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FINITE SAMPLE PERFORMANCE OF
THE ROBUST WALD TEST IN
SIMULTANEOUS EQUATION SYSTEMS

Giorgio Calzolari and Lorenzo Panattoni

ABSTRACT

The estimator of the coefficient covariance matrix proposed in White
(1982) can be used to robustify the classical Wald test. Sampling experi-
ments recently performed on linear regressions and simultaneous
equation models, however, suggest that such an estimator rends to
underestimate the covariance matrix if the model is correctly specified.
In the classical framework of simultaneous equation systems, this
chapter aims at investigating the consequences of the use of robust
covariance matrix estimators in the Wald test when there is no mis-
specification.
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[. INTRODUCTION

The robust estimator of the coefficient covariance matrix discussed in
White (1980) for the linear regression model with heteroscedastic
errors, then extended in White (1982) and Gourieroux et al. (1984) to
cover more general types of models and misspecification, has become
more and more popular in the last few years. It can easily be intro-
duced into widely adopted computer programs, and its use in practical
applications is often recommended. As a natural consequence, those
tests that can use the robust covariance matrix estimator (quasi-t,
Wald, and Lagrange multiplier tests) could be more appealing than
tests that are usually nonrobust against misspecification (likelihood
ratio and the traditional versions of the Wald and Lagrange multiplier
tests).

However, several recent studies have indicated that the robust
estimator tends to underestimate the coefficient covariance matrix if
the model is correctly specified. Chesher and Jewitt (1984, 1987)
identify conditions under which this covariance estimator is down-
wardly biased in the linear regression model (the heteroscedasticity
consistent covariance estimator). They show that the bias critically
depends on the regression design and can be severe. MacKinnon and
White (1985) propose some finite sample corrections for this cova-
riance estimator in linear regressions, whereas the sampling experi-
ments in Prucha (1984) and in Calzolari and Panattoni (1984) clearly
indicate a similar need for systems of simultaneous equations.

This chapter aims at investigating the small sample performance of
the Wald test, based on the robust covariance estimator, when there
is no misspecification.

We first briefly summarize explicit formulas for the likelihood and
its first and second derivatives in a system of simultaneous equations
with normal errors, then illustrate the covariance matrix estimator
and its use in the Wald test briefly in Sections IV and V.

We then present detailed results of sampling experiments on a
system of simultaneous equations taken from the literature (Klein-I
model). Each group of experiments is performed on a sample period
of different length and with different values of the exogenous variables
(fixed across replications, but generated at the beginning with platy-,
meso-, or leptokurtic distributions). For each Monte Carlo replication
we compute the Wald test statistic for the hypothesis that a// structural
coefficients are equal to their true values. This involves reestimation
of the structural model each time with full information maximum

rinmite S>ample rerformance oj tne [Roust Vveid Lest a2

likelihood (FIML) and computation of the corresponding robust esti-
mate of the coefficients covariance matrix.

We then draw several considerations from the experimental results.
In Section VII, a scheme for explaining some behaviors of the robust
Wald statistic is provided for the particular case of the linear regress-
ion model. We show that a poor performance of the test has to be
expected when the explanatory (exogenous) variables exhibit, in the
sample period, large moments of the fourth order. Experimental
results on several other systems of simultaneous equations (Section
VIII) confirm the important influence of the sample kurtosis of the
exogenous variables on the small performance of the robust Wald test.

[I. THE MODEL

We follow the notation of Amemiya (1977) for general nonlinear
systems of simultaneous equations, with additive random error terms
that are independently and identically distributed like multivariate
normal. Refer to Amemiya’s paper for details on the underlying
assumptions. Let the simultaneous equation model be represented as

filynxna) =u, =12, nit = L2iwwss d (1)

where y, is the m x 1 vector of endogenous variables at time ¢, x, is the
vector of exogenous variables at time ¢, and g, is the vector of
unknown structural coefficients in the ith equation. The m x 1 vector
of random error terms at time t,u, = (U, ;s Uy - .. Uy,,) > is assumed
to be independently and identically distributed as N(0,Z) with X
completely unknown, apart from being symmetric and positive defi-
nite. The complete n x 1 vector of unknown structural coefficients of
the system will be indicated as a = (4}, a5,....a,)"

. THE LIKELIHOOD

The log-likelihood of the ¢th observation can be expressed as
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where f, = (f,,+foss---+fm.) = 4, and the Jacobian determinan
|8f,/dy!| is taken in absolute value. The log-likelihood of the wholc
sample is

L, = —jlog|Z]+ log VR, 2
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For the ith equation, we define 8. = 0f,,/0a;, which is a column
vector with the same length as a;; for any i/ and j, we also define the
matrix g,;, = (72],1,/8a,-0a,’. If i # j, then 8. 1s zero; it is zero also for
i =.j if the model is linear in the coefficients (even if nonlinear in the
variables). We note now that g,, and 8,;, may be regarded as functions
of u,, x,, and a under the standard assumption of a one-to-one corre-
spondence between u, and y,. Differentiating with respect to the
coefficients of the ith equation, we get

oL _ g,

(7(1,- - ﬁ,_,_g”f' g (4)
where ¢' represents the ith column of £ Differentiating with respect
to the elements of 7', we get

5L, 1 Ly g
6(2—1) =2 X f.fl.f; (5)

where use has been made of dg,,/ou,, = (0g;.,[0v])(0f,)oy))7". No
restriction has yet been placed on X: considering that £~' is symme-
tric, differentiating with respect to its i,jth term we get

oL,

PE =10, — 5/:1//1 (x2,if i # j). (6)

Further differentiation of (4) gives

A2 ] 2l Jo’
¢ LI _ (’gr./.l c'gi.l Ug/',l

s = - Mg [ — g, g
da,0a; Cuy, Cuy, Cuy, 8l ¢ 8l N
Lo
(‘?G'i'l(‘}(l,- - gi./, it (8)
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(‘3(7’"(7(1/- = _gi././i.l (10)
32
L,
=0 ifr ¢ ; ]
(70'1'/(70, # iand r # J (11)
0L,
A R | . % .
Jat Qg - 20,0, ( x 2' if i # /) (12)
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For models that are linear in the coefficients (even if nonlinear in the
variables), g; ;, and its derivatives are zero, so that the first and third
term on the right-hand side of Eq. (7) vanish. Moreover, —g;, is
nothing but the vector of values, at time ¢, on the explanatory vari-
ables of the ith equation. Therefore, the numerical evaluation of all
the above equations requires only one order of differentiation: the
computation of derivatives of the explanatory endogenous variables
in the ith and jth equations with respect to the error terms of the same
equations. Furthermore, since dg,,/0u;, = (0g,,/dy,) (0f,/dy]); ", this
differentiation could even be performed analytically without any par-
ticular difficulty. The use of Egs. (7-13) for the computation of the
Hessian matrix is, therefore, a sufficiently manageable matter even for
medium-large models.

The formulas given above can be used to build all the matrices used
in this study.

IV. ESTIMATORS OF THE COVARIANCE MATRIX

Using the formulas of the previous section, we can build several
estimators of the asymptotic covariance matrix. We shall first deal
with the vector of all unknown structural parameters. We may stack
the estimated coefficients 4 and the elements of the estimated £ ' into
a column vector of estimated parameters, p. Obviously, since £~' is
symmetric, we shall stack into this vector only the columns of a
triangular part of £~' (operator vech)

a
p= - . (14)
vechL !

In this way, with » being the number of unknown structural coef-
ficients and m the number of stochastic equations, the length of the
whole vector of parameters p is n + m(m + 1)/2; the whole informa-
tion matrix (and the asymptotic covariance matrix of p) has dimen-
sions [n + m(m + 1)/2] x [n + m(m + 1)/2].

Equations (7-13), with the minus sign and summed over the sample
period, provide the elements or the blocks of the [n + m(m + 1)/2] x
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[n + m(m + 1)/2] Hessian matrix of the log-likelihood

4= Al,] Al\z _ T alL’ _ azLT
Ay, As, =1 Opap’ dpop’
F L, P Ly
dada’ dad(vechT ™'y
= - i . 5
0Ly L, (15

d(vechL ')da' d(vechEL ")d(vechs Y

.Equations (4-6) provide the first derivatives of the log-likelihoods
with respect to all the unknown structural form parameters. We may
get an estimate of the whole information matrix by computing the
outer product of the first derivatives

B:'iBl.l BI.Z}: f%%

B,, B, =1 dp ap’
oL, oL, oL, L,
r da oa’ da d(vechx™'y
=2 (16)
ol oL, 0L, dL, oL,

d(vechT ") da’ O(vechZ™") d(vechT ™'y

When all derivatives in (15) and (16) are calculated in P, the resulting
matrices will be indicated as A4 and B. If p is the full information
maximum likelihood (FIML) estimate of the parameters vector, it is
well known (see, for example, Rothenberg, 1973, pp. 10-11) that,
under correct specification of the model and of the error generating
process, A/T and B/T converge asymptotically to the information
matrix, and their inverse converge to the asymptotic covariance
matrix of the structural parameters. Therefore, both of them can be
used for constructing tests that will have the right size with large
samples.

When the distribution of the random error process does not coin-
cide with the distribution underlying the likelihood, FIML estimation
may nevertheless provide estimates of the parameters that are still
consistent, but the two traditional expressions for the information
matrix are no longer equivalent, and their inverses generally provide
inconsistent estimates of the parameters covariance matrix. Under
assumptions with a varying degree of generality, White (1982, 1983,
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for independently and identically distributed observations), Gourieroux
et al. (1984, for independently, nonidentically distributed observations),
and Domowitz and White (1982, for dependent and heterogeneously
distributed observations) derive the estimator of the covariance
matrix

_PLe| T'[ & oL L _PL; J“ 4%
pop’|, =1 dp Op'|, opap’|,

which is generally consistent regardless of whether or not the actual
distribution of the error process coincides with that underlying the
likelihood. This matrix extends to more general classes of models the
heteroskedasticity consistent estimator of the covariance matrix
proposed in White (1980) for the linear regression model (we shall
come again to this point in Section VII). Tests that make use of this
robust estimator of the covariance matrix will have the right size for
large samples.

If the error process coincides with that underlying the likelihood, as
supposed in this chapter, TC will also asymptotically converge to the
inverse of the information matrix as well as TA~' and TB™'.

V. DESIGN OF THE MONTE CARLO EXPERIMENTS

In all the experiments described in this chapter we examine the small
sample performance of the robust Wald (RW') test when the hypothesis
being tested is that structural coefficients assume given values. All
sampling experiments are performed starting from a ““true” vector of
coefficients and calculating the test statistic that a// coefficients are
equal to their true values.

Experiments have been performed on several small to medium sized
models. The models, taken from the literature, maintain the structure
of real world models. For each model, given the set of true parameters
(coefficients and covariance matrix of the structural disturbances, held
fixed over all the replications), we fix a sample period length and
generate values of the exogenous variables over the sample period:
platy-, meso-, and leptokurtic distributions are used in different
experiments. Whichever generation method has been used, the sample
of exogenous variables is then kept fixed in all the Monte Carlo
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replications of each experiment. Also experimented with are the
historical real-world values of the exogenous variables taken from the
literature and repeated consecutively for the long sample cases.

Each Monte Carlo replication proceeds as follows. Independently
of the exogenous variables we generate random values of the struc-
tural disturbances over the sample period. Obviously, the distribution
for this random error process must be multivariate normal with zero
mean and the given covariance matrix. Finally we compute the values
of the endogenous variables with stochastic simulation over the
sample period.

We now compute FIML estimates' of the structural parameters d
and ¥ and the robust covariance matrix estimate C as in (17). In
general, if we wish to test the hypothesis H;: s(p) = 0, where the
restrictions are formulated as a vector function of the structural
parameters, and Vs( p) is the Jacobian of the vector of restrictions, the

appropriate form of the robust Wald test statistic, given in theorem
3.4 in White (1982), is

RW = s(p) [Vs(p)C(P)Vs(p)T 's(p). (18)

Since the particular restriction being tested here is that the vector of
all structural coefficients is equal to a, we have s(p) = (@ — «). The
Jacobian Vs(p) assumes, therefore, the form of an # x n unit matrix
followed by a matrix of zeroes, and the robust Wald test statistic
simply becomes

RW = (d—ay(C)) '(a—a) (19)
where C, , is the first n x n block of C, computed at the point that

maximizes the likelihood.

Using the Hessian estimator of the covariance matrix with (19), we
get the Hessian Wald (HW) test statistic

HW = (G4 —a) (A"") "(d — a) (20)

where A'"' is the first block of the inverse of matrix 4 [Eq. (15); see also
Engle, 1984, Eq. (11)]%

For the likelihood ratio (L R) test, since the null hypothesis restricts
the value of all the structural form coefficients, a, constrained FIML
estimation is confined to the computation of the ¢ parameters. Com-
putation of the parameters that maximize the constrained likelihood is
performed by simply plugging the “*frue’ coeflicients (under H,) into
the model, then computing the corresponding structural residuals;
finally the ¢ parameters are computed from the usual cross-products

prrte odrripie LEVjuiiztAiitt &) 2t amesss =2 =

of these residuals. The values of the log-likelihood functiqn, comp_ute@
at the unconstrained and constrained maximum points, give the likeli-
hood ratio test statistic

LR = 2(L(d) — Lr(@)}. (21

For each model, for each sample period length, and for each dif-
ferent generation process of the exogenous variables we pgrform a few
hundred replications of the Monte Carlo process obtaining the §mall
sample distribution of the HW, the RW, and of the LR test statistics.

The three tests are asymptotically equivalent if the model is correctly
specified. Otherwise, the likelihood ratio and the Hessiz_m Wald tests
do not have the correct asymptotic size and generally fail to converge
to a y* distribution (White, 1982). In other words, they are generally
nonrobust against misspecification of the random error process. I_n
sampling experiments, in a correct specification fra.mework as in this
chapter the behavior of the LR and the HW statistics can be us'ed for
comparison with the RW test in small samples. Thelr.better fit W}th the
asymptotic x” distribution, which will be evidenced in all our simula-
tion results, clearly shows that asymptotic robustness in the Wald test
has a cost in terms of finite sample performance.

VI. A CASE STUDY: KLEIN-I MODEL

In this section we describe in some detail the results of the experiment.:
performed on a system of simultaneous equations whose st.ructure i
that of Klein’s model-I (Klein, 1950). The qualitative behavior of th
results, however, is not changed very much by changing the model, a
will be clear from the summary tables of Section VIIL The structura
form of the model is the following:

C, =a +aP +aP L+ a, (W + W2), +u,
I = as+ aP+ a: P, L FagK, o+ U,
Wi, =ay+a Y+ T—-W2),
+a(Y+T—W2), | +apt+u, (2
Y, =C+1L+G~-T
P=Y-Wl-W2

K,=K, )+I,



Number of equations = 6.

Number of stochastic equations m = 3.

Number of structural unknown coefficients n = 12.

Number of structural unknown parametersn + m(m + 1)/2 = 18.

As “true” values of the unknown parameters, we use the two stage
least-squares estimates based on the 21-year sample period, 1921-1941,
in Rothenberg (1973, Chap. 5).

The model is dynamic; however, this should not raise particular
problems, since we are operating in a correct specification framework
(see White, 1983). In any case, all experiments are repeated twice. In
one case, the model is treated as static in which variables that appear
as lagged endogenous are replaced by current exogenous variables. In
the other case, the model is treated as dynamic; therefore in each
replication, the model is dynamically solved over the sample period,
and the simulated values of the lagged endogenous variables are used
when reestimating the structural parameters. Again, it will be clear
that the quality of the results does not change. Convergence to the
appropriate asymptotic distribution will be evidenced in almost all
experiments, although, in some cases, this will require very long
samples.

In the first group of experiments, we use the 21 historical observa-
tions of the exogenous variables (and of the lagged endogenous for the
static case). Larger samples lengths (42, 63, etc.) are obtained replicat-
ing the same 21 observations.

The figures in Tables 1 and 2 display the experimental results in
terms of cumulated distribution functions. The continuous curve
corresponds to the asymptotic distribution of the test statistics, that is
i~ Each figure is related to 500 Monte Carlo replications, and the
curves are smoothed by joining 17 points of each distribution. Some
experiments have also been performed with a larger number of
replications—up to 10 000. Since none of them evidenced any substan-
tial difference from the overall behavior of the small sample distribu-
tions, the slight gain in accuracy did not seem to compensate the much
higher cost of the experiment.’

The LR test does not perform too badly in the short sample, at least
as far as the entire distribution is concerned. A more careful inspection
of the critical region (the rightmost tail of each curve) shows that both
tests give a probability of type-I errors slightly* larger than the nomi-
nal (asymptotic) size of the tests. For example, for T = 42, and
nominal sizes 10 and 5%, the estimated rejection probabilities are

Tuble 1. Klein’s Model-I: Static—Historical Exogenous Variables

T =21 T =142
T=210 ° T =420
1122 . = LR
T = 1050 © o = HW
+ = RW

10 20 30

“Small sample distribution of LR, RW and HW test statistics. ZIJIZ)'

approximately 19 and 9% for the likelihood ratio test. The per-
formances of the HW test are less brilliant: 25 and 17% are the
expected probabilities of type-I errors corresponding to nominal sizes
10 and 5%. The discrepancy is larger for the historical period, but
T = 21 is presumably too short for a model with 12 coefficients. The
performance of the RW test is even less brilliant. Of course, it
improves as the sample is enlarged. A sample period with 420 observa-
tions makes all small sample distributions hardly distinguishable from
the asymptotic ones.

An important observation, as will be clear in the next section, is
related to the kurtosis of the exogenous variables in the sample period



Table 2. Klein’s Model-I: Dynamic—Historical Exogenous Variables

23 .

T =21 8 T =42 2
= 210 < T = 420 2
|
42
| As *+ = LR
T=1050 < o = HW
+ = RW

“Small sample distribution of LR, RW and HW test statistics. zfu).

(more precisely, the ratio between the fourth moment and the squared
second moment about zero; it would be the kurtosis if the variables
were previously normalized); its value varies between 1 (for the con-
stant) and 1.8 (for the variable G).

It is interesting to observe that the corresponding static and dynamic
cases do not exhibit substantial differences of behavior.

A characteristic common to all the cases is the relative position of
the distributions. The right-most sampling distribution is that of the
RW test statistic: the left-most is that of the LR, and the distribution
of HW test statistic is between the other two. All three are right shifted
with respect to the asymptotic .

The three small sample distributions are right shifted from the 7,
thus implying for each test a probability of type-I errors greater than
the nominal size of the test. Perhaps it is not clear enough from the
results what happens in the very right-most part of the critical region,
and, therefore, an analysis of the tests’ behavior at 1% would require
sampling experiments with more replications and the use of some
suitable computational method to reduce the sampling variability,
such as Davidson and MacKinnon’s (1981) control variates. At 10 or
5%, however, there seem to be no doubts that the expected rejection
probability is greatest for the RW test, less for HW, and least for the
LR test.

The fact that the expected rejection probability is larger than the
nominal size for the Wald test is consistent with results previously
obtained by Calzolari and Panattoni (1984, 1988) on systems of
simultaneous equations and with the results obtained by MacKinnon
and White (1985) on a linear regression without correcting factors on
the robust covariance matrix estimator.

Another interesting consideration that can be drawn from Tables 1
and 2 is that the relative position of the sampling distributions of the
likelihood ratio and the Wald statistics is consistent with the traditional
inequality LR < W derived by Savin (1976), Berndt and Savin (1977),
and Evans and Savin (1982) for the linear regression and multivariate
linear regression models. This suggests that the inequality holds or
average even for simultaneous equations systems (where it does not
hold algebraically in each replication given the nonzero correlation
between estimated coefficients and ¢ parameters, as observed in
Breusch, 1979).

We now perform a second group of experiments without using
the historical observations of the exogenous variables but with
randomly generated values. However, as already indicated, the
scheme of the experiment is still with fixed exogenous variables.
since they are generated once at the beginning and then kept fixed
in all replications. We first adopt a- multivariate normal distribu-
tion with means and covariance matrix taken from the historical
sample

,
L=T") xe+=x (23)

r=1
where the scalar random numbers ¢, are iid N (0, 1). Normality implies
a sample kurtosis for each generated exogenous approximately = 3
A sample of exogenous variables with length T is generated at the
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Table 3. Klein's Model-I: Static—Normal Exogenous Variables

T = = 210 34 f
" ¢
+ = LR
T= o = HW
+ = RW

“Small sample distribution of LR, RW and HW test statistics. 1(3“).

Tuble 4. Klein’s Model-1: Dynamic—Normal Exogenous Variables

T=210¢

= 1050

“Small sample distribution of LR, RW and HW test statistics. 7-11|21'

beginning and then kept fixed over the 500 replications of each

experiment.

Table 3 displays the results related to sample period lengths
T = 42, 210, and 1050 for the static version of the model. Table 4
displays corresponding results for the dynamic model. There are no
remarkable differences between results from the two models.

A new group of experiments is performed by generating ran-
dom values of the exogenous variables with platykurtic distribution
(kurtosis < 3). This is obtained with a simple modification of the
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Table 5. Klein’s Model-I: Static—Platykurtic Exogenous Variables

T=a42 T =210 -

“Small sample distribution of LR, RW and HW test statistics. zf,,).

Table 6. Klein’s Model-I: Dynamic—Platykurtic Exogenous Variables

* = IR
o = Hw
'+ = Rw
[
“Small sample distribution of LR. RW and HW test statistics. xflz)v
generator (23)
i
~ — — | > -
X =T"'Y xlelsign(e,)+x (24)
1

=

still with e]s generated iid N (0, 1) and with a value of the exponent ¢
less than 1 (0.2 in our experiments; this gave values of the kurtosis less
than 1.5 for all variables). The results displayed in Tables 5 and 6 show
a very slight improvement in the behavior of the RW test statistic,
whose distribution approximates faster the asymptotic one.
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Tuble 7. Klein's Model-I: Static—Leptokurtic Exogenous Variables

T=42 ‘ // = 210 /'h/

k‘/
e

'Small sample distribution of LR, RW and HW test statistics. me.

T = 1050

30

Table 8. Klein’s Model-I: Dynamic—Leptokurtic Exogenous Variables

Vit /

|
T = 1050 [
|

“Small sample distribution of LR, RW and HW test statistics., lfm-
The last group of experiments, displayed in Tables 7 and 8, has been

performed generating random values of the exogenous variables with
a distribution strongly leptokurtic. The generator adopted is

F=T"'Y xe+% (25)

with an odd value of ¢ > 1. We have used a rather large value of¢ =7
for better exemplifying the behavior of the test statistics. This has

Finite Sample Performance of the Robust Wald Test 17¢

produced samples of exogenous variables with kurtosis up to 16. This
seems to have no particular effect on the distributions of LR and HW
test statistics, but has a dramatic impact on the RW statistic. For the
static model with a rather long sample (T = 210, 10 times longer than
the historical sample), for a nominal size of 5%, the estimated rejec-
tion probability is over 90%. Still with a very long sample (7T = 1050.
50 times longer than the historical sample) at 5%, the estimated
rejection probability is almost 50%. The discrepancy in this case is
considerably larger for the static model (Table 7), where all the
predetermined variables, including lagged endogenous, are strongly
leptokurtic, than for the dynamic model (Table 8).

VII. THE SAMPLE KURTOSIS OF EXOGENOUS VARIABLES
We start from consideration of a linear regression model with one
explanatory variable

v, = ax, +u,; u, iid N(0,07). (26

With the notations of Sections III and IV, the vector of unknowr
parameters is

p=laocY (27
while g,, = —x,. FIML estimators are

r -t 7 T !
i = (Z x?> Y xy: 6= T(Z lif) - (28,
1 =1

=1 o=l

As is well known, the Hessian of the log-likelihood computed at the
point which maximizes the likelihood is diagonal (4,, = 0 and
A, = 0). From this it follows that

r 1T
Cl.l = /‘iuél.ll‘i” = (z \,:> z X (29

E)=061]1—= . 30
(7)) =0 [ 5 '\J (30

Therefore, computing the expected value of (29), we get

T i I A
r=1 =1 "'

CED K

We have now

I



where k. is the average fourth power of the explanatory variable
divided by the square of its mean square. If the exlanatory variable has
zero mean, k, is the sample kurtosis of the explanatory variable. T
being the length of the sample period, k, may assume values between
1 and 7. Under the assumptions given in (26), the variance of (d — a)
is 6% (Zx2)~", and we easily see from Eq. (31) that C, , is in any case
biased downward.

The amount of this bias in a practical application may be small
enough to be negligible if k, is small. For example, the smallest would
be for a constant series where k., = 1 yields the least bias, with a bias
factor 1 — 1/7, similar to that obtained by the traditional OLS
variance estimator without degrees of freedom correction.

A platykurtic behavior of the explanatory variable k, < 3 also will
cause a downward bias, usually negligible, and the same can be said
for a mesokurtic behavior (k. = 3, as for x,’s generated by a normal
process). Of course, whether bias is negligible or not depends on how
large the sample is. For example, 7 = 10 may already be considered
sufficiently large if there is only one coefficient to be estimated as in this
example. In that case the variance would be biased downward by
30%, which may not be considered a small amount.

Obviously, the most dramatic effects are obtained when the
explanatory variable is strongly leptokurtic (k, > 3) as is clear from
Eq. (31). Platykurtic explanatory variables are certainly more likely to
be encountered in practical applications (e.g., constants, or variables
that exhibit a constant growth over time), but large values of the
kurtosis may also be encountered in some cases (e.g., seasonal dummy
variables)’.

Most of the argument above can be extended to the case of general
linear regression models with more than one explanatory variable. In
this case, if there is no misspecfication, it is no more true that the
robust covariance matrix estimator is always more biased than the
traditional estimator; we may have cases in which it is less biased.
Bias, however, is always downward and it is larger when the fourth-
order sample moments, or cumulants, of the explanatory variables are
large. This will be clear if, for the linear regression with K explanatory
variables

}" == Xa+ll; X/ = [xlﬂxh---sxr’”-’xr]; u~ N(O,Uzl) (32)

we compute the FIML estimator (= OLS) of the coefficients, ¢ =
(X' X)~'X’y, then their robust covariance matrix estimator (recalling

LiRHe ourripie Cevjormance of tne Kooust vvaid 1esh 101

that the Hessian is still block diagonal),

o r
G, = AHB[.lAH =(X'Xx)"! z x,x,’ﬁf(X'X)" (33)
t=1

which is equal to the heteroskedasticity consistent estimator given ir
White (1980). Recalling that

b=U—-XX'X)'Xu (34)

and computing the expected value of (33) we get
.

EC) =X X)) =X X)" Y (X' X) 'xx](X'X)". (35

1=1
It is clear that the estimator is biased downward, since the covariance
matrix of @ — a is equal to the first term on the right-hand side of Eq.
(35); however, the second term is not necessarily greater than or equal
to ¢”(X’X) "' K/T in matrix sense [we can only prove that it is always
> 0> (X' X)™'/T). Thus, the bias is not necessarily greater than the one
given by the Hessian covariance matrix estimator, that is, the tradi-
tional OLS formula, without degrees of freedom correction.

Equation (35) also makes clear the role of the fourth powers of the
x;s: the higher they are, the larger the second term on the right-hand
side of (35), and the smaller the expectation of the robust covariance
matrix estimator.

The robust covariance matrix estimator in (33) must be inverted to
compute the RW test statistic on a vector of coefficients [see Eq. (19)].
Cases in which the estimator shows strong downward bias are likely
to produce absolute values too large of the statistic. Therefore, for the
RW test statistic we should expect, in these cases, a right shift of the
small sample distribution with respect to its asymptotic distribution
(x*). The probability of type-I error will be larger than the nominal
size of the test.

For a system of simultaneous equations, we are unable to give a
simple interpretation of the phenomenon analytically. The sampling
experiments described in the previous and following sections suggest
that something similar to the linear regression model is likely to occur
also in that case. Exogenous variables with a large fourth-order
moment cause a strong downward bias to the robust covariance
matrix estimator, and, therefore, imply values of the RW test statistic
that tend to be too large.

This also follows from the Monte Carlo experiments described in
Prucha (1984) and in Calzolari and Panattoni (1984, 1988). It was
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shown there that the covariance matrix estimator based on the outer
product of the first-order derivatives of the likelihood (B~") tends to
be systematically larger than the Hessian estimator A~'. Therefore,
A" B tends to be smaller than the unit matrix, and C tends to be even
smaller than the Hessian covariance estimator. This implies a value of
the RW statistic usually larger than the corresponding value of the
HW statistic.

Finally we observe that in the linear regression model a large
fourth-order moment of the exogenous variables strongly affects the
estimator B, while it has no effect on 4. The sampling experiments per-
formed for the present study (not included in the chapter for brevity’s
sake) confirm that the influence of leptokurtic exogenous variables is
on the outer product covariance estimator, and that their influence on
the robust covariance matrix estimator follows as a consequence.

We may conclude that asymptotic robustness for the Wald test may
have a large cost in terms of finite sample performance, mainly
depending on the behavior of the exogenous variables. In models that
involve strongly leptokurtic variables (for example, seasonal dummy
variables), the use of the robust covariance matrix estimator in Wald
test does not seem to be recommended. Correcting factors are needed
for simultaneous equation systems, analogous to those proposed by
MacKinnon and White (1985) for the covariance matrix in the linear
regression model.

VIII. RESULTS ON OTHER MODELS

In this section we briefly summarize the results of experiments per-
formed on three other simultaneous equation systems. Two are small
models of the Italian economy proposed in the literature, and one is
a nonlinear version of Klein’s model-1. The following remarks apply
to all models and experiments.

1. Models have been treated either as static models (with lagged
endogenous variables replaced by fixed current exogenous) or
as dynamic ones. No particular divergence has been shown by
the experiments, including the case of the nonlinear dynamic
model. For brevity’s sake, the tables of results refer only to the
static version of the models.

2. As with the experiments discussed in Section VI, we display the
sampling distributions of the likelihood ratio test statistic and of
the robust and Hessian versions of the Wald test statistic.
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3. For each model in static version, we repeat the experimen
12. times, that is, with 4 different sets of exogenous variable
(historical—repeated consecutively for long samples, normal

platykurtic, and leptokurtic) and 3 different lengths of th
sample period.

The results, which are displayed in Tables 9-20, suggest considera
~tlons that are essentially the same as those derived for Klein’s model-
in Section VI. The only behavior remarkably different is in the Sitzi:
and Tivegna (1975) model for the Italian economy using the historica
values of the exogenous variables. The presence in the model of :
dummy variable (all values are zero, except in 3 years; therefore, k. i

much greater than 3) seems sufficient to explain this behavior in ligh
of the considerations of Section VII.

Table 9. A Simple Macroeconomic Model of the Italian Economy*

C=a+aY +a,C_ +u,

~
]

agta(Y, =Y, )+ ad, |+ u,
M, = a, + ayl, + a,(Y — ), +u,,
Y=C+1+2Z -M,

Number of equations = 4

Number of stochastic equations m = 3

Number of structural unknown coefficients n = 9
Number of structural unknown parameters n + m(m + 1)/2 = 1§

ThL- model, >peuhm.lly designed for the purpose of analyzing the effects of current revisions in Italian
national account series. is described in Rettore and Trivellato (1986).

Table 10. Simple Italian Model (x3,; T = 19)

Platykurtic exogenous Leptokurtic exogenous
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Table 11. Simple Italian Model (x5,; T = 200)

Platykurtic exogenous

Leptokurtic exogenous

Table 12. Simple Ttalian Model (x3,,; T = 1000)

) ] )

Fixed exogenous

0 5 20

Platykurtic exogenous

a
)

Normal exogenous

Leptokurtic exogenous
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Table 13. A Linear Model for the Italian Economy*

CPN,

/

ILIT,
M,

WIT, =

KoCc,

PIT,

RNLCF,

Number of equations

ay + a(WIT + WG + X 2),

+ a(PIT + PAF), 4+ a,(PIT + PAF), | + uy,
as+ 4o PIT, | + «; KOCC, + a ILIT, | + u,,
ag + a i (CPN + ILIT), + a1 + uy,

apy + apy(WIT + PIT), + a, KOCC,

+ a;sDUSTO, + a\ WIT, | + uy,

ay; + aw(ILIT, + 1LIT, | + ILIT, ,)

+ aULIT, | +2 x ILIT, ) + us,

RNLCF, — WIT, — WG, — PAF, — X2,

CPN, + ILIT, - M, + WG, — Tl + X1,

=1

Number of stochastic equations m = 5
Number of structural unknown coefficients n = 19
Number of structural unknown parameters n + m(m + 1)/2 = 34

“Model. meaning of the variables, and data for the Italian economy 1952-1971 can be found in Sitzia anc

Tivegna (1975).

Table 14.

Linear Italian Model (y{,,; T = 40)

Platykurtic exogenous

Leptokurtic exogenous



Table 15. Linear Italian Model (x); T = 200) Table 17. Log-Linear Version of Klein’s Model-1¢

InC, = a)+a;lnP, +a;InP |
+a,In(Wl + W2),+u,

I, = ac+aP+a,P_ + a. K, _| + uy,
Wi, =ay+a Y+ T—-W2),
+ay(Y+T—-W2), | +ayt+uy,
CH+L4+G—T,

Y, - W1, - w2,

N v
il Il Il

Kr«l +Il

Number of equations = 6
Platykurtic exogenous Leptokurtic exogenous Number of stochastic equations m = 3

Number of structural unknown coefficients n = 12
Number of structural unknown parameters n + m(m + 1)/2 = 18

Table 16. Linear Italian Model (x{5; T = 1000)

“The model. specifically designed for experimenting algorithms for nonlinear systems, is taken from
Belsley (1980).

Table 18. Log-Linear Version of Klein’s Model-I (x,); T = 42)

Platykurtic exogenous Leptokurtic exogenous

Platykurtic exogenous Leptokurtic exogenous
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Table 19. Log-Linear Version of Klein’s Model-I (3{,; T = 210)

EYTTT e AR
|
o
#
2
T I S | O
Fixed exogenous Normal exogenous
——— ——
| Pl s
7t /‘ e X
[ i | ’
4 ’
/ b
4 S air L
Platykurtic exogenous Leptokurtic exogenous

Table 20. Log-Linear Version of Klein's Model-1 (z4,; T = 1050)

Platykurtic exogenous Leptokurtic exogenous

IX. CONCLUSIONS

In this chapter we have experimentally evaluated how costly it is to use
the robust estimator of the coeflicients covariance matrix in the Wald
test on systems of simultaneous equations when there is no misspecifi-
cation. We have investigated how fast the sampling distribution of the
test converges to the asymptotic y* distribution and have performed
comparisons with the likelihood ratio test and with the traditional
Hessian version of the Wald test.

The results have indicated that the cost may be very large depending
on the values assumed by the explanatory variables of the model. The
enormous deviations of the sampling distribution from the asymptotic
7~ recommend a careful investigation of the problem of small sample
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correcting factors before the robust Wald test can be expected to have
approximately the correct size for the sample lengths used in econo-
metric applications.
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NOTES

I, We first perform a least-squares cestimation of the coeflicients for all the
cquations of the model in such a way as to get a reasonably good starting point for
the maximization process. Then we perform some iterations of FIML using a gradient
algorithm based on a generalized feast-squares (ype matrix that usually proves to be
computationally more eflicient in the first iterations (sce Calzolari et al.. 1987).
Intermediate iterations are then made using a Newton-like algorithm based on the
Hessian of the likelihood followed by a scarch of the maximum in the chosen
dircction. The last iterations are performed using Newton's method. An accurale
computation of the maximum point is ensured by choosing a very tight convergence
criterion: 10 ”"as a relative tolerance on all coefficients in cach Monte Carlo replication.

2. When dealing with maximum likelihood estimation. it is usual to concentrate
out the o parameters and then deal with the concentrared log-likelihood. which is only
a function of the « parameters. The formulas for the first and sccond derivatives of
the concentrated log-likelihood would be more complicated than those displayed in
scction HI (for example, sec Amemiya, 1977, p. 957 for the second derivatives), but
would give several computational benefits. In particular. the dimensions of all the
matrices involved in the computation would be # x n instead of [n + mi(m + 1)/2] x
[+ mGn + 1)/2]. Tt can casily be proved that the Hessian of the concentrated
log-likelihood is equal to (A4"") '. This equality does not hold for the covariance
cstimators based on the outer products of the first derivatives of the log-likelihoods
or of the concentrated log-likelihoods. However. Prucha (1984) proves that the
cquality holds again (algebraically. and not only in probability limit) for the first
block of matrix C:in other words. €, could also be obtained from Hessian and outer
products of irst-order derivatives of the concentrated log-likelihoods. There are. of
course. applications ol the Wald test where it is necessary to evaluate the covariance
matrix of the entire set of estimated parameters (sce, for example, Bhargava, [987)
the formulas of sections 111 and TV can be used also in these applications.

3. Of course. it would not be so if we were interested in getling very accurate
measurements of the distributions in the critical region. Tn such u case accuracy would
be helped not only on a farger number of replications, but also by the use of variance
reduction algorithms. In particular. the control variate method proposed by Davidson
and MacKinnon (1981) and applicd by them (1983) 10 the Lagrange multiplier test on
a lincar regression model should be suitable. Also in the case of lincar simultancous
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cquations, we may calculate a control variate that has a known distribution in the
small sample case. 77, and is at the same time. hopefully. strongly correlated with the
Wald and LR test statistics. In sampling experiments such a variable may be obtained
as an LM statistic. using the rrue values of the o parameters in the score vector and
using the true information matrix. This. however, secems not to be so simple if the
system is nonlinear.

4. Whether or not the differences can be considered slight is certainly a matter
of opinion. However, there is surcly no doubt that they are very slight if compared
with the differences that will be shown in some of the following experiments.

5. The extreme case of a dummy variable that is always zcro except in one
period cannot obviously be considered. This follows from Eq. (31), where k, would
be equal 7. and from Chesher and Jewitt (1987, p. 1219); even more clearly, it follows
from the proposition in Chesher and Jewitt (1984, p. 10).
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