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Abstract

We augment Tversky and Khaneman (1992) (“TK92”) Cumulative Prospect The-

ory (“CPT”) function space with a sample space for “states of nature”, and depict

a commutative map of behavior on the augmented space. In particular, we use a

homotopy lifting property to mimic behavioral stochastic processes arising from

deformation of stochastic choice into outcome. A psychological distance metric

(in the class of Dudley-Talagrand inequalities) popularized by Norman (1968);

Nosofsky and Palmeri (1997), for stochastic learning, was used to characterize

stopping times for behavioral processes. In which case, for a class of nonsepara-

ble space-time probability density functions, based on psychological distance, and

independently proposed by Baucells and Heukamp (2009), we find that behavioral

processes are uniformly stopped before the goal of fair gamble is attained. Further,

we find that when faced with a fair gamble, agents exhibit submartingale [super-

martingale] behavior, subjectively, under CPT probability weighting scheme. We

show that even when agents’ have classic von Neuman-Morgenstern preferences

over probability distribution, and know that the gamble is a martingale, they ex-

hibit probability weighting to compensate for probability leakage arising from the

their stopped behavioral process.

Keywords: commutative prospect theory, homotopy, stopping time, behavioral

stochastic process
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1 Introduction

This paper is motivated by the following statements from (Tversky and Khaneman,

1992, pg. 300) hereinafter referenced as (“TK92”):

Let S be a finite set of states of nature; subsets of S are called events.

It is assumed that exactly one state obtains, which is unknown to the

decision maker. Let X be a set of consequences also called outcomes.

* * * * * * * * * *

An uncertain prospect f is a function from S into X that assigns to each

state s ∈ S a consequence f (s) = x in X . To define the cumulative func-

tional, we arrange the outcomes of each prospect in increasing order.

A prospect f is then represented as a sequence of pairs (xi,Ai) which

yields xi if Ai occurs . . . .

* * * * * * * * * *

Cumulative prospect theory [(“CPT”)] asserts that there exists a strictly

increasing value function v : X → Re, satisfying v(x0) = v(0) = 0),
. . . [Emphasis added].

At a more abstract level, (Luce and Narens, 2008, pg. 1) characterized problems

of this type thusly:

Most mathematical sciences rest upon quantitative models, and the the-

ory of measurement is devoted to making explicit the qualitative as-

sumptions that underlie them. This is accomplished by first stating

the qualitative assumptions empirical laws of the most elementary sort

in axiomatic form, and then showing that there are structure preserv-

ing mappings, often but not always isomorphisms, from the qualitative

structure into a quantitative one. The set of such mappings forms what

is called a scale of measurement. [Emphasis added].

Equally important is the following (Nosofsky, 1997, pg. 347) quote of Luce:

“. . . we surely do not understand a choice process very thoroughly until we can

account for the time required for it to be carried out . . . ”.
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Even though TK92 did not use the words and phrase “topological lifting”,

the composite mapping they describe–choice function from state space to outcome

space, and value function from outcome space to the reals–is, by definition, a topo-

logical lifting of a direct map from state space to the reals. Additionally, TK92 did

not augment their function space with the prerequisite map from “states of nature”,

i.e., a sample space, to state space–which gives rise to stochastic choice on state

space. Nonetheless, “occurence of an event effects a change of state”, (Norman,

1968, pg. 61). In fact, review of the literature on prospect theory failed to find ex-

plicit analysis of this commutative prospect space. Thus, this paper fills that void

by augmenting TK92 CPT function space with mappings from “states of nature”,

i.e., a sample space, to state space. By so doing we induce a rich topological space,

and show how behavioral stochastic processes are generated from microfounda-

tions of the augmented space1. Additionally, in accord with Luce’s surmise about

choice and time, we introduce behavior mimicking ε-homotopy sample paths for

deformations of stochastic choice into outcome. We show that the sample paths

are stopped behavioral processes, and that for fair lotteries they are local martin-

gales 2 under CPT probability weighting scheme.

1Our methodology is distinguished from that popularized in the literature on stochastic models of learning. See

Wickens (1982). A qualitative paper by Steinbacher (2009) used “buzz words” and “catch phrases” to discuss related

issues, but did not introduce a parametrized model of behavioral stochastic process.
2Tangentially related papers by Nosofsky (1997) and Nosofsky and Palmeri (1997) deal with subjects’ retrieval time

from memory for objects that are similar to exemplars. Even though a random walk model fitted their experimental

data, their approach is qualitatively different from that in this paper. Recently, Lindquist and McKeague (2009)

proposed a logit model with Brownian-like predictors that may be closest to ours. However, their model was adaptive

and based on observations in fMRI and other medical experiments. Our model is normative in the context of the

augmented CPT function space
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In section 2 we introduce basic definitions, and the commutative map of

prospect theory’s function space including its sample space augment. In subsec-

tion 3.1 we introduce the main result of a behavioral homotopic lifting which

serves as the foundation for construction of a behavioral stochastic process in sub-

section 3.2. In subsection 3.2 we show how behavioral stochastic processes are

uniformly stopped just short of reaching a goal in space-time. In section 4 we

apply our theory to fair gambles, and report results under various scenarios of

probability weighting. Section 5 concludes with perspectives for further research.

2 Commutative Map of Prospect Theory’s Augmented Func-

tion Space

To keep track of the myriad liftings and composite maps in Prospect Theory’s

function space, we modify the old adage “a picture is worth a thousand words” to

“a commutative map is worth a thousand words”. The diagram in Figure 1 plainly

X

vp
p
p
p
p
p
p

xxpp
p
p
p
p
p

R Sgoo

f

OO

P(Ω)woo

w̃

gg

Ω

Y WWWWWWWWWWWWWWWW

kkWWWWWWWWWWWWWWWW

Poo

Figure 1: Commutative Map of Prospect Theory’s Liftings

shows that the stochastic choice map f is a lifting of the imputed direct map g =

v◦ f from state space S to the reals R. Further, v is a functional, of f , on X . So any

action on v that yields another functional is an operator by definition. Compare

Tversky and Khaneman (1992) mapping scheme in the introduction section 1 of
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this paper. Additionally, the composite direct map g◦ (w◦P) = v◦Y , from sample

space Ω to the reals R, is a lifting of Y . In that case, for a given outcome x ∈ X , the

map v(Y (ω)) is a functional. Thus, any action averaging over that quantity gives

rise to an averaging operator. Further, the probability weight function w is a lifting

of the direct map w̃= f ◦w from P(Ω) to S. Perhaps most important, the composite

map w ◦P is a lifting of the direct map Y = f ◦ (w ◦P) from sample space Ω to

outcome space X . The stochastic choice functions in extant literature, see e.g.,

Debreu (1958) and McFadden (1974), considers a mapping P : Ω → S. But not the

intermittent composite mapping w : P(Ω)→ S which embeds probability weights

in state space S, and indirectly in X through choice function f or directly through

the composite w̃. The commutative map plainly shows that the introduction of

probability weighting map w should be incorporated in any stochastic choice map

f : S → X to account for probability distortions. In fact, Figure 1 includes the

following complimentary space3 that is the sui generis of this paper.

Definition 2.1 (Prospect Theory’s Complimentary Space). Let A, B, C be the

[dense] space bounded by the commutative map–defined respectively by

A = |SXRS| (2.1)

B = |SXP(Ω)S| (2.2)

C = |ΩP(Ω)XΩ| (2.3)

3Our useage of “complimentary space” is different from common useage in Hilbert space theory. Even though

one could perhaps treat the commutative map as one that includes vector valued functions. In which case, if |
−→
ΩX | is

orthogonal to |
−→
XR|, the complimentary angles subtended at X could be used to “define” the “complimentary space”

they subtend.
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Let M be Prospect Theory’s function space such that M = A⊕B⊕C. Then B⊕

C =M⊖A is Prospect Theory’s complimentary space. Notationally we write Ac

for PT complimentary space. �

Prospect Theory tends to focus on the space A in (2.1). In this paper, we focus

on the space M⊖A or Ac.

The mapping Y in Figure 1 has the following interpretation. Since Y : Ω →

X ⇒ Y (Ω) ⊆ X , there exists a lottery {(x1, p1),(x2, p2), . . . ,(xn, pn)} or gamble

such that Y (ω) takes the values (x1,x2, . . . ,xn) with corresponding joint proba-

bility distribution (p1, p2, . . . , pn). So that for a given realization of outcomes,

Yi(ω) = f ◦ (w◦ pi) = f (w(pi)) = (xi, pi)∼= xi(pi), for some index i. Additionally,

let FY be the probability distribution function of Y . So that for rank ordered Y we

have the relation πy = w(F+
Y (y))−w(F−

Y (y)) as the probability weight assigned

to the simple lottery at the jump of F . In any event, the commutative diagram

plainly shows how probabilities and or probability weights are embedded in out-

come space X . The rest of this paper constitutes analytic proofs of these facts

according as they apply to Cumulative Prospect Theory or otherwise.

3 Behavioral Stochastic Process

In this section we introduce the homotopy concept and use it to identify a

behavioral stochastic process in PT function space.
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3.1 Behavior mimicking homotopy

The following definitions are critical to this paper.

Definition 3.1 (Homotopy, deformation, path). [(Lefshetz, 1942, pg. 39)].

Let A, B be topological spaces and I be the unit interval I = {u|0≤ u≤ 1}. Two

mappings, t1, t2 : A → B are said to be homotopic whenever there is a mapping

T : I ×A :→ B such that T (0,x) = t1(x), and T (1,x) = t2(x) for x ∈ A. If t1 = 1A

is the identity map, so that A ⊂ B, then t2 is a deformation. The set T (I ,x) is the

path of x. Whenever the spaces are metric, and the paths are all of diameter less

than ε , we have an ε-homotopy, or an ε-homotopy as the case may be.

Definition 3.2 (Homotopy Lifting Property). (Gray, 1975, pg. 79).

For any homotopy ψ̃ : [0,1]×Ω → S, and for any map Y lifting ψ̃ , there exist a

homotopy ψ : [0,1]×Ω → X lifting ψ̃ with Y = ψ̃|[0,1]×Ω.

The commutative map in Figure 2 depicts the homotopy lifting property enun-

ciated in 3.2. According to Figure 1 the mapping Y and f ◦ (w◦P) are candidates

Ω

��
**

Y // X

Ω× [0,1]

ψiiiiiii

44iiiiiiiiiiii

ψ̃ // S

OO

Figure 2: Prospect Theory’s Homotopy Lifting of State Space

for homotopy maps from Ω to X . Specifically, let ψ(0,ω) = f ◦ (w ◦P)(ω) and

ψ(1,ω) = Y (ω) for some realized sample point ω . If the stochastic choice com-

posite map f ◦ (w ◦P)(ω) is a continuous deformation of Y (ω), then ψ(t,ω) is
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an intermediate sample path of the deformation of f ◦ (w ◦P)(ω) into Y (ω) at

some intermediate “time” t4. In other words, technically, if F = F
t
(n)
1

⊆ F
t
(n)
2

⊆

. . .F
t
(n)
2n

is a right filtration of the paths in [0,1] for a dyadic partition of [0,1],

then there is a progressively measureable [discretized] behavioral path process

ψ = {ψ(t,ω), Ft ; t
(n)
k−1 ≤ t < t

(n)
k

,k = 1,2, . . . ,2n} that describes the deformation

of stochastic choice function to a random variable in outcome space. That is, for

t
(n)
k

= k.2−n fixed, we have the approximate “coordinate mapping” ψ(t,ω)≈Y (ω)

which translates to an ε-homotopy sample path

ψ(t
(n)
k

,ω) = Y (ω)+η(t
(n)
k

,ω) (3.1)

where η is an idiosyncratic “ε” error term. This implies observation that subjects

change their mind over time, and that the behavior mimicking deformation ψ mea-

sures Y with error. It also, identifies Luce’s conjecture that our understanding of a

choice process is enhanced by accounting for the time taken to make it. See also,

(Davidson and Marschak, 1958, pg. 1). In fact, we can write

ψ(t
(n)
k

,ω) = (1− t
(n)
k

)( f ◦w◦P)(ω)+ t
(n)
k

Y (ω) (3.2)

which plainly show that ψ is an intermediate map5 between stochastic choice f ◦

w◦P, and outcome Y (ω) for “time” evolution t
(n)
k

.

4Technically, we should write f ◦ (w ◦P)(t,ω) as the intermediate map at “time” t. However, it is notationally

cumbersome.
5See (Allgower and Georg, 1994, pp. 77-80) for numerical implementation of this algorithm
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3.2 Psychological distance and stopped behavioral processes

Due to measurement error or otherwise, the homotopy process is “stopped”

by a subject before the choice deformation process is completed. So we want to

measure the closeness of the stopped process to the target Y (ω). According to

(Nosofsky, 1997, pg. 348) there exist a psychological distance6 between ψ and Y

which, in our case, can be represented by the metric

ρ(ψ,Y ) = sup
1≤k≤2n

|ψ(t
(n)
k

,ω)−Y (ω)| (3.3)

This gives rise to the stopping time

τε = inf{t > 0; |ψ(t,ω)−Y (ω)|> ε(ρ(·)} (3.4)

Nosofsky (1997); Nosofsky and Palmeri (1997) also report that ε ↓ 0 as follows7.

For instance, they show that the similarity or proximity of the two functions8 is an

exponential decay of their distance as follows

ε(ρ) = exp(−cρ) (3.5)

6Recall that f ◦w ◦P ≃ Y . Nosofsky used a weighted Euclidean distance function which, in the context of our

model, is written as ρ(ψ, f ) = (∑2n

j=1 w j|ψ(t
(n)
k ,ω)− f |2)

1
2 , where w j is the attention weight given to distance. See

also, Massa and Simonov (2005) who used a similar metric based on conditional variance from a Kalman filter of

agents learning about stock prices. For instance, they posit Xt+1 = AXt + ut and Rt = BXt + vt , where Xt is the state

of the economy at time t, Rt is a vector of portfolio returns, and LUt = var[Xt+1|R1, · · · ,Rt ] is the “learning” metric.

Inasmuch as our agents probability weights are included in the composite function f ◦w◦P we exclude w j. Cf. Dawes

(1979). Also, in keeping with standard metric in function space we used a sup-norm.
7(Norman, 1968, pg. 63) describes ρ as a distance diminishing function.
8Nosofsky used distance between exemplars i, j and used i j subscript notation. Our distance ρ is functionally

equivalent to their di j distance notation.
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for some constant c. They let M j be the strength of conviction for a given choice

where i, j ∈ {ψ,Y}, so that the degree to which, say, choice j is preferred is

a j(ρ) = M jε(ρ) (3.6)

They also posit that the probability that the choice j is made at time t is given by

f (t) = a j(ρ)exp(−a j(ρ)t) (3.7)

(Baucells and Heukamp, 2009, pg. 3) introduced a probabiliity time depen-

dent model (“PTT”) by adding a probability dimension to an outcome space do-

main. They argue that probability and time are nonseperable such that an ex-

pected value function V (x, p, t) is time dependent through time dependent proba-

bility. Further, they characterized the ’total psychological distance” a = z+ r(x)t

where z = − ln(p), r(x)” is a ”fade rate”, and t is time. Op. cit. pp. 11, 14.

Given a psychological distance function d(·), they proposed a density function

f (a) = exp(−d(a)). In the context of out parametrization, their density function

is

f (ρ, t) = exp(−ρ(z+ r(x)t)) (3.8)

where

z =− ln(p), ;r(x) is a “fade rate” and t is time (3.9)
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Those parametrizations above seem to be fairly standard in the quantitative psy-

chology literature on learning. See e.g., Norman (1968).

In our case, we modify Nosofsky and Palmeri (1997) time based density

to space time (ρ, t) by adding a space dimension ρ . Let 0 ≤ ρ ≤ M < ∞. For

the purpose of exposition, let a j(ρ) = ρ . So that f (ρ, t) = ρ exp(−ρt). For our

Lebesgue density f (ρ, t) we need the following normalization

∫ M

0

∫ ∞

0
f (ρ, t)dρdt = 1 f (ρ, t) =

ρ exp(−ρt)

M
(3.10)

where 0 ≤ ρ ≤ M < ∞. Let

α = Pr{|ψ(t,ω)−Y (ω)|> ε(ρ)} (3.11)

β = 1−Pr{|ψ(t,ω)−Y (ω)|> ε(ρ)} (3.12)

Integration by parts shows that for ε(ρ) = ε > 0, the probability of the intermedi-

ate homotopy sample path process being stopped is

Pr{|ψ(t,ω)−Y (ω)|> ε}=
1

M

(

1−
∫ ε

0
ρ exp(−ρt)dρ

)

(3.13)

=
1

M

(

1+
ε

t
exp(−εt)−

1

t2
(1− exp(−εt)

)

(3.14)

For small ε , after some elementary algebra, that quantity reduces to

Pr{|ψ(t,ω)−Y (ω)|> ε}=
1

M
(1− ε2) (3.15)
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Despite our [nonseperable] space-time modification of probability density in Equa-

tion 3.10, the probability Pr{|ψ(t,ω)−Y (ω)| > ε} = 1
M
(1− ε2) is not time de-

pendent9. In fact, we have the following

Proposition 3.1. ψ(t,ω) is well defined for small probabilities.

Proof. Dudley (1967) introduced a class of probability metrics that diminishes

with distance. For instance,

Pr{|ψ −µψ | ≥ ε} ≤ 2exp(− ε2

2L2 )≈ 2(1−
ε2

2L2
) (3.16)

where ψ is a Lipschitz continuous function with Lipschitz constant L, P is a Gaus-

sian measure, and µψ is measure of location such as the mean or median of ψ .

See e.g., (Massart, 1998, pg. 1), and Talagrand (2005) for a review and exten-

sions. Since the behavioral process ψ(t,ω) must satisfy Kolmmogov’s continuity

criterion, see (Karatzas and Shreve, 1991, pg. 53), it must satisfy the stronger

Lipschitz condition. Thus, after elementary algebra, from Equation 3.16 we get

ε2 =
2− 1

M
1
L2 −

1
M

(3.17)

Since ε2 > 0 this reduces to L < |M|
1
2 . Which implies

|ψ(t,ω)−ψ(s,ω)| ≤ |M|
1
2 |s− t|< M(s− t)2 (3.18)

9This result implicates Baucells and Heukamp (2009) and our space-time probability density for small probabili-

ties. It implies that our space time probability density function is slow varying in time. In fact, for any small ε , that

probability is zero only if M → ∞: an absurdity.
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Thus, ψ is a well defined process that satisfies Kolmogorov’s continuity criterion.

Thus, the probability α of the process being stopped is uniform across time. If

α , is large, then the probability of it not being stopped, β = 1−α , is small. Un-

der CPT, subjects overweigh β with w(β ) and underweigh α with w(α) provided

α < pe < β . So even though ψ(t ∧ τε ,ω) is a stopped stochastic choice process

with probability α of being stopped before attaining the goal Y (ω), agents under-

estimate that process with distorted probability w(α). These de facto statistical

inference about stochastic choice functions show that even Type I and Type II er-

ror are subject to distortion. For subjects tend to accept a stochastic choice process

when they should reject it,, and vice versa. The foregoimg analysis gives rise to

the following

Proposition 3.2. Let f (ρ, t) =
ρ exp(−ρt)

M
be a space-time probability density func-

tion, with psychological distance ρ , where 0 ≤ ρ ≤ M < ∞; 0 ≤ t ≤ ∞, and

τε = inf{t > 0; |ψ(t,ω)−Y (ω)|> ε(ρ)}

be a stopping time for the stochastic choice process ψ , where ε(ρ) ↓ 0. Then for

any small ε the process is uniformly stopped with probability α = 1
M
(1− ε2).

In addition to the foregoing, the following corollary is motivated by (Shao,

2007, pp. 129-131).
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Corollary 3.3. Let C(Y (ω)) = {ε| |ψ(·)−Y (ω)| ≤ ε} be a confidence set for a

sampled lottery Y (ω), and w(·) be a probability weighting function. H0 : ψ(t,ω)=

Y (ω) be the null hypothesis being tested against the alternative Ha : ψ(t,ω) 6=

Y (ω). So that Pr{ψ /∈ C(Y )} ≤ α . Let α small be the objective probability of

Type I error–H0 is rejected when it is true, given the realized sample path ω ∈ Ω.

Then the subjective probability of Type I error is given by w(α) > α , and vice

versa for Type II error.

3.2.1 Behavioral submartingale processes

In this section we show how the stochastic choice problem evolves by and

through intermediate homotopic maps, and construct a behavioral submartingale

process for fair lotteries. As a preliminary matter, we have the following

Proposition 3.4. The process ψ = {ψ(t
(n)
k

,ω),F
t
(n)
k

;1 ≤ k ≤ 2n < ∞} is well de-

fined.

Proof. In proposition 3.1 we showed that ψ is well defined for small probabilities.

Now we extend that definition to stopping times. From Equation 3.2, we use the

stopped behavioral hypothesis as follows.

sup
k

∣
∣
∣ψ(t

(n)
k

∧ τε ,ω)−Y (ω)
∣
∣
∣= sup

k

(1− t
(n)
k

∧ τε) | f ◦w◦P−Y (ω)| (3.19)

⇒ (1− τε)(ε +δ )> ε (3.20)
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for some δ > 0 so that

τε < 1−
ε

ε +δ
< 1 (3.21)

The latter relation is true for all δ > 0. Hence the proof is done.

Definition 3.3. Let H be the convex hull of homotopic maps in the commutative

map in Figure 1. Then

H = {
2n

∑
k=1

(1− t
(n)
k

) f ◦w◦P+ t
(n)
k

Y | Y ∈ X , and f ◦w◦P ∈ X} (3.22)

At this point we introduce the following

Lemma 3.5. If agents rank order outcomes x(1),x(2), . . . ,x(n), then they rank order

gambles [or lotteries] Y(1),Y(2), . . . ,Y(n).

Proof. The proof is by induction. Let Y1 , (x1, p1;0,1− p1) be a simple lottery in

X ×P. In what follows we suppress 0,1− p. Let

Yn , {(x1, p1),(x2, p2), . . . ,(xn, pn)} ∈

n times
︷ ︸︸ ︷

X ×·· ·×X ×

n times
︷ ︸︸ ︷

P×·· ·×P (3.23)

be a lottery. Let

Y2 , {(x1, p1);(x2, p2)} ∈
︷ ︸︸ ︷

X ×X ×
︷ ︸︸ ︷

P×P (3.24)

be another lottery. According to CPT agents rank order outcomes when formu-

lating decisions under risk and uncertainty. So that if outcomes in Y2 are ranked

15



we write Y(2) , {(x(1), p1);(x(2), p2)}. It is clear that Y(2) , Y(1) ∪ {(x(2), p2)}.

Since the recursive ranked outcome-lottery relation holds for Y(1) and Y(2), it holds

for ranked lotteries Y(1),Y(2), . . . ,Y(n−1) ≡ x(1),x(2), . . . ,x(n−1), and by induction

Y(n) = Y(n−1)∪{(x(n), pn)}.

Remark 3.1. According to this result, a gamble or lottery is an outcome with its

own probability of winning or losing. Implicit in that statement is compound in-

variance by Prelec (1998) or the weaker reduction invariance by Luce (2001).

Lemma 3.6. {ψ(t
(n)
k

,ω)}2n

k=1 is a monotone [increasing] sequence of homotopic

maps.

Proof. By definition ψ(t
(n)
k

,ω) is in the convex hull H . Since (Prelec, 1998,

pg. 498) showed that for any probability measure P, the inverted S-shape of

w(P) intersects the diagonal inclined at 45% to the horizontal at a fixed point

approximately p = 1
3
; let pe be the fixed point of w(p) = p, and fix f ◦w ◦ pe =

λ (pe). So that ψ(t
(n)
k

,ω) = λ (pe)+ t
(n)
k

(Y (ω)−λ (pe)) is a parametric curve in

t
(n)
k

starting at the fixed point λ (pe). Let (Y1,Y2, . . . ,Y2n) be a sequence of lotteries

in Y (Ω). According to Lemma 3.5, if agents rank order outomes, then they rank

order lotteries a fortiori. Put ψ(t
(n)
k

,ω) in 1-1 correspondence with a rank ordered

lottery sequence Y(1),Y(2), . . . ,Y(2n). So that we have a coordinate map ψ(t
(n)
k

,ω) =

Y(2n−k+1)(ω). By construction ψ(t
(n)
k

,ω) ∈ H is a parametric curve, i.e., a Peano

curve, mapping I into the plane, see (Guggenheimer, 1977, pp. 1,3), so each

point on its locus is unique and increasing in k. Thus, ψ(t
(n)
k

,ω) is monotone
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increasing in ranked lotteries.

Theorem 3.7 (Doob’s Optional Sampling Theorem). (Karlin and Taylor, 1975,

pg. 259); (Doob, 1953, pp. 302-303). Let {Yn,Fn;n ≥ 0} be a martingale on

the filtered probability space (Ω,F ,Fn,P), where F =
⋃

n≥0 Fn. Let τ(ω) be a

stopping time. If Pr{τ(ω) < ∞} = 1 and E[supn |Yτ∧n|] < ∞, then E[Yτ ] = E[Y0].

�

Theorem 3.8 (Doob-Meyer Decomposition). (Grimmett and Stirzaker, 2001, pg.

474); (Dellacherie and Meyer, 1982, pg. 7). A submartingale {ψn,Fn;n ≥ 0}

with E[ψn]< ∞ may be uniquely expressed in the form:

ψn = Yn + εn (3.25)

where {Yn,Fn;n ≥ 0} is a martingale, and {εn,Fn;n ≥ 0} is a previsible process.

�

Theorem 3.9. Let {Yn,Fn;n ≥ 1} be a fair gamble or lottery, i.e., a martingale.

Then {ψ(t
(n)
k

,ω), Fn;n≥ 1} is a submartingale, and {−ε(t
(n)
k

,ω)} is a previsible

increasing process.

Proof. The proof rests on Doob-Meyer decomposition in Theorem 3.8. By hy-

pothesis Yn is a martingale. Additionally by Lemma 3.6 ψ is an increasing se-

quence. Thus, E[ψ(t
(n)
k

,ω)| F
t
(n)
k−1

] ≥ ψ(t
(n)
k−1). However, under Doob’s Optional

17



Sampling Theorem in Theorem 3.7 and Equation 3.1 above

E[ψ(t
(n)
k

,ω)| F
t
(n)
k−1

] = E[Y (ω)| F
t
(n)
k−1

]+E[η(t
(n)
k

,ω)| F
t
(n)
k−1

]

(3.26)

= Y0 +E[η(t
(n)
k

,ω)| F
t
(n)
k−1

]≥ ψ(t
(n)
k−1,ω)

(3.27)

where Y0 is the fair payoff for the lottery. Subtract η(t
(n)
k−1,ω) from both sides of

the inequality to get from equation (3.1)

E[η(t
(n)
k

,ω)| F
t
(n)
k−1

]−η(t
(n)
k−1,ω)≥ ψ(t

(n)
k−1,ω)−Y0 −η(t

(n)
k−1,ω) (3.28)

= η(t
(n)
k−1,ω)−η(t

(n)
k−1,ω) = 0 (3.29)

Hence

E[η(t
(n)
k

,ω)| F
t
(n)
k−1

]≥ η(t
(n)
k−1,ω) (3.30)

For internal consistency with the stopped process in Proposition 3.2 we must have

−ε(t
(n)
k

,ω) = η(t
(n)
k

,ω). (3.31)

In which case we have a previsible increasing process.
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4 Applications to Fair Gambles

In this section we apply some of the results above to subjects’ response(s)

to gambles. Let E be the objective expectations operator, and Ẽ be the subjective

expectations operator. The homotopic lifting property posits

ψ(t
(n)
k

,ω) = Y (ω)+ ε(t
(n)
k

,ω) (4.1)

and that

ε(t,ω) ↓ 0 in t (4.2)

So that

P− lim
n,k→∞

(ψ(t
(n)
k

,ω)−Y (ω)) = P− lim
n,k→∞

ε(t
(n)
k

,ω) = 0 (4.3)

So that for fair gambles Y (ω), under Doob’s Optional Sampling Theorem

E[ψ(·,ω)] = E[Y (ω)] = Y0 (4.4)

Choose ε sufficiently large so that the probability 1
M
(1− ε2) is small. (Berger,

1985, pp. 49-50) and (DeGroot, 1970, pp. 90-91) posited a set of “rationality

axioms” for construction of utility functions for preferences over probability dis-

tributions, in which probability measures are discrete. Thus, in what follows we
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use discretized probabilities. Also, Prospect Theory tells us that, generally, sub-

jects overweigh small probabilities and underweigh large probabilities10. So that

for

Pr{|ψ(t
(n)
k

,ω)−Y (ω)|> ε}=
1

M
(1− ε2) (4.5)

Let

Pr{ψ(t
(n)
k

,ω)< Y (ω)− ε}= θε (4.6)

Pr{ψ(t
(n)
k

,ω)> Y (ω)+ ε}=
1

M
(1− ε2)−θε (4.7)

Since all probabilities are small, the probability weighting function w implies

w(θε)> θε (4.8)

w(
1

M
(1− ε2)−θε)>

1

M
(1− ε2)−θε (4.9)

By abuse of notation, assume that ε(τε ,ω) = ε(τε). In that setup the [uncondi-

tional] subjective expected value for the random variable ε(τε ,ω) is given by

Ẽ[ε(τε ,ω)] =−ε(τε)w(θε)+ ε(τε)w(
1

M
(1− ε2)−θε) (4.10)

= ε(τε)[w(
1

M
(1− ε2)−θε)−w(θε)] (4.11)

10Ingersoll (2008) provided comparative statics of CPT which shows that the probability over[under]weighting

feature can be violated.
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For losses ℓ and gains g, let

w(θε) = θε +δℓ, δℓ > 0 (4.12)

w(
1

M
(1− ε2)−θε) =

1

M
(1− ε2)−θε +δg, δg > 0 (4.13)

Upon further reduction we get

Ẽ[ε(τε ,ω)] = ε(τε)[
1

M
(1− ε2)+δg −δℓ−2θε ] (4.14)

By the same token, the unconditional objective expected value of the same random

variable is

E[ε(τε ,ω)] = ε(τε)[
1

M
(1− ε2)] (4.15)

Comparison of the expected values in equations (4.14) and (4.15) show that the

quantity δg − δℓ− 2θε is dispositive of a subject’s perception of the underlying

gamble.

4.1 Case i. Submartingale behavior for fair gambles

Assume that δg−δℓ−2θε > 0. Thus, the unconditional subjective expected value

is greater than the unconditional objective expected value.

Ẽ[ε(τε ,ω)]> E[ε(τε ,ω)] (4.16)
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So that for any information set F
t
(n)
k−1

we have

Ẽ[Ẽ[ε(τε ,ω)| F
t
(n)
k−1

]]> E[E[ε(t
(n)
k−1 ∧ τε ,ω)| F

t
(n)
k−1

]] (4.17)

⇒ Ẽ[ε(τε ,ω)| F
t
(n)
k−1

]> E[ε(t
(n)
k−1 ∧ τε ,ω)| F

t
(n)
k−1

] (4.18)

= ε(t
(n)
k−1) (4.19)

So that for the stopped behavioral process, by virtue of Doob’s Optional Sampling

Theorem, we get

Ẽ[ψ(t
(n)
k

∧ τε)| F
t
(n)
k−1

] = Ẽ[Y (ω)| F
t
(n)
k−1

]+ Ẽ[ε(t
(n)
k

∧ τε ,ω)| F
t
(n)
k−1

] (4.20)

Since subjects know that the gamble Y (ω) is fair, Ẽ[Y (ω)| F
t
(n)
k−1

] = Y0 under

Doob’s Optional Sampling. So that in collaboration with equation (4.19) we get

Ẽ[ψ(t
(n)
k

∧ τε)| F
t
(n)
k−1

]> Y0 + ε(t
(n)
k−1 ∧ τε) (4.21)

= ψ(t
(n)
k−1 ∧ τε) (4.22)

Thus, the stopped behavioral process is a [strong] submartingale. The foregoing

results are summarized in the following

Proposition 4.1. Let (Ω,F ,{Ft},P) b a filtered probability space with discretized

right continuous filtration F
t
(n)
0

⊆ F
t
(n)
1

· · · ⊆ F
t
(n)
2n

. Let S be state space, and

Y be a fair gamble defined on Omega and taking values in outcome space X.

Let f ◦ w ◦ P be a composite stochastic choice function defined on S × Ω. Let
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{ψ(t
(n)
k

,ω),F
t
(n)
k

;k = 1,2 · · · ,2n} be a discretized behavior mimicking homotopic

sample path for deformation of stochastic choice into lotteries so that

ψ(t
(n)
k

,ω) = Y (ω)+ ε(t
(n)
k

,ω)

where ε(t
(n)
k

,ω) is measurement error. Let Ẽ be the subjective expectations op-

erator for a subject taking a gamble Y (ω), and E be the corresponding objective

expectations operator, respectively, for probability measures P̃ and P defined on

Ω. Let P̃ > P. Furthermore, define the stopping time

τε = inf{t ≥ 0| |ψ(t
(n)
k

,ω)−Y (ω)|> ε}, k = 1,2, · · · ,2n

(4.23)

Then

Ẽ[ψ(t
(n)
k

∧ τε ,ω)| F
t
(n)
k−1

]> E[ψ(t
(n)
k

∧ τε ,ω)| F
t
(n)
k−1

] (4.24)

= ψ(t
(n)
k−1 ∧ τε ,ω) (4.25)

is a submartingale.

4.2 Case ii. Supermartingale behavior for fair gambles

In this scenario, δg −δℓ−2θε < 0, i.e. the inequality in equations (4.21) and

(4.22) is reversed, and we have a [strrong] supermartingale situation. Now subjects

tend not to gamble for sufficiently large deviations from the fair gamble that occur
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with small probability. That is the behavior mimicking ε-homotopy is the range

of admissible behavior. Subjects are risk averse, and evidently have strong loss

aversion.

4.3 Case iii. Probability leakage for fair gambles

The interesting case here is when δg − δℓ− 2θε = 0. Presumably there is

no probability weighting because now w( 1
M
(1 − ε2)) = 1

M
(1 − ε2) we are in a

world of classic von Neuman-Morgenstern utility. Subjects know that the gam-

ble is a martingale. So expectaions for the stopped behavioral process coincide

Ẽ[ψ(t
(n)
k

∧ τε ,ω)| ·] = E[ψ(t
(n)
k

∧ τε ,ω)| ·]. However, the behavioral process was

stopped with probability 1
M
(1 − ε2) before the behavior mimicking homotopic

sample path was completely deformed into the fair gamble. Additionally, in the

space-time density in equation (3.10), maxρ = M. So for a fair gamble we expect

psychological distance ρ to be uniformly distributed with probability 1
M

over the

interval11. Since subjects have “martingale beliefs”, they arguably assign equal

probability to winning or loosing at a given play of the gamble. In that case, the

corresponding conditional probability of winning [or losing] is given by

Pr{Winner| Fair gamble}=
1

2M
(1− ε2)

1
M

(4.26)

=
1

2
(1− ε2) (4.27)

11This is an heuristic assumption motivated by Equation 3.14. There, as t → ∞, Pr{ρ(·)> ε}= 1
M

. Evidently, in

the long run, the marginal distribution of the metric ρ coincides with that of the fair gamble Y (ω). Here “fair” means

each player has the same chance of winning. So that instead of 1
2

we assign a “martingale measure” of 1
M

uniformly

to simplify computation without loss of generality.
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Thus, the subject’s chances of winning [or losing] is less than 1
2
. In fact, the total

probability of winning or loosing in this case is 1− ε2 < 1. The probability leak-

age of ε2 induces a subprobability measure on the decision space. To compensate

for this probability leakage subjects may have to renormalize the space-time prob-

ability density in equation (3.10) by replacing M with M(1− ε2). In that case,

ε ↓ 0 ⇒ maxρ = M.

Perhaps most important, the subprobability feature implies that subjects as-

sign asymmetric weights for martingales. To see this, in the scenario just described

above, instead of a fair coin for deciding to gamble, let α be the weight assigned

to losing, and β be the weight assigned to winning. So that now the conditional

probabilities of loosing and winning is, respectively, α(1− ε2) and β (1− ε2).

The total probability associated with this event is (α +β )(1− ε2). That quantity

is equal to 1 if (α +β ) = (1− ε2)−1. Since 0 < ε < 1, α +β overweighs proba-

bilities of winning or losing. This result is consistent with Tversky and Khaneman

(1992) Cumulative Prospect Theory. However, here it was introduced in a fair

gamble in which agents have von Neuman-Morgenstern beliefs12. Therefore, our

behavior mimicking homotopy sample path is able to produce probability weight-

ing for modified Nosofsky and Palmeri (1997) space-time probability densities.

We summarize this result with the following

Proposition 4.2. Let f (ρ, t) be a space-time probability density function for psy-

chological distance ρ . Let Y (ω) be a fair gamble. Assume that subjects have von

12Arguably, the catalytic relation w(p) = p implies a fixed point instead of a transformation of w(p) into p. In

which case the result is an artifact of coincidence.
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Neuman-Morgenstern preferences over probability distributions. Let ψ(t
(n)
k

∧ τε)

be a stopped behavior sample path. Assume that subjects know that Y (ω) is a fair

gamble, so that for ε > 0 small

Pr{|ψ −Y | ≥ ε}=
1

M
(1− ε2)

Then ε2 is probability leakage, and (1− ε2)−1 is the compensating probability

weight.

5 Conclusion

In this paper we augment Tversky and Khaneman (1992) Cumulative Prospect

Theory’s function space with: 1) a direct mapping from “states of nature”, dis-

torted by probability weighting, to state space; and 2) a mapping of lotteries from

“states of nature” to outcome space. We show that a commutative map of that aug-

mentation supports an ε-homotopy lifting property whereby composite stochastic

choice functions are deformed into outcomes [or gambles]. Due to measurement

error or otherwise, ε-homotopy sample paths are behavior mimicking processes

which are uniformly stopped by subjects’ behavior before the deformation goal

is reached. Moreover, we identify conditions under which subjects exhibit sub-

martingale, supermartingale, and probability leakage in response to fair gambles.

Our results show that the commutative prospect space provides a rich topology for

further research on construction of abstract behavioral stochastic processes that
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enhance our understanding of experimental results.
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