McCauley, Joseph L. (2004): What Economists can learn from physics and finance.
Preview |
PDF
MPRA_paper_2240.pdf Download (633kB) | Preview |
Abstract
Some economists (Mirowski, 2002) have asserted that the neoclassical economic model was motivated by Newtonian mechanics. This viewpoint encourages confusion. Theoretical mechanics is firmly grounded in reproducible empirical observations and experiments, and provides a very accurate description of macroscopic motions to within high decimal precision. In stark contrast, neo-classical economics, or ‘rational expectations’ (ratex), is a merely postulated model that cannot be used to describe any real market or economy, even to zeroth order in perturbation theory. In mechanics we study both chaotic and complex dynamics whereas ratex restricts itself to equilibrium. Wigner (1967) has isolated the reasons for what he called ‘the unreasonable effectiveness of mathematics in physics’. In this article we isolate the reason for what Velupillai (2005), who was motivated by Wigner (1960), has called the ineffectiveness of mathematics in economics. I propose a remedy, namely, that economic theory should strive for the same degree of empirical success in modeling markets and economies as is exhibited by finance theory.
Item Type: | MPRA Paper |
---|---|
Institution: | University of Houston |
Original Title: | What Economists can learn from physics and finance |
Language: | English |
Keywords: | Nonequilibrium; empirically based modelling; stochastic processes; complexity |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General A - General Economics and Teaching > A2 - Economic Education and Teaching of Economics |
Item ID: | 2240 |
Depositing User: | Joseph L. McCauley |
Date Deposited: | 14 Mar 2007 |
Last Modified: | 28 Sep 2019 21:35 |
References: | Adelman, L.M. 1994. Science 266, 1021. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2002, Molecular Biology of the Cell. Garland Publ.: NY. Alejandro-Quinones, L., Bassler, K.E., Gunaratne, G.H., McCauley, J.L., Field, M., Nicol, M., Timofeyev, I., and Török, A. 2004. A Theory of Fluctuations of Stock Prices, submitted. Bak, P. 1996. How Nature Works. Springer-Verlag: N.Y. Barabasi, A.- L. 2002. Linked: The New Science of Networks. Perseus: NY. Barbour, J. 1989. Absolute or Relative Motion? Cambridge: Cambridge Univ. Pr. Bass, T.A. 1991. The Predictors. Holt: N.Y. Bennett, C.H. 1982. Int. J. Theor. Phys. 21, 905 Black, F. and Scholes, M. 1973. J. Political Economy 81, 637. Bottazzi, G., Dosi, G., Lippi, M., Pammolli, F., and Riccaboni, M. 2001. Int. J. Industrial Organization 19, 1161. Chow, G.C. and Kwan, Y.K. 1998. J. Monetary Econ. 41, 301. Cootner, P. 1964. The Random Character of Stock Market Prices. MIT Pr.: Cambridge, Mass. Crutchfield, J. and Young, K. in Zurek, W. 1990. Complexity, Entropy, and the Physics of Information. MIT Pr.: Cambbridge, Mass. Crutchfield, J. 1994. Physica D75, 11. Cvitanovic, P., Artuso, R., Dahlqvist, P., Mainieri, R., Tanner, G., Whelan, N., and Wirzba, A. 2003. chaos. classical and quantum. http://www.nbi.dk/ChaosBook/ Dacorogna, M.M., Ramazan, G., Müller, U.A., Olsen, R.B., and Pictet, O.V. 2001. An Intro. to High Frequency Finance. Academic Pr.: N.Y. Dunbar, N. 2000. Inventing Money, Long-Term Capital Management and the Search for Risk-Free Profits. Wiley: New York. Feynman, R.P. 1996. Feynman Lectures on Computation. Addison- Wesley: Reading, Mass. Fredkin, E. & Toffoli, T. 1982. Int. J. Theor. Phys. 21, 219. Goodwin, R.M. in Day, R.H. and Chen, P. 1993. Nonlinear Dynamics and Evolutionary Economics. Oxford: Oxford. Granger, C.W.J. 1999. Empirical modeling in Economics: Specification and Evaluation. Cambridge: Cambridge. Gunaratne, G., unpublished but described in part 6.2 of McCauley (2004). Gunaratne, G. and McCauley, J.L. 2002. A Theory for Fluctuations in Stock Prices and Valuation of their Options, submitted. Hadamard, J. 1945. The Psychology of Invention in the Mathematical Field. Dover: N.Y. Haken, H. 1983. Synergetics: an introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer-Verlag: Berlin. Hughes,B.D., Schlessinger, M.F., & Montroll, E. 1981. Proc. Nat. Acad, Sc. USA 78, 3287. Lee, C. 2004. Metroeconomica 55, 219. Lipton, R.J. 1995. Science 268, 542. Mantegna, R. and Stanley, H.E. 2000. An Intro. to Econophysics. Cambridge Univ. Pr.: Cambridge. McAdam, P. and Hallett, A.J.H. 2000 in Surveys in Economic Dynamics. Blackwell: Oxford, ed. George, D.A.R., Oxley, L. and Potter, S. McCauley, J.L. 1993. Chaos, Dynamics and Fractals: an algorithmic approach to deterministic chaos. Cambridge Univ. Pr.: Cambridge. McCauley, J.L. 1997. Classical Mechanics: flows, transformations, integrability and chaos. Cambridge Univ. Pr.: Cambridge. McCauley, J.L. 2004. Dynamics of Markets: Econophysics and Finance. Cambridge Univ. Pr.: Cambridge. McCauley, J.L. & Gunaratne, G.H. 2003. Physica A329, 178. Mirowski, P. 2002. Machine Dreams. Cambridge Univ. Pr.: Cambridge. Moore, C. 1990. Phys. Rev, Lett. 64,2354. Moore, C. 1991. Nonlinearity 4, 199 & 727. Morowitz, H.J. 2004. The Emergence of Everything. Oxford:NY. Osborne, M.F.M., in Cootner (1964). Osborne, M.F.M. 1977. The Stock Market and Finance from a Physicist’s Viewpoint. Crossgar: Minneapolis. Poincaré, H. 1993. New Methods in Celestial Mechanics. AIP: Woodbury, NY. Schrödinger, E. 1944. What is Life? Cambridge: Cambridge. Skjeltorp, J.A. 1996. Fractal Scaling Behaviour in the Norwegian Stock Market, Masters thesis, Norwegian School of Management. Stanley, M.H.R., Amaral, N.L.A., Buldreyev, S.V., Havlin, S., Leshhorn, H., Maas, P., Salinger, M.A., and Stanley, H.E. 1996. Nature 379, 804. Turing, A.M. 1936. Proc. London Math. Soc. (2) 42, 230 Velupillai, K. 1998. J. Economic Behavior and Organization 37, 1. Velupillai, K. 2000. Computable Economics. Oxford: Oxford. Velupillai, K. 2005. Cambridge Journal of Economics. To appear. Wigner, E.P. 1960. Communications in Pure and Applied Mathematics, 13, Nr. I . Wigner, E.P. 1967. Symmetries and Reflections. Univ. Indiana: Bloomington. Weinberg, R.A. 1999. One Renegade Cell: How Cancer Begins. Basic Books: NY |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/2240 |