Asset Pricing - A Brief Review

Li, Minqiang

2010

Online at https://mpra.ub.uni-muenchen.de/22379/
MPRA Paper No. 22379, posted 30 Apr 2010 17:08 UTC
Asset Pricing Models – A Brief Review

Minqiang Li
Georgia Institute of Technology

Abstract

I first introduce the early-stage and modern classical asset pricing and portfolio theories. These include: the capital asset pricing model (CAPM), the arbitrage pricing theory (APT), the consumption capital asset pricing model (CCAPM), the intertemporal capital asset pricing model (ICAPM), and some other important modern concepts and techniques. Finally, I discuss the most recent development during the last decade and the outlook in the field of asset pricing.
1. 导言

“资产（asset）”是一个比较笼统的经济学词汇。简单地来说，资产可以分为显性以及隐形两大类。显性资产包括个人的地产，企业的厂房，设备以及它发行的各种有形的证券，国家的外汇储备等具体的各种资产形式。隐形资产则包括一个公司拥有的名声，专利权，以及潜在的实体经济权式的投资机会，等等。所谓“资产定价（asset pricing）”顾名思义就是对各种显性或隐形的资产进行价值上的精略评估或精确计算。“投资组合（portfolio）”是指在资产定价理论的基础上根据不同的投资目标选择资产的最佳搭配。

从人类文明出现物质交换时，人类就已经开始进行资产定价了。在商品经济高度发达的现代社会，资产定价已经发展成了一个比较成熟的，严谨的金融学分叉学科。另外，资产定价本身又已经分化出了各个清晰的分支，比如金融衍生工具（financial derivatives），固定收益证券（fixed income securities）等等。由于资产定价和投资组合的关联性，早期的经典理论如资本资产定价模型并未对二者进行细致的区分。但近年来，随着资产定价理论大框架建立的完成，投资组合理论开始出现了独立发展的趋向。

资产定价以及投资组合理论的重要性是不言而喻的。从个人层面来说，它们对个人投资理财提供了理论上的指引。对公司来说，公司的各项金融决策往往依赖于资产的定价。比如公司在需要资金时，它可以依据当前股票的定价来决定应当发行债券还是股票。公司也可以利用不同的金融工具来应对各种潜在的风险。从国家层面来说，国家需要随时监控市场上资产定价的秩序是否正常。国家的各种政策如税收，交易额度，社会福利保障等又反过来影响资产的定价。另外，许多国家拥有主权投资基金（sovereign investment funds）。如何对这些基金进行战略性投资也是一个重要的话题定价及投资组合理论。

我在本文中将介绍各种资产定价及投资组合的理论，重点将放在近十年来的发展。在此基础上，我也介绍最近以来这个领域的发展并提出未来的发展展望。鉴于资产定价理论的广度及深度，本文将试图较全面地对这个领域中最为重要的核心内容进行阐述。我将略去一些已经自成体系的分支，比如行为金融学（behavioral finance），金融工程学（financial engineering），等等。我也不特意阐述只特定于投资组合的理论。资产定价中一个核心的课题是股权溢价之谜（equity premium puzzle）。本文也不具体讨论。另外，关于理论和实证之间的种种关联，也请读者参考其它文献。

本文的具体安排如下。在第二节里，我介绍早期的资产定价经典理论。第三节讲述一些较近的理论概念及技巧，基本上是八十年代以后的成果。第四节里将着重讲述资产定价最近十年以来的进展。第五节是总结。

2. 经典理论

资产定价理论的核心完整地建立在三个互相等价的基石上，那就是，套利（arbitrage），优化（optimization）和平衡（equilibrium）。所谓套利是指市场上不存在套利机会，优化则指单一的代表性投资者进行优化决策，而平衡则是指市场的供求平衡。如果我们假定其中的任何一个，我们就能证明随机折现因子的存在。不同的模型则导出了不同的折现因子。在这个意义上，尽管不同的模型可能会给出很不一样的价格或指示很不一样的决策，不同的资产定价模型是统一的。有些模型则研究特定的市场或资产，比如固定收益类，金融衍生产品，等等。在初学资产定价理论时，如果清楚这个大框架，就不会在众多的模型中迷失方向。
2.1 资本资产定价模型

理论上，单期的 CAPM 的推导有多种形式。比如我们可以假定正态分布的随机收益率或特定的效用函数。我采用的期望值-方差优化方法如下。假设投资机会是 n 个线性不相关的带风险资产，并让 \(R_i \) 表示资产 i 在时期末的随机收益率。假设预期回报率向量是 \(\mathbb{E} R = \bar{R} \)，协方差矩阵是 \(\text{Var}(R) = \mathbf{V} \)。一个期望值-方差投资者的问题是选择各个资产的权重 \(w \) 来使得投资组合的方差最小。这里有两个限制条件。一个是权重的和为 1，另一个条件是投资组合的预期收益率固定在一个数上 \(\bar{R} \)。我们以 \(\mathbf{e} \) 来代表所有分量都是 1 的向量。具体的优化问题如下：

\[
\min \frac{1}{2} \mathbf{w}' \mathbf{V} \mathbf{w} \quad (2.1)
\]

并满足权重加和为 1，以及达到目标预期收益率 \(\bar{R}_p \)

\[
\mathbf{w}' \bar{R} = \bar{R}_p, \quad \mathbf{w}' \mathbf{e} = 1. \quad (2.2)
\]

在 \(\bar{R}_p \) 时的最优解是被称为有效组合（efficient portfolio），它们的全体就是有效边界。这个问题很容易用拉格朗日乘子（Lagrangian multiplier）的方法求解。解的形势是两个有效组合的加权平均。第一个组合的权重和 \(\mathbf{V}^{-1} \bar{R} \) 成正比。第二个组合的权重和 \(\mathbf{V}^{-1} \mathbf{1} \) 成正比。第二个组合其实正是全局方差最小化组合（global
minimum variance portfolio）。可以证明有效边界在标准方差-预期收益率空间中是一条双曲线的正支。

有效组合的权重形式的另一个极重要的特点是和固定的预期收益率R_f成正比。如果任意在有效边界上选择两个非全局方差最小组合，这个成正比的特点使得所有有效边界上的组合都可以通过这两个选定的组合来产生。这就是一个共同基金定理，通常称为二基金分离定理（Two Funds Separation Theorem）。二基金分离定理指出，尽管最初给定的投资机会中有n个带风险资产，对一个期望值-方差投资者来说，如果只给他两个有效组合为带风险资产，投资机会和原来的n个带风险资产是完全等同的。

CAPM 中一个极重要的概念是 β。在讲 β 的时候，我们必须给出两个有序的组合 p 和 q（不一定得有效）。这个 β_{pq} 的定义是组合 p 和 q 的随机收益率的协方差除以组合 q 的随机收益率的方差。熟悉线性回归的读者可能已经发现这就是单一变量线性回归的系数。引入 β 这个概念以后，对任何一个非全局最小方差有效组合 m，我们可以证明存在唯一的一个有效组合 z 使得 $\beta_{mz} = 0$。也就是说除了全局最小方差有效组合，其它的有效组合都是一对一的，每一对里的两个组合是不相关的。进一步，每一对里的两个组合分别处于全局最小方差有效组合的两侧。它们的两个预期收益率与全局最小方差有效组合的预期收益率的差积是一个不依赖于这个特定对的常数，并且它们的两个随机收益率的方差的调和平均正好是全局最小方差有效组合的预期收益率的方差的两倍。这两个性质似乎未曾在文献中出现过。利用这些性质，对固定的一个不相关组合对 m 和 z，可以证明任何一个有效组合 p 的随机收益率都是 m 和 z 的随机收益率的加权平均，而两个权重恰恰就是 p 关于 m 和 z 的 β 值。这就是 Black（1972）里提出的零 β – CAPM 模型。以上的证明方法优于原著中比较基本和琐碎的方法。注意零 β – CAPM 模型实际上是一个随机收益率分解形式。在这个分解形式中的两个基就是 m 和 z 的随机收益率。

在通常形式的 CAPM 里是有无风险资产的。在标准方差-预期收益率空间中无风险资产和任何其它资产的所有组合的轨迹是一条直线。我们已知所有带风险资产给出的最佳投资机会就是有效边界。因此，在加入一个无风险资产后，最佳投资机会就成了一条与原有效边界相切的正斜率的直线。这条切线就是所谓的资本市场线（capital market line）。这个切点上的组合就是所谓的市场组合 m。所有的投资者，不管他们的风险意愿如何，都同意同一个市场组合。他们的不同点是选择不同的无风险组资产与市场组合之间的比例。这是在有无风险资产时的二基金定理，通常把它称为货币市场基金分离定理（Money Market Fund Separation Theorem）。

一个组合的随机收益率 R 与无风险资产的收益率 R_f 的差被称为超额随机收益率（excess return）。一个资产或组合的预期超额收益率与它的标准方差的商就是单位风险报酬，也称夏普比率（Sharpe ratio）。资本市场线上的组合具有最大的夏普比率，一般记作 S_m。
在存在无风险资产时，一般对超额随机收益率进行分解。得到的方程式就是著名的 CAPM 方程式，如下所示:

\[R - R_f = \beta (R_m - R_f) + \varepsilon. \] \hspace{1cm} (2.3)

这里 \(\beta (R_m - R_f) \) 这部分是因为承担市场风险而引起的收益率，\(\varepsilon \) 是一个资产的特定风险，它与 \(R_m \) 零相关，并且期望值是 0。所以 \(\varepsilon \) 又被称为非系统性风险（non-systematic risk）。承担非系统性风险只增加方差，但不对预期收益率有任何的贡献。对上式求期望值，我们发现预期超额收益率与 \(\beta \) 成线性关系，这就是所谓的证券市场线（security market line）。

在 CAPM 方程式中有效组合 \(m \) 是由 \(R_f \) 和纯风险资产有效边界共同决定的。可以证明它的权重向量和 \(V^{-1}(\bar{R} - R_f) \) 成正比。如果不考虑协方差矩阵的话，各个原始资产在市场组合里的比重和它们的预期超额收益率成正比，这个结果符合我们的直觉。

在结束 CAPM 的介绍前，我提一下在应用中很有用的几个延伸。在 CAPM 中 \(m \) 是一个有效组合。如果我们用一个不一定是有效组合的消极投资组合 \(p \) 来代替它会怎样呢？在这种情况下如果只考虑无风险资产和 \(p \) 之间的组合的话，我们只能得到一个较小的夏普比率 \(S_p \)。Treynor 和 Black （1973）引入了积极管理组合的概念。这个积极管理组合 \(a \) 可以通过最大化信息比率（information ratio） \(I_a \) 来得到。Black 和 Treynor 进一步证明了一个勾股定理

\[S_m^2 = S_p^2 + I_a^2. \] \hspace{1cm} (2.4)

这个方程指出通过积极管理组合和消极组合两步走，我们也可以回到原来的资本市场线上去。损失的夏普比率刚好由积极管理组合的信息比率补回。MacKinlay（1995）则指出信息比率实际上也是一个组合的夏普比率。对上述方程式也可以理解为 \(m \) 确实是有效的，但基金管理者拥有私有信息，所以他可以得到比市场夏普比率更高的单位风险报酬。Treynor 和 Black 原文中采用后一种较狭义的理解。另外一个 CAPM 的延伸是 Black-Litterman 模型（Black 和 Litterman，1992）。这里基金管理者也拥有私有信息，但他利用贝叶斯（Bayesian）理论来更新预期收益率向量和协方差矩阵，然后再进行期望值-方差优化。最后，在 CAPM 中风险是用方差来模拟的，有相当一部分研究工作用其它各种风险的测度来代替方差，比如基尼系数（Gini coefficient），VaR，等等。这里不作详细介绍。

2.2 套利定价理论

单期的 CAPM 中只有一个因素，那就是市场的随机收益率。但早在 1966 年，King（1966）就在实证中发现除了市场因素外，工业界因素似乎也影响资产的预期收益率。这也许是套利定价理论的最早的一个出发点。

下面我简单介绍一下 Huberman（1982）的主要研究结果。他考虑一连串的市场，每一个市场比它前一个多出一个不同的资产。在第 n 个市场中有 n 个非风险资产，但是不管在哪个市场中，所有资产的收益率仅仅由 k 个固定的因素产生。这是 APT 里最重要的模型假设，用数学方程表示如下：

$$x = E + \beta \delta + \epsilon$$

（2.5）

这里 x 是 n 个资产的收益率向量，E 是它们的平均收益率向量，δ 是一个因素矩阵，它的每一个列向量代表一个因素，β 是被称为因素负荷矩阵，ε 是一个随机向量。Huberman 还假设 δ 正交归一，以及ε 的关联矩阵是对角的，并有一致的上限。这些假设都不是必需的，而是可以弱化。APT 的目的是导出一个解释平均收益率 E 的模型。为了达到这个目的，Huberman 引进了一个渐进套利的概念。一个投资策略在这个模型里是一连串的向量，每个向量是一个在第 n 个市场里的投资组合。如果一个投资策略 c 在所有市场里都不需要任何净投入，但它在每个市场里的平均收益率趋向于正无穷，同时它在每个市场里的随机收益率的方差趋向于零，它就被称为一个（渐进）套利组合。Huberman 中没有提及，但套利组合的两个关于随机收益率的期望值和方差的条件可以简化成一个条件：如果存在一个净投入为零的投资策略，并且它有一个子序列使得平均收益率与标准方差的差趋向于无穷，那么市场上就存在渐进套利组合。

除去刚开始的市场结构的假设，APT 的理论建立在唯一的一个假设之上，那就是市场里不存在渐进套利。APT 的结论是：如果市场上不存在渐进套利，那么预期收益率必须近似地满足一个线性关系，也就是说，平均收益率可以近似用常数向量和δ中的向量来表示。如果使用以上的简化条件，APT 的推导其实相当的简单。一般使用反证法。假设平均收益率不近似地满足上述线性关系。如果我们把向量 E 投影到由常数向量和 δ 中的向量构成的子空间上，那么可以证明回归残差向量就构成了一个渐进套利组合。
APT 和 CAPM 是建立在不同假设之上的两个不同的理论，严格上说不能过于简单地进行比较。但如果我们再 APT 中忽略“渐进”这个重要的假设，那么 CAPM 可以简单地看成是 APT 的一个特例。

2.3 消费资产评价模型以及跨期消费资产评价模型

消费资产评价模型（CCAPM）以及跨期消费资产评价模型（ICAPM）是在 CAPM 和 APT 之外两个较重要的模型。它们可以被看成是 CAPM 的特例及推广。在 CCAPM 中，消费和投资组合被一起考虑。ICAPM 则是考虑多期的模型，这些模型可以是离散时间多期的，也可以是连续时间多期的。这两个模型不是一个固定的孤立的模型，而是两个大框架。CCAPM 和 ICAPM 并不完全互相排斥。CCAPM 可以是跨期的，ICAPM 也可以包含消费这个因素。由于这两个模型经常是你中有我，我中有你，所以我们一一介绍。

在 CCAPM 中，资产的平均收益率被整个经济中的总消费的增长率所决定，也就是可以认为，在 CCAPM 中，CAPM 中的市场收益率和将来消费的边缘效用函数是完全负相关的。在这一点上，可以认为 CCAPM 是 CAPM 的特例。但 CCAPM 可以是跨期的，这一点可以看成是 CAPM の推广。另外，最简单的 CCAPM（Breeden, 1979）可以看成是一个简化了的 ICAPM 模型，它把一个因素的 ICAPM 模型用一个消费因素概括了。这种简化的根本原因是早期的模型一般使用时间上可分拆（time-separable）的效用函数。

解 ICAPM 模型通常有两种技巧，一种是动态规划（dynamic programming），一种是背推过程（martingale approach）。在动态规划中，解模型的程序是从最后到最前，即所谓的倒向归纳（backward induction）。在离散时间模型中，每一步都成为了一个单期模型。在连续时间中，类似的推导可以得出有名的 Bellman 偏微分方程。Bellman 方程一般是非线性的并很少有解析解，但可以用数值解法。鞍过程早期文献主要是 Pliska（1986），Karatzas, Lehoczky 和 Shreve（1987），以及 Cox 和 Huang（1989）。这种方法一般需要假设市场是完整的，但 He 和 Pearson（1991）把鞍过程方法推广到不完整市场情形。在鞍过程中，投资者的资产被视为一个优化
了的投资组合的价值，而消费就相当于这个投资组合的红利。利用随机折扣因子的概念，财产可以表示成未来红利流量的现时价值。使用这个预算约束（budget constraint）方程式，多期的投资消费问题被演化成一个关于最佳消费途径的变分问题（variational problem）。这个变分问题的解通常会引导至一个线性的偏微分方程。由于是线性的，这个方程可能会比 Bellman 方程更容易解。最佳投资组合的比例则一般在解出消费路径和财产后再单独解决。

3. 近期重要理论及技巧

3.1 随机折扣因子（Stochastic Discount Factor）

随机折扣因子是一个特殊的随机变量 m，它可以给出市场上所有资产的价格。以单期模型为例，如果一个资产的随机收益是 x，那么它的价格就由公式 $p = \mathbb{E}mx$ 给出。对任何随机收益率 R 而言，则有 $1 = \mathbb{E}mR$。所有资产定价理论可以通过随机折扣因子来描述。事实上，Cochrane (2001) 以及 Shefrin (2008) 这两部论著中都使用随机折扣因子这种语言。

随机折扣因子的存在性，线性与否，唯一性，分量的正负性，单调性，方差结构，因素结构等都与市场的结构密切相关。比如说，在有限维单期资产市场中，单一价格法则决定随机折扣因子是线性的：市场是完整的，当且仅当随机折扣因子是唯一的；一个完整市场中没有套利，又当且仅当随机折扣因子的各个分量都为严格正；当随机折扣因子不唯一时，存在而且仅存在唯一一个被交易的随机折扣因子。随机折扣因子的重要性是不言而喻的。例如，在效用函数模型中，它与边际效用直接相关。在 CAPM 中它和消费的增长率直接相关。在某种意义上，不同的资产定价模型可以被认为是在研究不同的随机折扣因子。

3.2 Hansen-Richard 收益率分解

Chamberlain 和 Rothschild (1983) 证明，零 β—CAPM 可以被看成希尔伯特空间的直和，但我们需要一种比较特殊的协方差内积（inner product）。在这种框架下，任何资产的随机收益率是希尔伯特空间中的一个向量，可以用投影（projection）来分解成常数向量部分，市场随机收益率部分，以及一个残差向量（residual vector）。这三个分量在希尔伯特空间中互相垂直。这种把 CAPM 认为是一种向量的垂直分解的观点在经济学中并不是传统的观点，一般的教科书都把 CAPM 描述成是一个线性回归，因此三个分量彼此是零协方差。这两种不同的观点都是很适合于 CAPM 的理解的。其中第一种观点赋予了 CAPM 几何意义，因此使得很多概念变得直观。比如资产组合的有效边界在上述希尔伯特空间中是一条直线。

随机变量构成的希尔伯特空间的通常内积实际上是并不存在的协方差内积，而是乘积内积：$\langle p, q \rangle = \mathbb{E}pq$。使用这种内积导致另一种不同的随机收益率的分解方式，这就是 Hansen-Richard 收益率分解。注意在 Hansen 和 Richard (1987) 中作者们还考虑了条件信息（conditional information）。在 Hansen-Richard 收益率分解中，每

3.3 Hansen-Jaganathan 边界

对一个市场结构，考虑任意两个不同的随机资产收益率 R_1 和 R_2 以及所有可行的随机折现因子 m，可以证明

$$
\max_{R_1 \neq R_2} \frac{\mathbb{E}(R_1 - R_2)}{\sigma(R_1 - R_2)} = \min_m \frac{\sigma(m)}{\mathbb{E}(m)}.
$$

(3.1)

这就是著名的 Hansen-Jaganathan （1991）边界。为了更清楚地理解上式，我们可以考虑一个完整的市场，因此市场上存在无风险资产，并且以及所有可行的随机折现因子 m 是唯一的。式因此就是市场的 Sharpe 因子，也就是单位风险能得到的最大回报。Hansen-Jaganathan 边界用随机折现因子给出了 Sharpe 因子。在普遍情况下，不一定存在无风险资产，随机折现因子也不唯一。用 Hansen-Richard 收益率分解以及随机折现因子分解可以很方便地得到等式的两边什么时候取到极值，这里从略。另外，Hansen-Richard 收益率分解也让我们可以直观地在希尔伯特空间中体会 Hansen-Jaganathan 边界的几何意义。

如果一个资产将来得收益完全不及另一个投资组合，那么它的价格应当低于这个组合的价格。这就是无套利边界（no-arbitrage boundary）。Hansen-Jaganathan 边界可以说是关于无套利边界的一个结论。但在通常情况下，无套利边界经常太宽，以至于不太实用。Cochrane 和 Saa-Requejo （2000）考虑单期，多期，以及连续时间的套利（good deal）边界。在同一期刊物中，Bernardo 和 Ledoit （2000）考虑得到-失比率（gain-loss ratio）边界。这两个边界由于引进了其它约束条件，一般都
比无套利边界紧。最近，研究者也考虑了各种其它的非无套利边界。各种边界一般引
入不同的约束条件，因此很难普遍地比较各种边界的优缺点。

3.5 风险中性定价（Risk-neutral Pricing）以及其他测度变换方法

风险中性定价理论并不是孤立地发展起来的。事实上，即使是单期的 CAPM
也可以用风险中性定价理论来描述。理论的建立中，主要文献有 Cox 和 Ross
（1976），Harrison 和 Kreps（1979），以及 Harrison 和 Pliska（1981）。另外，Cox,
Ross 和 Rubinstein（1979）考虑了二叉树（binomial tree）期权模型。这个简单的
模型对理解风险中性定价理论极其有用。著名的 Black-Scholes（Black 和 Schole,
1973）期权模型也用风险中性定价理论来描述。

在使用随机折现因子的模型中，资产的价格是由将来的收益和随机折现因子
的内积给出的。这个内积是在物理测度，也就是实际生活中的测度之下的期望。分
两步看，我们先在物理测度下计算未来收益的期望值，然后再用风险调整过的折
现率来计算现在的价格。模型的困难常常在计算风险调整过的折现率，因为这个
折现率对不同的资产是不同的。在风险中性定价中，我们用无风险折现率来计算任
何资产的期望值。因为这个原因，任何资产都被视为不带任何风险，因此这种方法
被称为风险中性定价。代价是我们不能用物理测度来计算期望值，而是得使用风险
中性测度。可以认为，对每个资产而言，这个测度是用风险调整过的一个测度。但
实际上风险中性测度常常是唯一的，并且不随每个资产而变。这就使得风险中
性定价具有很大的优越性。对任何一个资产，我们只需计算它在风险中性测度下的
期望值，然后假装这个资产不带风险，而使用无风险利率进行折扣。从某种程度上
说，风险中性定价就是错错得对，我们使用“错误的”测度，然后再使用“错误的”折
现率。这两个“错误”的同时使用给出正确的资产价格。用术语来说，所有资产的价
格，如果用无风险债券来衡量的话，在风险中性测度中就是一个鞅（martingale）
过程。

物理测度和风险中性测度显然是有联系的。它们的联系正是投资者对风险的
态度。这两个测度的 Radon-Nikodym 商是由投资者的边缘效用函数决定的。如果
建模者不关心边缘效用函数，他可以直接写下风险中性测度，然后在这个测度下
计算资产的价格。这种方法被广泛使用，尤其是在金融衍生物定价方面。另外，如
果研究者有基本资产以及建立在它之上的衍生物的价格，原则上他可以把投资者的
边缘效用函数回算出来。比如，他可以研究跳跃是不是在定价中起作用。参见 Pan
（2002）。

需要强调的是，测度变换（measure change）是一种很普遍的技巧。根据问题
的需要，有时候使用风险中性测度之外的测度对计算会更加方便。例如在考虑随机
利率结构模型时，所谓的远期测度（forward measure）经常会比较方便。可以说所
有的测度变换基本上都是从某种计价单位变换（change of numeraire）而来。如果
市场满足某些必要条件，可以证明对任何计价单位，都存在这么一个测度，在这个
测度底下，以该计价单位衡量的所有资产的价格都是一个鞅（Geman, Karoui 和
Rochet，1995）。这个结论使得用测度的变换来定价非常地机械化，因此应用非常方便。具体地说，研究者首先确定计价单位，然后分析它所引起的测度变换，最后利用鞅过程来定价。困难主要在于寻找出一个方便的测度。在 Black-Schole 理论中，风险中性测度可以看成是使用了以无风险债券为计价单位而引起的测度变换。利率期权定价中的远期测度则是使用了以远期债券为计价单位而引起的测度变换（参见 Vasicek, 1977）。另外，在交换期权（exchange option）的计算中，经常会用某个股票的价格来作为计价单位（参见 Li, 2008）。

3.6 基于生产的定价理论及综合平衡（General Equilibrium）理论

早期的经典理论一般都是局部平衡（partial equilibrium）理论。这是因为一般它们都假设外生的（exogenous）资产收益率随机过程，然后在给定的投资机会的情况下求解最优组合以及消费途径。但实际上，投资者本身的决策经常会反过来影响资产收益率的动态特性。因此，一个完整的模型需要同时考虑投资机会和投资决策相互之间的影响。这种模型一般称为综合平衡模型，或称一般均衡模型。我个人觉得前一种译法较为贴切。局部平衡理论中，资产经常被比喻成一棵果树，果树的收益是完全随机的，并不随投资者的行为而变。综合平衡模型一般会引入生产（production），比如说在果实价格高昂时，消费者可以通过除草，施肥，嫁接等办法来影响将来的收成。这个变化了的收成的分布又会反过来影响资产的价格，而这又会进而影响消费者的行为，等等。

在八十年代中期一个比较重要的理论突破是 Cox, Ingersoll 和 Ross（1985a, 1985b）在两篇姐妹论文中提出的一个综合平衡理论。第一篇论文着重介绍一般理论，第二篇论文则讨论一个具体的例子。这个理论也可以看成是一个 ICAPM 理论。它的最大特点在于无风险收益率是内部决定的。Cox, Ingersoll 和 Ross 假设只有一种可以同时用来消费和投资的商品。如果选择投资，则有多种带风险的技术可供选择。投资者得决定消费多少比例的商品，以及如果投资节省下来的商品。另外，投资者也可以借钱，但他必须支付一个无风险利率。Cox, Ingersoll 和 Ross 注意到在市场平衡的情况下，借出和借入的量必须相等，也就是说，无风险债券的净供给量是零。无风险利率因此就是一个影子价格（shadow price）。通过这个约束条件，Cox, Ingersoll 和 Ross 推导出了无风险利率的表达式。通过同样的推理，这个模型也可以用来给任何一个净供给为零的资产定价，比如说长期债券，期权，等等。它们的价格满足一个类似 Black-Scholes 理论的偏微分方程。在第二篇论文中，Cox, Ingersoll 和 Ross 考虑了一个具体的模型。在这个模型中，无风险利率的解满足一个 Ito 扩散过程，它的漂移函数（drift function）和 Vasicek 过程类似，但它的扩散函数（diffusion function）不是常数，而是平方根形式，数学上也称为 Feller 过程。具体形式如下：

$$dr = k(\theta - r)dt + \sigma \sqrt{r}dB,$$ \hspace{1cm} (3.2)
其中 \(k, \theta, \sigma \) 是常数，\(B \) 是一个标准布朗运动（Brownian motion）。值得一提的是，尽管第二篇论文只是讨论上述具体的例子，但事实上这个具体的例子应用极其广泛，以至于人们经常用 CIR 模型来称呼这个具体的模型。例如，在固定收益类产品定价，信用产品定价，期权定价等方面 CIR 模型都是极其常用的模型。CIR 模型受欢迎的一个重要的原因就是它比 Vasicek 模型更实际，但同时这个模型和 Vasicek 模型一样有解析的转移密度，债券价格，表示期权价格等。因此熟悉这个 CIR 模型是很有用的。

基于生产的定价理论及综合平衡理论现在仍旧是一个活跃的研究方向，尤其是关于它们的实证表现。

3.7 其它的风险偏好函

在早期的资产定价理论中，一般都使用经典的时间上可分拆（time-separable）的 CARA 风险偏好函数。Merton 的早期理论基本上都使用这个函数。它的好处是由于形式简单，经常可以得到问题的解析解。但是它也有一个比较致命的弱点，那就是一个相对风险厌恶系数决定了两个不同的东西。一个是在同一个时期内对经济的不同状态之间的偏好，另一个是在两个不同时期的消费之间的偏好。这种自由度的缺乏使得 CARA 风险偏好函数不能很好地解释很多实证上的结果，因此产生了股权溢价之谜（Mehra 和 Prescott, 1985），无风险利率之谜（Weil, 1989），股票价格波动之谜等等资产定价理论中许多令人费解的结果。资产定价理论近二十年的发展可以说是完全由这些悬案，尤其是股权溢价之谜推动的。在八十年代初期，研究界的普遍观点是资产定价理论已经完全成型，所有的问题都可以原则上用现有框架解释和研究，因此 Mehra 和 Prescott 花了整整六年的时间才发表他们的文章。比较有意思的是 Mehra 和 Prescott 文末指出了各种可能的解释股权溢价之谜的方法，这些后来都被详细研究并发展起来。股权溢价之谜长期是资产定价理论的中心课题，但这里从略。

在各种试图解释股权溢价之谜的方法中，有一种方法是切断 CARA 风险偏好函数中不同状态之间的偏好和不同时期的消费之间的偏好的联系。研究者提出了多种推广 CARA 风险偏好函数的办法。这里简单介绍其中比较有影响的三种方式。

第一种是所谓的内在习惯（internal habit）模型，代表文献是 Constantinides (1990)。在这种模型中，投资者的风险偏好函数不仅与当前的消费有关，而且也与过去所实现的消费路径有关。Ferson 和 Constantinides (1991) 发现内在习惯模型的实证表现并不是特别出色。

第二种推广是所谓的外在习惯（external habit）模型，代表文献是 Campbell 和 Cochrane (1999, 2000)。在这类模型中，投资者的风险偏好函数与一个外在的习惯水平相关，形象地说就是投资者不仅关心自身的消费，也关心邻居的消费，通俗地称为 “赶上琼恩斯家（catching up with the Joneses）”。这个模型被广泛地用来比较新提出的模型。

$$U_t = W(c_t, \mu[U_{t+1}]),$$

(3.3)

其中 c_t 是当前的消费，$\mu[U_{t+1}]$ 是后一时期效用函数 U_{t+1} 的 “α—条件期望”:

$$\mu[U_{t+1}] = (E U_{t+1}^\alpha)^{1/\alpha},$$

(3.4)

W 是一个累积子（aggregator），形式如下:

$$W(c_t, z) = [(1 - \beta)c^\rho + \beta z^\rho]^{1/\rho}.$$

(3.5)

如果 $\alpha = \rho$，我们就回到了通常的效用函数。一般情况下这两个参数是独立的。这种推广保留了 CARA 的好处，因此模型常常仍有多解。但它同时直接切断了 CARA 中不同状态之间的偏好和不同时期的消费之间的偏好之间的联系，这使得不同的偏好现在被两个独立的参数来描述。在大量的文献中，使用递归风险偏好函数已经几乎是选择的了。Pennacchi（2008）和 Skiadas（2009）两本书都详细介绍了递归风险偏好函数，其中后者更加理论化一些。

这三种风险偏好函数形式的假设是不同的，它们对资产定价的结论也不同。这里限于篇幅，不再做更具体的介绍，有兴趣的读者可以参考上述文献。

4. 最近十年的发展

自八十年代以来，资产定价这个领域基本上是沿着上述经典理论的大框架而不断发展。由于这个原因，很多研究者认为这段时间中没有特别大的理论突破。Duffie（2001）在他书中的序言里这样写道：“对一个在八十年代中期毕业出来的人来说，八十年代是资产定价理论的黄金时代... 从 1979 年以后，除了个别的特例，基本上就是拖着地板而已。” 在 Campbell（2000）年的综述中，Campbell 表示不完全赞同。他认为对我们这一领域理解还远未达到完善，而且有很多重要和有趣的课题还有待解决。

由于 Campbell（2000）这篇综述详细介绍了从 1979 年到 1999 年的研究成果，我在下面的介绍主要集中在九十年之后的这十年。我基本上比较赞同 Campbell 的意见。可以说，过去十年是一个成果非常丰硕的十年。但是我也同意 Duffie（1992）关于大框架已经基本成型的观点。这就意味着在过去十年的理论发展中，研究者经常集中注意力在一些比较具体的新课题上，而且这些课题经常是由于数据推动起来的。由于较难把所有的课题一一详细介绍，接下来我选择一些我个人认为比较重要或有趣的课题来加以讨论。这些课题并不是孤立的，而是有很深的内在联系。由于文献
数量极大，我一般只介绍一些最近的文章。对这些课题感兴趣而希望近一步了解的读者可以查找以下被讨论文献的文末的索引。

4.1 习惯模型

习惯模型在第三节中稍有叙述。内在习惯和外在习惯模型各有各的特点，目前还不能确定哪个更优，但可能可以说外在习惯模型应用得更广泛些。在内在习惯模型中，超额消费被定义为实际消费和一个内在习惯水平的差，效用函数被修改成为超额消费的函数。这个修改导致 Hansen-Jaganathan 边界中超额消费的实际消费中的比例负相关，从而试图来解释实际中的过大的股权溢价。外在习惯的结论和内在习惯模型类似，但超额消费在这里是实际消费和一个外在习惯水平的差。关于内在习惯和外在习惯的较新的研究有 Otrok, Ravikumar 和 Whiteman (2002)，以及 Grishchenko (2010)。

4.2 风险的时间特性 (Temporal Pricing of Risk) 模型

在一个实际模型中，随机折现因子必须能够正确地对多种资产同时进行定价，包括单期无风险利率，长期无风险利率，以及各种风险利率。这种在实际市场上观察到的数据因此对随机折现因子的结构提出了严格的要求。例如 Hansen-Jaganathan 边界可以看成是这些要求的结果。在实际观测的数据中，Sharpe 比率比较高，因此我们需要随机折现因子变动幅度比较大。在一般的研究中，尤其是实证性研究，甚至在长期性资产的研究中，研究者经常只着著于单期收益率，因此他们只回答在短期内收益率与风险之间有什么关系这么一个问题。显然，在长期内收益率和风险之间有什么关系也应当是一个很重要的问题。

为了能够同时估价不同的资产，Alvarez 和 Jermann (2005) 把随机折现因子分解成两个分量的乘积。第一个分量是一个永久性分量，是一个鞅。第二个分量是短时性分量。不同分量在估价不同资产时起到不同的作用，例如永久性分量对估价类似股票等长期性资产上很重要。使用这个分解之后，一个比 Hansen-Jaganathan 边界更细致的问题就是，如果我们用更微观的数据，比如说，我们考虑长期无风险利率，我们对随机折现因子应当提出什么样的要求？这些要求的有用之处是可以用来估价资产定价模型。不满足这些要求的模型就不能用来描述实际数据。

4.3 长期风险（Long-Run Risk）模型

可以说 Bansal 和 Yaron (2004) 是一个比较重要的理论发展。它同时对消费增长率以及波动率引入了持久性扰动，同时也对总消费和总红利作了一个符合实际的区分。但 Beeler 和 Campbell (2009) 指出的这些困难表明长期风险模型也许还有待改进和修正。

4.4 灾难风险（Disaster Risk）模型

基本价值下跌，这又引起超额收益率的时间波动，从而产生收益率的可预测性。

Gabaix 使用了一个新颖的线性产生过程（linear generating process）技巧来建立模型，使得模型有解析解，因此很便于分析。作者发现这个模型能够解释所有宏观经济中的谜，包括股权溢价之谜，无风险利率之谜，股票价格波动之谜，以及其它关于债券和期权的谜。

显然，如果这些结论都是正确的话，那么这个模型向建立一个对形形色色的实证中的不解之谜都可行的统一理论跨出了一个大步。但目前在 Gabaix（2010）的研究中，对这些谜是逐个破解的，因此关于模型对各个资产的联合定价还需要做更多的研究。

关于灾难风险模型的最新研究还有 Gourio（2010），Wachter（2009），以及 Farhi 和 Gabaix（2009）等。这里不再一一叙述。

4.5 非完美市场（Imperfect Market）资产定价模型

非完美市场是资产定价理论中的一个很大的研究方向。它包括了许许多多的子课题，包括不可分散劳动收入（non-diversifiable labor income）风险，信息不对称性（information asymmetry），异质的（heterogeneous）投资者，有限参与（limited participation），有限承诺（limited commitment），有限套利（limited arbitrage），有限注意力（limited attention），非零交易费用，流动性风险（liquidity risk），模型风险（model risk）等等。特定的非完美市场模型一般集中讨论一个子课题。由于非完美市场所涉面极广，这里只对不可分散劳动收入风险和有限参与两个子课题作一个简单的介绍。

Mankiw（1986）考虑了一个非完美市场模型。在这个模型中，随机的扰动因素在事前影响所有的投资者，但事后只影响少数的人。这就使得研究者不能从合计的数据来推算风险厌恶系数。这个模型和它的各种改进可以用如研究不可分散劳动收入风险（Constantinides 和 Duffie，1996）。比较新的研究是 Storeletten，Telmer 和 Yaron（2004）以及 Krueger 和 Lustig（2009）。其中 Krueger 和 Lustig（2009）研究什么场合下，非完美市场对资产定价有影响，什么场合下又没有影响，是一篇比较全面的研究论文。

Guvenen（2009）是一篇值得一看的关于有限参与的研究文献。Guvenen 的出发点是习惯模型的假设比较难以捉摸，因此 Guvenen 希望保留简单的效用函数，但引入有限参与和异质的投资者。具体地说，在市场中有两类人，一类是股市参与者，一类则不参与。他们具有不同的跨期弹性系数。Guvenen 发现，即使是定风险系数为 2，他的模型也能解释所有习惯模型中所能解释的实证现象。文章进一步解释了为什么有限参与模型和习惯模型给出很类似的结果，并且指出有限参与模型给出更加合理的宏观经济结果。关于有限参与和有限承诺的比较新的研究包括 Lustig 和 van Nieuwerburgh（2005）以及 Chien，Cole 和 Lustig（2009）。
5. 总结

本文首先介绍了资产定价及投资组合的经典理论。它们包括资本资产定价模型，套利定价理论，消费资产定价模型以及跨期资本资产定价模型。稍后我介绍了其他一些近期的重要概念及理论。最后，我阐述了近期十年来的研究动向及展望，包括习惯模型，灾难风险模型，长期风险模型，非完美市场模型等等。

在结束本文之前，我对资产定价这一领域提供一些个人的看法。首先，由于理论框架基本都已确立，这一领域相对较成熟，因此较难有很大的突破。进入这个领域首先得对已有的理论有较深的理解度，并且需要研究者有比较扎实的数理功底。这些包括概率论，实分析，偏微分方程，测度论，随机过程，等等。其次，尽管理论框架已经确立，但我们并未找到一个能较完美地解释经验数据的黄金模型。类似股权溢价之类的很多谜还等着研究者去彻底解决。一个在很长时间内仍会比较活跃的分支将是联系理论和实证之问研究。另外，行为金融学也是一个活跃的方向。也许可以认为，找到一个能完美地解释所有经验数据的黄金模型是不可能的。因此，在较长的一段将来，研究者也许应当满足于能找到对不同情形下能够工作的不同模型。再次，随着市场的发展，新的资产被不断推出，例如方差期权（variance option），生命周期基金（life cycle fund），信用资产等等。金融数据也越来越多样化，国际化以及微观化。高频率的、高质量的国际数据也越来越普遍。这些都为研究者提供了新的研究对象。最后，最近的金融危机也促使人们重新审视资产存在的目的，以及资产定价中的投资者心理以及国家金融政策因素。把传统的资产定价理论和行为金融学、金融政策学、国际金融等其它相关领域的有机结合起来也是一个很有希望的研究方向。

参考文献:

