variance swaps
to get neutral, but going in and out of variance swaps is not cheap. If you had used a
gamma swap, the drop in the stock price e¤ectively decreases the vega exposure, so you
do not need to rebalance. However these type of contracts are not widely used.
15Investment strategies that involve being long or short in call and put options with

same maturity and same strikes (straddles), or with same maturity and di¤erent strikes
(strangles).
16A correlation swap is just a forward contract in the realized correlation. The corre-

lation swap gives direct exposure to the average pairwise correlation of a basket of stocks
agreed at entering in the contract. The main disadvantage of this strategy is that the
market for these products is less liquid than other (variance and volatility swaps).
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these contracts can take on signi�cant price exposure once the underlying
moves away from its initial level; an obvious solution to this problem is to
delta-hedge with the underlying). The third strategy works but the problem
is to choose the right amount of components and the size of the elements
to set up the strategy. No delta hedging is neccesary if we weighted the
components in the right amount as we discuss later. In fact, this will be
the method implemented by us in the empirical study because it relies on
the use of the widely traded variance swaps. The fourth strategy has pure
correlation exposure, but there is not enough liquidity in this market so it is
not very used.

4 Speci�c contracts for trading volatility

We start our review with instruments that trades correlation and after that,
we focus our attention to speci�c volatility (variance) products because these
are the most trade in the market.
Correlation, in the easiest way, can be trade with Correlation Swaps. A

correlation swap is just a forward contract in the realized correlation. The
correlation swap gives direct exposure to the average pair wise correlation
of a basket of stocks agreed in the contract. The main disadvantage of
this strategy is that the market for these products is less liquid than others
(variance and volatility swaps). The other strategy for trading correlation
is implemented with variance swaps: it pro�ts directly from the returns and
volatilities of the stocks in the index becoming more dispersed over time.

4.1 Variance swaps

Volatility swaps and variance swaps are relatively new derivative products
since 1998. A variance swaps is an Over-The-Counter (OTC) �nancial deriv-
ative which payo¤ function is given by:

HT = N � (�2R �K2
var) (33)

Here �2R is the realized variance at expiry and K
2
var is the delivery price

agreed at inception. N is the notional amount in money units per unit
of volatility. That is, a variance swap is a forward contract in the future
variance.
Note that the payo¤ is convex in volatility. As a consequence, variance

swaps strikes trade at a premium compared with a volatility swap. Our goal
will be to calculate the fair price of the variance swap, that is, the delivery
price K2

var that makes the contract have zero value. Di¤erent approaches
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have been discussed in the literature, from a replication strategy based in an
option portfolio to the expected value of the payo¤ under the risk neutral
measure. We focus our study in the replication strategy with a portfolio
of options whose payo¤ is the same that the variance swap payo¤. Other
methods proposed will be discussed.

4.1.1 Pricing variance Swaps: Replication Strategy

Following Demeter� (1999)17, it can be shown that if one has a portfolio of
European option of all strikes, weighted in inverse proportion to the squared
of the strike, you will get exposure to the variance that is independent of the
price of the underlying asset. This portfolio can be used to hedge a variance
swap, and as a consequence, the fair value of the variance swap will be the
value of the portfolio. The only assumption that we need in order to derive
the price is that the underlying follows a di¤usion process without jumps :

dS(t) = �(t; S(t))dt+ �(t; S(t))dW (t) (34)

The strategy can be implemented as follows. Consider a portfolio of
European options of all strikes k and a single time to expiry � = T � t,
weighted inversely proportional to k2 :

�(S; �
p
� ; S�) =

X

K>S�

1

k2
C(S; k; �

p
�) +

X

K<S�

1

k2
P (S; k; �

p
�) (35)

Because out-of-the-money options are more liquid, we use put options
P (S; k; �

p
�) for strikes k varying continuously from zero up to some arbi-

trary reference price S�, and call options C(S; k; �
p
�) for strikes k varying

continuously from S� to in�nity. Note that the Vega of a European option
in the Black-Scholes world is the same for a call as for a put, provided that
the strike and other parameters are the same. S� is chosen to be the ap-
proximate at-the-money forward price of the underlying asset that marks
the boundary between liquid puts and liquid calls. Under the Black-Scholes
assumptions, it can be shown18 algebraically that the portfolio value (and as
a consequence, the fair value of the variance swap) is given by:

�(S; �
p
� ; S�) =

2

T

�
S � S�
S�

�
+
1

2
�2� � 2

T
log

�
S

S�

�
(36)

17"More Than You Ever Wanted To Know About Volatility Swaps", K Demeter�, E
Derman, M Kamal, J Zou, March 1999.
18"More Than You Ever Wanted To Know About Volatility Swaps", K Demeter�, E

Derman, M Kamal, J Zou, March 1999.
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Here the �rst term in our portfolio is a long position in the stock S and
a short position in a bond. The second term is a log contract (which is not
traded in the market but can be replicated with options19).
Note that the variance exposure of the portfolio �(S; �

p
� ; S�) is �

2
, and

this quantity is independent of the current price S of the underlying asset20.
This observation gives a basis for the replicating strategy for a variance swap
in a Black-Scholes world. The main disadvantage of this approach is that, in
order to hedge the portfolio, we need and in�nite number of strikes appro-
priately weighted to replicate a variance swap. It is in practice impossible.
Also under volatility skew, Black-Scholes assumptions do not hold and the
errors introduced in pricing can be considerable.

4.1.2 Pricing variance Swaps: Expected Value

The second approach is more general. Given the payo¤ function for a vari-
ance swap, the expected present value of the contract under the risk neutral
measure is given by the fundamental pricing formula:

Ht = E
Q

2

666666
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B

B
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�
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r(s)ds
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�HT j Ft
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5

(37)

where Ftgt2[0;T ] is the �ltration generated by the brownian motion W (t).
The fair value K2

var will be the expected value of the future realized variance
that makes the contract have zero value:

Kvar =
1

T
EQ

2
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B
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r(s)ds
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�
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�2(t)dt

3

777777
5

(38)

Thus the pricing problem is reduced to building an algorithm for the
estimation of the future value of volatility. It can be shown that the fair

19See Neuberger (1994 and 1996).
20Peter Carr. "Toward a theory of volatility trading", 2002
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price of the variance swap under the assumption of a continuous di¤usion
process is given by a portfolio of call, put options and a log contract21:

Kvar =
2

T

�
rT � (S0e

rT

S�
� 1)� log S

�

S0

�
(39)

+
2

T

�
erT
Z S�

0

1

K2
P (K)dK + erT

Z 1

S�

1

K2
C(K)dK

�

The term:

erT
Z S�

0

1

K2
P (K)dK + erT

Z 1

S�

1

K2
C(K)dK (40)

is a portfolio of options (calls and puts with strike K) with �nal payo¤
given by:

f(ST ) =
2

T

�
ST � S�
S�

� log ST
S�

�
(41)

This equation re�ects that implied volatilities can be regarded as the
market�s expectation of future volatilities. We can use market prices of the
options to obtain an estimation of the future variance22. This is the method
used by us in this paper in order to calculate the fair price of the variance
swap. The election relies in the use of tradable options calls and puts in
the pricing strategy and therefore the liquidity of this market. In practice,
only a small set of discrete option strikes is available and used to calculate
variance swap rates. Demeter� al showed that with some assumption on
the implied volatility smile, variance swap rate can be approximated as a
linear function of at-the-money forward implied volatility. If the smile is �at,
the variance swap rate will be equal to at-the-money implied volatility. If
the smile does exist, then the variance swap rate will be higher than the
at-the-money implied volatility23.

21Note that the price is not really the fair variance, because the procedure of calculating
the log contract is an approximation. This one always over-estimates the value of the log
contract. See Appendix A in �A guide to volatility and variance swaps�. The Journal of
Derivatives, summer 1999, pp. 9-32.

22The implied volatility is an umbiased and e¢cient forecast on future volatility and
subsumes the information content of historical volatility (see Christensen 1998).
23Carr and Lee ("Robust replication of volatility derivatives") get the lower bounds for

variance swaps. They show that the at-the-money implied volatility is a lower bound for
the variance swap rate. Dupire also derived lower bounds for variance claims �notably for
a call on variance ("Model free results on volaitlity derivatives").
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4.1.3 Pricing variance Swaps: Other approaches

Other approaches have been developed in di¤erent papers from an econo-
metric point of view. Financial return volatility data is in�uenced by time
dependent information �ows which result in pronounced temporal volatility
clustering. These time series can be parameterized using Generalized Autore-
gressive Conditional Heteroskedastic (GARCH) models24.The key element in
these approaches is the calibration of the parameters of the model used.
Note that GARCH models use data under the real measure (observed data
in the market), but the calibration of the models is under the risk neutral
world. It has been found that GARCH models can provide good in-sample
parameter estimates and, when the appropriate volatility measure is used, re-
liable out-of-sample volatility forecasts. Javaheri, Wilmott and Haug (2002)
discussed the valuation and hedging of a GARCH(1,1) stochastic volatility
model. They used a general partial di¤erential approach to determine the
�rst two moments of the realized variance in a continuous or discrete context.
Then they approximate the expected realized volatility via a convexity ad-
justment. Brockhaus and Long (2000) provided an analytical approximation
for the valuation of volatility swaps and analyzed other options with volatility
exposure. Théoret, Zabré and Rostan (2002) presented an analytical solu-
tion for pricing of volatility swaps, proposed by Javaheri, Wilmott and Haug
(2002). They priced the volatility swaps within framework of GARCH(1,1)
stochastic volatility model. Swishchuk (2004) proposes a new probabilistic
approach based on Heston (1993) to price variance swaps.

4.2 Volatility swaps

A volatility swap is a forward contract on the annualized volatility. The
payo¤ function is given by:

HT = N � (�R �Kvar) (42)

where �R is the realized stock volatility,Kvar is the annualized volatility
delivery price and N is the notional amount of the swap in money per an-
nualized volatility point. That is, the holder is swapping a �xed volatility
Kvar on the realized future volatility .

4.2.1 Pricing Volatility swaps

Valuing a volatility forward contract or swap is no di¤erent from valuing a
variance swap. The value of a forward contractHT on future realized variance

24For a detailed explanation of GARCH models see Levy, G F. �Implementing and
Testing GARCH models�, NAG Ltd Technical Report TR4/ 00, 2000.

16



with strike price Kvar is the expected present value of the future payo¤ under
the risk-neutral measure:

Ht = E
Q
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The fair value Kvar is not the square root of the variance swap price due
to convexity e¤ect25. In order to compute it we need to take into account
the approximation of Javaheri (2002) for the convexity adjustment:

E

�q
�2R

�
'
q
E(�2R)�

var(�2R)

8� E(�2R)3=2
(44)

There is no simple replication strategy for volatility swaps. Demerte�
imply that �its value depends on the volatility of the underlying variance,
that is, on the volatility of volatility �. Despite that it is di¢cult to hedge
(this di¢culty is the main reason why volatility swaps are not widely traded),
Carr shows that the volatility swap rate is well approximated by the Black-
Scholes at-the-money implied volatility of the same maturity 26.

Part III

Empirical Testing

We analyze in this part of the thesis the pro�le of a systematic short strategy
of a variance swap on the index while being long the constituents27. We
show that there is sense in selling correlation on short-term. Moreover, we
show that this is not an arbitrage strategy because there is risk of su¤ering
losses. In order to study the properties of the strategy, we get the daily

25Using Jensen inequatility we can bound the problem by:
E(
p
�2
R
) <

p
E(�2

R
) =

p
Kvar

For a more detailed study see "At-the-money Implied as a Robust Approximation of
the Volatility Swap Rate", Peter Carr, Roger Lee, working paper.
26"At-the-money Implied as a Robust Approximation of the Volatility Swap Rate",

Peter Carr, Roger Lee, working paper.
27In the period considered (1 January 2002 to 14 March 2007) there are 57 companies

and the index. However, only 50 companies compose the EuroStoxx 50, e¤ect collected
by the weight matrix.
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pro�t and losses (and the distribution function) for the strategy proposed:
sell correlation on the index and buy the constituents of the index. Di¤erent
weights in the strategy have been used in order to get more volatility exposure
or more correlation exposure.

5 Data

The data have been provided by the Merrill Lynch London Equity Derivatives
Strategy Team. We have the three months volatility surfaces for both the
EuroStoxx 50 and the constituents of the same, from 1 January 2002 to 14
March 2007. The volatility surfaces are given by a set of strikes from 70
to 130 uniformly spaced (�ve points apart), where 100 is considered at-the-
money. As we have mentioned before, the volatility surfaces are implied
volatilities calculated from a model. The model considered is Black-Scholes
and the market is the internal market at Merrill Lynch. We have the LIBOR
(daily) for the same period of time. The daily prices of the stocks and the
index, dividend yield for both the index and the stocks, and the weights of
the stocks in the index are also provided.

5.1 Cleaning the data

The �rst step is to compute the three months realized volatility with the
daily prices of the stocks. We have applied the formula proposed in Part I
to calculate it. Please note that the dividends have been introduced in the
calculation of the realized volatility when it has been necessary28. Moreover,
the computation of the annualized rate of the dividend yield is done at this
step. We compute the right weight matrix taking into account that the
weights of the stocks in the index have been changing every three months (in
March, June, September and December there are companies that enter, go
out or change their weight in the index).
To evaluate the properties of the dispersion trades, we will need a clean

data set of index and single stock variance swap prices. In order to compute
the prices, we use the volatility surfaces of the index and the constituents.
The main problem arises because there exist dates in the volatility surfaces
database that are without data. The explanation is that the trader have not
trade options at those dates for some companies. Therefore, the second step
is the volatility surface reconstruction (interpolation) problem.

28The return during a time interval including ex-dividend day is given by log
�
Si+div

Si�1

�
:
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We de�ne the spread as the di¤erence between the implied volatility minus
the realized one. Note that the realized volatility is just one value for each
date, but the implied -due to the skew- di¤ers for di¤erent strikes, so we have
13 implied volatility values (one for each strike) in each date. A prior there
is no relationship between both the implied volatility value and the realized
volatility (implies are obtained from a model and realized volatilities are a
measure of the underlying�s price movement over the past history). We will
assume in this thesis that the implied volatility at-the-money is the one that
we use to compare with the values of the realized volatility.
The daily continuity of the realized volatility is assured because it is cal-

culated with the daily (in a three month horizon) stock prices. We compute
the spread between both the implied volatility and the realized volatility for
every strike of the volatility surface.
In order to interpolate the volatility surfaces, we need to keep in mind

that we must to have continuity in both the volatility surface slope and the
spread. The strategy proposed to reconstruct the surfaces has been a linear
interpolation of the spread29. The value obtained has been added to the
realized volatility in order to get the reconstructed implied volatility level. A
second re�nement have been done. There are periods of time with the same
volatility skew for all the dates, changing suddenly in the next date. This
is produced because the traders have not updated the skew values until this
moment. However, this is clearly wrong and an interpolation in these values
has been also considered following the aforementioned procedure.
The third step his to prepare the clean data set to work with. We have 57

matrices for the volatility surfaces data (one for each company) and 1 matrix
for the index. We have the LIBOR rate vector, one matrix of weights and
one matrix of spot prices. A matrix with the dividend for each company is
also computed. The time horizon considered is three months.

6 Computing the variance swap prices

Once the data is ready, we can start to compute the three months variance
swaps prices assuming that every day we enter in a new contract. The method
used at this stage has been the hedging approach developed by Demerte�
and explained in Part II. Because we have a discrete set of strikes, a slight
modi�cation have been introduce in the pricing formula to adapt it to the

29We have choose linear interpolation because it is the easier one. However, other
methods more complex were implemented as splines and parabolic interpolation and the
results were quite similar.
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discrete framework. Concretely, we use30:

Kvar =
2

T

�
rT �

�
S0e

rT

S�
� 1
��
� log

�
S�

S0

�
+ erT�

CP
(45)

where �CP is a portfolio of call and put options given by:

�
CP
=
X

i

w(Kip)P (S;Kip) +
X

i

w(Kic)C(S;Kic) (46)

where w(Ki) is determined by the slope of the calls and puts options
used to replicate the log-payo¤ contract for the di¤erent strikes Ki

31. Note
that if we have not skew (that is, just one value of the implied volatility at-
the-money) we can also use this approach. The dominant driver of expected
realized variance will be the at-the-money volatility (the skew is important
but is of secondary importance). Therefore when we integrate with respect
to the strike over the vanilla call and put prices we can just use no strike
dependency.
We assume in the implementation of the model that 100 is the at-the-

money value. Strikes out-the-money correspond to put options and in-the-
money to call options. We obtain in the computation the total cost of the
options portfolio �CP and the contribution of each strike value in the volatility
surface to the cost. In fact, only the strikes closer to the at-the-money value
are the main driver of the portfolio cost. The fair price of the variance swap
Kvar

32 is given by the equation aforementioned. We get 57 prices vectors
(one for each constituent of the index) and one variance swaps price vector
for the index.

7 Dispersion trading

It is well documented 33that the implied volatility is generally higher than
the subsequent realized volatility, a phenomenon most signi�cant for out-
of-the-money options. As for variance swaps levels, it is evidenced 34that

30This model is implemented because it assumes stochastic volatility (but any speci�c
model is necessary). We obtain with this method both the variance swap price and the
hedging positions. See "More Than You Ever Wanted To Know About Vitality Swaps",
K Demeter�, E Derman, M Kamal, J Zou, March 1999.
31See Appendix for a detail explanation.
32Note that the price is not really the fair variance, because the procedure of calculating

the log contract is an approximation with puts and calls options. This one always over-
estimates the value of the log contract.
33"Predicting volatility in the foreign exchange market", Jorion, P. Journal of Finance,

1995.
34"A Tale of Two Indices", P Carr, L Wu, February 23, 2004
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the variance swaps rates generally exceed the subsequent realized variance.
This is not surprising because the variance swap rate is a non-linear function
of implied volatility across di¤erent strikes. In the case of a liquid market,
where the volatility smile is pronounced ,the variance swap rate is higher
than the at-the-money volatility35.
An economic explanation of the overestimation of implied volatility is the

negative correlation between index returns and volatility. Therefore people
tend to long volatility to hedge market turndown. Another source of volatil-
ity risk premium is identi�ed in Demerte� as the variance of volatility of the
underlying. Carr36 discovered that the variance risk premium is much more
obvious for equity index than for individual stocks. Some authors suggest
the reason to be the pricing of correlations between the components. That
is to say, index options are more expensive than individual stock option be-
cause they can be used to hedge correlation risk. The explanation is that the
correlations between stock returns are time varying and will blow up when
the market is su¤ering big losses. In this way during market distress the soar
of correlation between components would amplify the volatility of the index,
leading to higher volatility of the index than individual stocks. Hence the
market is charging a higher premium of volatility risk from indices. Some
traders report positive average pro�t of systematic short strategy of variance
swap37. On the other hand, a systematic short strategy exhibits highly nega-
tive skew38 of return due to large losses caused by markets in decline. This is
consistent with the empirical fact that the volatility is negatively correlated
with the underlying price process.

35"More Than You Ever Wanted To Know About Volatility Swaps". Demeter�, Derman,
Kamal and Zou. March 1999.
36A Tale of Two Indices, P Carr, L Wu, February 23, 2004
37�Strategic and Tactical Use of Variance and Volatility�. Morgan Stanley�s report,

2003
38The skew and kurtosis measure how the values are distributed around the mode.

A skew value of zero indicates that the values are evenly distributed on both sides of
the mode. A negative skew indicates an uneven distribution with a higher than normal
distribution of values to the right of the mode, a positive value for the skew indicates
a larger than normal distribution of values to the left of the mode. The kurtosis of
the distribution indicates how narrow or broad the distribution is. A positive value for
the kurtosis indicates a narrower distribution than a normal Gaussian, a negative value
indicates a �atter and broader distribution. A normal Gaussian distribution has a kurtosis
of zero. The larger the kurtosis of the parameter, the better.
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7.1 Setting the dispersion trading weights

In order to implement dispersion trading, the �rst step is to choose the
proportion of variance swaps contracts that we will buy or sell. Two types of
weights are proposed in the literature. The weights are chosen in order to get
a portfolio Vega neutral (volatility exposure) or Theta neutral (correlation
exposure)39.

7.1.1 Vanilla Dispersion Trade

The weights are chosen in the same proportion of the members in the index.
In this case the exposure of the volatility is the main driver of the P&L.
A long position in the strategy involves buying 50 variance swaps in the
constituents of the index and being short in one variance swap in the index.
A vanilla dispersion trade is long in volatility and short in correlation. Let us
use the model developed in section 3 to explain this. Assume the case that
there exists correlation between the two assets in the index proposed and it
is di¤erent of zero. We showed that the theoretical index variance is given
by:

�2index = (w1�1S1�+ w2�2S2)
2
t+
�
w1S1�1

p
1� �2

�2
t (47)

A long strategy is pro�table for us if the volatilities of the individual
stocks increase. The correlation is bounded by one and in this extreme case
the index volatility is equal to the replicated basket volatility. Therefore the
volatility of the index increases at a lower rate than the one of the stocks
because individual volatilities are weighted by the correlation coe¢cient (that
is less than one). Moreover, the larger is the decrease in the correlation the
bigger is the P&L. Please note that although the strategy pro�ts directly
from changes in volatility of the index versus volatility of the stocks, the
driver of this movements is always generated by the correlation matrix.
The natural approach in view of the results of vanilla dispersion trading,

that is, the correlation as a main driver, is to set up weights that increase the
exposure to the correlation between constituents. This is called correlation-
weighted dispersion trading.

7.1.2 Correlation-weighted dispersion trading

The weights may be chosen keeping the portfolio independent of changes in
the volatility. However, this strategy would need dynamic hedging to assure

39The index Vega exposure is bigger than the component Vega exposure because the
correlation is lower than one.
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a Vega neutral portfolio after inception. The dispersion implemented in our
project is static, that is, after entering in the contract we keep the position
in the variance swaps until expiry. This implies that we can get a portfolio
Vega neutral at inception. However, when the correlation movements arise
the volatility exposure will be developed during the life of the contract40. We
weight each variance swap in the constituents as follows:

�i = wi � ��
 
�
Im plied
i

�
Im plied
index

!

(48)

where wi is the weight of the stock in which we are setting the contract

in the index and
�Im plied
i

�Im plied

index

is the ratio of implied volatilities of the stock and

the index. The correlation � is the implied index correlation. It is a measure
derived from the implied volatility of the index and the constituents pair wise
correlations. It is computed using41:

� =

P
i<j wiwj�i�j�ijP
i<j wiwj�i�j

(49)

Here �ij is the pair wise correlation between the stock i and j.
According to this weights, the main driver of the strategy would be the

correlation as we can see in the expression for the index variance in our
model. However, because the trade is not Vega neutral, there exists other
second order driver in the P&L due to the stocks variance. That is, if we
are long in the trade and a particular stock variance peaks producing more
dispersion, then this volatility e¤ect will be added to the P&L generated by
the correlation. If the position held is short, it will result in bigger losses.

7.2 Pro�t and loss

The P&L of the dispersion trading with weights �i being long in the index
and short in the constituents, implemented with variance swaps, is de�ned
by:

P&L =

�
N

2� kvarIndex
(k2varIndex � �2Index)

�
� e�rT (50)
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�
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� e�rT

40Seing the index variance formula developed in our model is straightforward to under-
stand this.
41"Variance Swaps Guide". JPMorgan Equitiy Derivative Strategies, 2006.
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where kvarIndex is the index variance swap fair strike, �
2
Index the index

realized variance, k2vari the stock i variance swap strike, �
2
i the stock i realized

variance and �i the weights chosen for the strategy. The discount factor is
assumed to be continuous, where r is the LIBOR rate and T is the maturity
(3 months). N is the variance notional, and it is weighted by the factor
1
2�k in order to express the amount in Vega notional. The Vega notional is
the average pro�t or loss for a one per cent change in volatility. The reason
is that traders use to think in terms of volatility and therefore the P&L is
quoted in terms of the volatility.

7.3 Empirical results

We study the performance of systematic short strategy of a variance swap
on the index and being long on the constituents. The setup is that every
day we enter in a contract with expiry three months that involves selling
a variance swap on the EuroStoxx 50 and buying 50 variance swaps on the
constituents. The realized variance is as de�ned as in Part I. The transaction
cost is assumed to be zero. The notional of the contracts is one (Euros). We
implement the di¤erent weights aforementioned for both: getting volatility
exposure and getting correlation exposure. We considered the period from
1 January 2005 to 8 December 2006. It is showed that the systematic short
strategy does provide positive mean of return (3 months). However, the risk
of su¤ering big losses due to large unexpected volatility in market crashes is
inevitable in this strategy. Therefore, the risk of losses exists and the distrib-
ution of pro�ts and losses has high skew. We compute the correlation matrix
for the P&L obtained with the di¤erent weights proposed. We observe that
the correlation for both correlation exposure strategies (P&L) is almost iden-
tical and very high (0.99). The correlation of the volatility exposure strategy
versus the exposure strategy P&L is also very high (0.8). We compute the
correlation of the P&L with the index log-returns. The value obtained is very
low for both correlation-weighted and vanilla dispersion trading (5%). The
average return is positive and higher for both correlation-weigthed schemes
than vanilla weighted scheme. Traditionally there was a bias for realized dis-
persion to be higher than implied, but the market has gotten more and more
e¢cient and it has produced that the pro�ts obtained with the dispersion
trading are lower than historically.
Table 1 at Appendix shows the main statistics of the dispersion trading

implemented for the di¤erent weights chosen. The P&L (in Vegas) for the
di¤erent weights schemes and the distribution functions are showed in Figures
1, 2, 3 and 4.
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7.3.1 Subsamples

The risk premium becomes negative mostly due to major market corrections.
We can see a correction in 2005 and 2006 clearly in the P&L. The e¤ect is
more important in correlation-weighted schemes because the exposure to the
correlation is higher than in vanilla schemes. Remember that the correlation
is the main driver as we showed. On the other hand, a suddenly increased of
the correlation if we are long in the contract also will produce bigger losses
than vanilla.
A clear example is the 2006 correction. It a¤ects to the returns accu-

mulated during one year. However, the accumulated gains continue to be
positive while and after the crash event. The e¤ect is showed for the P&L
in Figure 5. For some investors, particularly those with short volatility posi-
tions through variance swaps and dispersion trades, the increase in volatility
produced huge losses as we can see in Figure 5.
The reason of the losses was the increase in the (realized) stocks correla-

tion above the implied level (the "bet" level in the contract). The volatility
spiked in May and June a result of a pick-up in in�ation, anticipated interest
rate hikes and a sell-o¤ in emerging market assets. The e¤ect is also showed
by the VIX Index42. This index jumped from 13.35 points on May 16 to
18.26 points on May 23. On June 13, it closed at a year high of 23.81 points
before falling to 13.03 points on June 29. This is almos perfectly correlated
with the P&L implemented (around 99.5%).
The outperforming of the correlation-weighted schemes is clearly higher

than the vanilla weights. In almost all the dates the correlation weight scheme
makes pro�t, but between March and June in 2006 the realized volatility of
the index was bigger than the implied (larger realized correlation than im-
plied) and the P&L were negative. Think of it in a insurance term: variance
swap buyers generally pay premium to protect them against crashes (the rea-
son of our positive average return), when the market crashes actually happen,
variance swap seller have to pay for the claims. This also re�ects the convex-
ity of the variance swaps payo¤s. This point re�ects that dispersion trading
implemented with variance swaps can has sense as a position risk manage-
ment tool rather than a pro�t generator in lower volatility environments. If
we want to hedge against P&L losses corresponding to volatility spikes, we
could obviously employ a variance swap or maintain an appropriate option
position. But if we want to hedge the portfolio against a spike in correlation,
an easier, although less than perfect, hedge we would try would be to �nd an
asset that is signi�cantly correlated with the correlation of the index. There

42The VIX Index measures the expectation of the market of 30-day volatility on S&P
500 index option prices.
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is the risk that correlation would also break down at that time, but we would
test prospective candidates with a simulation. Another approach would be
to study the principal components analysis in the returns of our portfolio,
and use a factor model. Then we could isolate the correlation and cancel
with another asset.
Therefore a �rst approximation in order to prevent the losses should be a

variance swap contract with a cap on maximum loss43. Since the systematic
short strategy is positively correlated with the return of underlying and the
losses happen mainly during market crashes, we might be able to use some
vanilla instruments that can insure investors against market turndown. We
hope that they can also protect the systematic short strategy of variance
swap. Keep in mind this is not strange because the variance swap can be
replicated by a basket of put and calls with di¤erent strikes. Buying back
some options can certainly o¤set some risk of variance swap. If we buy back
all the options that construct the variance swap, there will be no risk at
all. However, the skew of the P&L can become positive with the help of the
puts. This is because the over-the-counter put becomes pro�table in down
market. But it is not necessarily pro�table when the variance swap contract
is su¤ering a big loss.
Another option can be to use barrier options. The idea to buy down-

and-in barrier put to cap the loss of variance swap comes from the intuition
that, whenever the down-and-in put comes into existence, the underlying
had probably been through a down and volatile period. Down-and-in barrier
put is much cheaper than vanilla put of the same strike if the barrier is low.
Therefore with a low barrier and a relatively high strike, a down-and-in bar-
rier put option is very likely to end in-the-money for either straight downward
market or rebound. This captures the characteristic of being volatile.

7.3.2 Timing

As have been show in last section, systematic short strategy exhibits highly
negative skew of return due to large losses happening during market crashes.
This is consistent with the empirical fact that the volatility is negatively
correlated with the underlying price process. Thereafter it is important to
determine a timing trading strategy of variance swap. A good time to put
on dispersion trade is when correlation is high.
One most straight-forward idea to �nd a better forecaster of future volatil-

ity than the variance swap rate. The idea comes from that if you have per-
fect foresight of future volatility then you will know perfectly when to short

43"Pricing Options on Realized Variance", P Carr, H Geman, D Madan, M Yor, August
2004.
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and when to long. So if one comes up with a better predictor of volatility
than variance swap rate and trade according to the di¤erence between the
two, we would expect higher return than systematic short. However, current
literature points out that option implied volatilities produce superior volatil-
ity forecasts compared to time series forecasters (for example GARCH)44.
Although Martens suggests the historical variance calculated by high fre-
quency intra-day data could compete with implied volatility in a time series
approach, it is hard to obtain high frequency data with history long enough
to back test the strategy.
Another problem is that, because big loss of systematic short strategy un-

exceptionally happens during market crashes, it is crucial to predict volatility
of crash period to avoid loss. However, time-series approach�s predictabil-
ity on volatility during market crashes is seriously questionable. Therefore,
rather than trying to predict the volatility in a traditional way, we could try
to identify the driving factors for variance risk premiums, which is actually
the P&L of dispersion trading. Another idea is to predict the market crashes.
It is inspired by the fact that the highly negative skew of P&L of systematic
short strategy is mainly due to market crashes. Intuitively, these losses could
have been avoided if we can foresee the coming of market crashes. Of course
there are other losses that are not caused by market crisis, but those are
relatively cheap to a¤ord.
Martens suggested that we short variance swap whenever the risk pre-

mium is high or low. Ideally we would like to have positive return across
di¤erent periods. Keep in mind that in reality it will take investor extra con-
�dence to go long variance swaps if they consider it an pro�t driver instead
of protection of regular investment. With regard to skewness of the P&L
pro�le obtained, it is pro�table to short volatility swap when the historical
volatility is high.
From a practical point of view, Burgardht and Lane suggest the use of

volatility cones45. They proposed this method as a solution to determine if
the current volatility level is higher or lower than the historical level.

7.3.3 Optimal Contract Duration

We have drawn results for contracts that expiry in 3 months. The dispersion
trading P&L is a function of: weights, correlation, volatility, size of the
index and time. A natural question arises: what is the optimal contract

44"Predicting �nancial volatility: High-frequency time -series forecasts vis-à-vis implied
volatility", Martin Martens, Jason Zein 2003.
45"The Sampling Properties of Volatility Cones", Stewart Hodges and Robert Tompkins.

Financial Options Research Centre, University of Warwick, Coventry.
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duration in order to maximize the P&L? Remember that the main driver
is the correlation. Therefore, we are interested in periods of time with the
higher di¤erence between implied correlation and the subsequence realized
correlation. The volatility also plays an important role. It is well-known
that the volatility shows a mean-reversion e¤ect in equities. Therefore I
have computed the P&L for di¤erent maturities: three months, six months
and one year. The P&L obtained with a three month dispersion trading
outperformances the other two for both correlation dispersion trading and
vanilla dispersion trading.

7.3.4 Optimal weights

The P&L obtained varies depending on the weights chosen. We have showed
that the bigger is the exposure to the correlation the larger are the pro�ts
(losses) of the strategy. This is consistent with the fact that the correlation is
the main driver in dispersion trading strategies. The convexity e¤ect appears
due to the variance swaps. However, we can improve the P&L choosing the
optimal allocation for each variance swap. We have the P&L as a function
of the weights �i. Therefore, we suggest to maximize the expected return of
our strategy constraint to that the volatility is minimized:

max
�i

E[p&l(�i)]� k � E
�
p&l2(�i)

�
(51)

where k is an arbitrary constant.
Under this new allocation the P&L obtained outperformances both dis-

persion trading implemented in a 2%.

7.3.5 Optimal portfolio size

We showed in section II that dispersion e¤ect is highly correlated with the
portfolio�s size. However, many constituents in the portfolio can o¤set the
dispersion P&L (or amplify it). We ran di¤erent dispersion strategies with
sub-baskets of the original portfolio, that is, EuroStoxx 50. The P&L ob-
tained is maximized when the components in the sub-basket have the higher
negative correlation. However, the P&L are only 3% bigger than we consider
the whole EuroStoxx 50.
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Part IV

Conclusions and Future

Developments

The rapid development of derivatives market has enabled investors to gain
exposure to volatility. So instead of just taking directional positions based
on predictions of future returns, investor with foresight of volatilities might
also make money by engaging in the appropriate volatility product. Variance
swap is the most heavily traded among the volatility products. The payo¤
of this contract is the di¤erence between the future realized return variance
and the predetermined variance swap rate.
This thesis tries to explore the pro�tability of the dispersion trading

strategies. We begin examining the di¤erent methods proposed to price vari-
ance swaps. We have developed a model that explains why the dispersion
trading arises and what the main drivers are. We have investigate the P&L
obtained with the di¤erent strategies proposed in the market. We show that
correlation-based dispersion trading produces the bigger P&L. This strategy
demonstrates positive mean of return, which is consistent with the fact that
the implied volatility is generally higher than the future realized volatility.
This strategy has a potential of su¤ering large loss in bullish market. We
show that dispersion trading strategies are not arbitrage strategies. We have
computed the distribution of the P&L obtained. We show that the distri-
bution of the P&L shows thick tails. This is consistent with the extreme
events that appear in a bullish market (for example, the correction in the
market of 2005). We proposed a method to choose the optimal weights that
produces outperforming of the strategies used in the market. The timing of
the strategy is also studied.
As a further it might be interesting to check the seasonality of the return

pro�le and design one optimal entry time. Furthermore, the mark to market
value of variance should also be studied because for long maturity contract
one might prefer to close the position before maturity.
We have studied the dispersion trading in a Equity Index. An interesting

exercise could be to implement the strategy in Credit Indices. This approach
needs a previous step: the modi�cation of the pricing method proposed by
Derman in order to use Credit Options (in both single Credit Default Swaps
and Credit Indices).
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     Figure 1. 
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Description Figure 1: P&L (in Vega Notional) obtained selling a variance swap on the EuroStoxx 50 and 

being long on the constituents. Vanilla dispersion gets exposure to the volatility and correlation-weighted 

dispersion gets exposure to the correlation.  The expiry is three months and the Notional is one Euro.  

 

 

     Figure 2. 

 
Description Figure 2: Distribution function obtained for the Vanilla Dispersion Trading on the EuroStoxx 50. 

The weight used is wi. 
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Figure 3. 

 
Description Figure 3: Distribution function obtained for the Correlation-Weighted Dispersion Trading (Scheme 

1) on the EuroStoxx 50. The weight used is 

implied

i

i implied

index

w
σρ
σ

× × . 

 

      Figure 4. 

 
       
Description Figure 4: Distribution function obtained for the Correlation-Weighted Dispersion Trading (Scheme 

2) on the EuroStoxx 50. The weight used is
i

w ρ× . 

 

 

-5 -4 -3 -2 -1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

180

200
CorrelationWeight2 Distribution Function

-6 -5 -4 -3 -2 -1 0 1 2 3 4
0

50

100

150

200

250
CorrelationWeight1 Distribution Function



 iii

Figure 5. 
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 Description Figure 5: Accumulated profits (in Euros) from the different strategies implemented. The initial cost 

assumed in the strategy is zero. We observe that the 2006 correction affected to the P&L but it did not produce a 

negative balance in the accumulated gains. 
 

 

 

 

 

 

 

      Table 1. 

 

Weight αi Average Return STD of Return 
Risk-Return 

(no annualized) 
Skew 

i
w  0.52669 0.83866 0.62085 -0.75189 

implied

i

i implied

index

w
σρ
σ

× ×  1.2111 1.4948 0.8101 -2.0271 

i
w ρ×  1.2023 1.3576 0.88561 -2.0149 

 

Description Table 1: Main Statistics of the P&L for the different strategies implemented. 
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