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13.1 INTRODUCTION

Forecasts produced by structural econometric models are subject to several
sources of error; some of these are, for example, the random disturbance term of
each stochastic equation, errors in estimated coefficients, errors in forecasts of
exogenous variables, errors in preliminary data (before the final revisions become
available), and possible misspecification of the model. Several analytical,
empirical, numerical, and Monte Carlo methods have been proposed in the
econometric literature for estimating the contribution to forecast errors of some
or all of these error sources.?

This paper will be concerned with the contribution to forecast errors of errors
in the estimated structural coefficients. Its main purpose is to perform, on several
‘real world’ models, an empirical comparison of alternative techniques available
in the literature for this purpose.

For all models, the comparison will be performed in the case of one-period
forecasts, outside the sample used for estimating the structural coefficients, under
the assumptions of perfect knowledge of the predetermined variables and correct
spectification of the model structure; in other words, forecasts conditional on the
predetermined variables and the model’s specification. What remains is a forecast
error that depends on the structural disturbances and on the coefficient estimates
only. These two components, under general assumptions, are independent when



forecasting outside the sample period, so that their statistical properties can be
studied separately.

The statistical techniques available for this purpose include explicit analytical
formulae, but these are applicable to linear models only; furthermore, in the cases
in which they are applicable, several computational difficulties are involved, so
that, in empirical applications for real world nonlinear models, one must resort to
simulation techniques.

Stochastic simulation is usually used for estimating the component due to the
error terms, obtaining the so-called ‘reduced form’ variance.

Stochastic and analytic simulation techniques are used for the estimation of the
component due to the coefficient estimates. In this paper, the empirical results
obtained with three alternative methods will be discussed. These three methods,
briefly described in Section 13.4, are discussed in detail in Schink (1971), Fair
(1980), and Bianchi and Calzolari (1980).

The methods of Schink (1971) and of Fair (1980) perform a number of
stochastic simulation runs, in each run starting from a set of different structural
coefficients, and they differ in the way in which the ‘new’ coefficients are obtained.
Hence, even if they could be considered as belonging to the same area {i.e.
stochastic simulation with respect to the coefficient estimates), they are
substantially different. In order to avoid misunderstanding in the present paper,
they will be referred to in the following way:

— "Stochastic simulation and re-estimation’, for the method of Schink (1971),
where the analysis of the forecast error is performed starting from the
covariance matrix of the structural form disturbances; each run of stochastic
simulation with respect to the error terms supplies a new pseudo-sample for
the endogenous variables and the new set of structural coefficients is obtained
by re-estimating the model.

— ‘Monte Carlo on coefficients’ for the method of Fair (1980), where the new set
of structural coefficients is generated by random sampling from the covariance
matrix of the structural coefficients.

— The last method, by Bianchi and Calzolari (1980), will be referred to as
‘analytic simulation on coefficients’.

13.2 NOTATION AND ASSUMPTIONS

Even though the purpose of this paper is to compare algorithms applicable to
nonlinear models, it is useful to give some consideration to the case of a linear
simultaneous-equations system. For this reason, notation will be introduced in
this section both for linear and nonlinear models.

A general structural econometric model, linear or nonlinear in the variables as
well asin the coefficients (including coefficient restrictions), can be represented as

f(y,x,.a) =u, t=12...,T 2.1)

where:

' = (fi./2,---,Jm) is a vector of functional operators, continuously differ-
entiable with respect to the elements of y, x, and a; y;, = (11, Vars -+, V) and
X, = (X, X2, ..., X,,) are the vectors of endogenous and predetermined variables
attimer = 1,2,...,T;a’ = (a,, a,, ...,a,)is the vector of the structural coefficients
to be estimated (all the other known coefficients of the model are excluded from
this vector and included in the functional operators); u; = (uy,, Uy, . - ., Up,) 18 the
vector of structural stochastic disturbances at time t, having zero mean and
independently and idéntically distributed over time, with finite covariance matrix
and independent of all the predetermined variables.

If the model is linear, its structural form can be represented as:

Ay, + Bx, = u, =12,...,T (2.2)

In this case 4 and B are, respectively, (m x m) and (m x n) matrices of
structural coeflicients, including coefficients known a priori, such as zeros, ones,
etc; the vector a, therefore, will contain a subset of the elements of 4 and B.

It is worth observing that the hypothesis on the structural disturbances, which
are supposed to be independently distributed over time (serial independence), is
indispensable for the derivation of the results in Section 13.3; it would be
restrictive if the analysis were confined to linear models, but is less restrictive in
the more general context of nonlinear models. In fact if, for example, the
structural disturbances of the ith equation are assumed to be first-order serial
correlated, i.e.

Yiu t aX; =0, U, =pu—g + u (2.3)
then the equation can be simply rewritten in the form
Yio = PYiu—1 + QXje — PAXj— 1 = U (2.4)

so that the equation becomes nonlinear in the coefficients, but no longer violates
the above assumptions. In other words, serial correlation of any order is allowed,
provided that the structural model is transformed leaving correlation-free
disturbances.

The distribution function of the disturbances u, must be specified in all the
experiments that involve stochastic simulation. In all the experiments hereafter
described, it will be assumed multivariate normal:

u ~ N(O,Z). (2.5)

In the experiments which involve Monte Carlo or analytic simulation on
coefficients, an estimate of the covariance matrix of the structural coefficients is
also required. Such an estimate is a standard by-product of system estimation
methods, like three-stage least squares (3SLS), full information maximum
likelihood (FIML), or full information instrumental variables efficient (FIVE). If
limited information methods are used, the derivation of an estimate of the full



covariance matrix of the structural coefficients generally requires some
additional computations beyond those usually involved in the estimation of the
structural coefficients. Since most of our experiments have been performed using
limited information instrumental variables efficient estimates (LIVE) or two-
stage least squares (with principal components), reference is made to Brundy and
Jorgenson (1971, p. 215) and to Theil (1971, p. 500) for the construction of the
coefficients’ covariance matrix.

However, it is more appropriate to call such a matrix an estimaied asymptotic
covariance matrix. In fact, under general assumptions, the classical estimation
methods for systems of simultaneous equations first of all provide an estimate of
the structural coefficients, 4, such that ﬁ(ﬁ — a) has asymptotically a
multinormal distribution with zero means and finite covariance matrix. They
then provide a consistent estimate of this covariance matrix divided by the actual
sample period length. This point is well known and described in econometric
textbooks (see, for example, Christ, 1966, p. 379; Schmidt, 1976, p. 254; or Theil,
1971, p. 378 for a detailed discussion). Nevertheless, it has been noted because the
difference between two of the three methods considered later in this paper lies
mainly in the different treatment given to this covariance matrix, or, more
precisely, in a different choice of the stage where the asymptotic estimate is
interpreted as an approximation of the small sample estimate. This point will be
clarified below.

The covariance matrix of structural coefficients will be denoted by ¥; more
exactly we suppose that, asymptotically,

JT@E—a)~N(@O¥) (2.6)

and that, if T is the actual sample period length, the available estimated matrix is
¥/T, where ¥ is a consistent estimate of W.

There are difficulties in proving that equation (2.6) holds when the nonlinear
model includes lagged endogenous variables among the predetermined variables.
In some sense, however, this work starts after structural estimation problems
have been solved, for example by assuming as reasonable the considerations in
Gallant (1977, pp. 73-74) and Hatanaka (1978, fn. 8).

13.3 DECOMPOSITION OF THE FORECAST ERRORS

It is usually assumed that a simultaneous-equation system like (2.1) uniquely
defines the values of the elements of y, once values for the coefficients, the
predetermined variables, and the disturbance terms are given (at least in some
range); in the case of the linear model (2.2) this is equivalent to assuming
nonsingularity of the matrix 4. This means that the structural form equations
(2.1) implicitly define a system of reduced form equations

Y= Y(Xnﬂvur) (3.1}

where the vector of functional operators y is generally unknown in the case of
nonlinear models.
If the model is linear, equation (3.1) simply becomes

y, = Ix, + v, N=-A4"'B v =A4"u, (3.2)

Let 4 be an estimate of the vector a, as described in Section 13.2, obtained by
using the data for y, and x, in the sample period t = 1,2, ..., T, and let h be the
forecast period, not belonging to 1,2,...,7. Under the assumption of serial
independence, the disturbances at time A, u,, are independent of the disturbance
terms in the sample period and, therefore, u, and 4 are two independent random
variables.

The usual forecast supplied by the model is obtained by inserting, in the
structural form equations (2.1), the estimated vector 4 and the values of the
predetermined variables x, (supposed exact, for the purposes of this paper, as
already observed), dropping the disturbance term, and solving the resulting
system

f(§1, xr,d) =0 (3-3)

by means of some numerical method. In terms of the (unknown) reduced form,
this means that the vector of forecasts at time h can be represented as

yh = y(xh) ﬁ, 0) (34)

The vector of the ‘true’ values of endogenous variables in the forecast pertod
can be represented, using the reduced form notation, as

Y= Y(Xpa,u,). (3.5)

The vector of forecast errors is the difference between ¥, and y,. It is now
convenient to introduce an auxiliary vector, y,, defined as the vector of forecasts
that would be produced by the model if the structural coefficients were known

with certainty;in other words y, is the solution of the model free of errors at time
h:

f(Y xna) =0 (3.6)
that is, with reduced form notation,
¥r=¥(xna,0) (3.7)

Returning to the vector of forecast errors, we now have
o= Yn= [0 = Vul + [J0 — ¥4l
= [y(xhﬂ 570) - y(xhra,o)] + [y(Xh,a,O) - y(xhs a, uh)] (38)
In the case of a linear model, equation (3.8) assumes the well-known form
9n - ya = [fix, — Mx,] + [Hx, — ([x, + v,)]
:)ﬁ—n]xh—A_luh. (39)



In both cases, the vector of forecast errors is the sum of two random vectors: the
first 1s a function of several variables, among which only the vector of estimated
coefficients, 4, is random ; the second is also a function of several variables, among
which only the vector of structural disturbances, u,, is random. Since, by
assumption, 4 and u, are independent, so also are the two components of the
vector of forecast errors.

Therefore the two components can be separately analysed and, in particular,
an estimate of the variances of the forecast errors can be obtained by summing the
estimated variances of the two components.

What we have stated above i1s not exactly true if lagged endogenous variables
are present among the predetermined variables;in this case, in fact, the two terms
of the sum are both functions of the (random) lagged endogenous variables. The
above considerations, however, still hold ‘conditional’ on a given value of the
lagged endogenous variables (for example, it could be the historical value, in the
case of one-period forecasts).

There is substantial agreement about the methods of analysing the component
(¥» — ¥&), which is a function of the random structural disturbances; in most
papers that deal with this problem, stochastic simulation is proposed as the basic
computational method. By means of replicated solutions of the model, each time
introducing a vector of pseudo-random disturbances in place of u,, it is possible to
compute approximate values of the conditional means and variances of the
elements of (§, — y,). The approximation improves, usually, as the number of
replications increases; if finite moments of the first two orders exist, a very high
number of replications would lead, in practice, to the exact values of means and
variances, if the parameters of the model (the vector a and the covariance matrix
of the structural disturbances) were known with certainty.

As, however, we are assuming only estimates of these parameters, stochastic
simulation will lead to an estimate of the means and variances of the elements of
(¥, — y») (a consistent estimate, in particular, if the available estimate of the
structural form parameters is consistent).’

Of course, if the model is linear, the mean of this component is zero and the
covariance matrix of its elements is

ATIEATYY (3.10)
if X' 1s the covanance matrix of u,; the estimated covariance matrix is
A ZAY. (3.11)

Since, as already mentioned, this method is widely accepted, it is unnecessary to
go into further detail.

The rest of the paper will deal only with the other component, for which the
literature presents methods that differ from one another both computationally
and conceptually. To be more precise, in the works by Schink (1971) and Fair
(1980), numerical results are not presented for this component by itself (as it is, for

example, in Bianchi and Calzolari, 1980), but directly for the complete forecast
error due to the two error sources together. However, since our assumptions
allow us to separate the two components, the analysis of the first component by
itself should allow us to compare in detail the empirical results obtained with the
different methods.

Finally it must be pointed out that the decomposition of the forecast errors
outlined in this section is not confined to the case of forecasts obtained by means
of one-step (or static) simulation, but could be extended to the case of conditional
forecasts obtained by dynamic simulation (always outside the sample estimation
period). Since, however, we are not going to present, in this paper, results related
to the forecast errors in dynamic simulation, this problem will not be discussed
further. For a detailed analytical treatment of this problem in the case of linear
models, reference can be made to Schmidt (1974).

134 THREE METHODS FOR ANALYSING THE COMPONENT OF
FORECAST ERRORS DUE TO ERRORS IN THE ESTIMATED
COEFFICIENTS

Three different methods for analysing the component (y, —¥,) are briefly
described in this section. They will be referred to as:

— Stochastic simulation and re-estimation.
— Monte Carlo on coefficients.
— Analytic simulation on coefficients.

It will be clear that not only are there technical differences in the computational
algorithms, but there are some basic conceptual differences among the methods.

Stochastic simulation and re-estimation tries to deal with the ‘small sample’
distribution of (¥, — ¥,) directly.

Monte Carlo on coefficients starts from the estimate of the asymptotic
covariance matrix of the structural coefficients, treats this matrix as an
approximation of the small-sample covariance matrix of the coefficients, and
derives the consequences of this assumption on (§, — ¥,).

Analytic simulation on coefficients also starts from the estimated asymptotic
covariance matrix of the structural coefficients and derives the asymptotic
covariance matrix of (¥, — ¥,); only after this computation is performed is the
resulting matrix interpreted as an approximation of the small-sample covariance
matrix of (§, — ¥,). In some sense, with respect to Monte Carlo on coeflicients,
the approximation is performed at a later stage.

From a purely empirical point of view, however, all methods lead to the same
information, ie. an estimated covariance matrix of the given component of
forecast errors.



134.1 Stochastic simulation and re-estimation

This method can be summarized as follows (see Schink, 1971, for more details).
Let X be the available estimate of the covariance matrix of the structural
disturbances.

1. Tvectors of pseudo-random numbers, i, t = 1,2, ..., T (each of which having
mulitinormal distribution, zero means, and covariance matrix equal to the
available £), are generated. The method of Nagar (1969) can be applied if £ is
positive definite; otherwise, the method by McCarthy (1972a) can be used.

2. Thevectorsi, are inserted into the model, where the structural coefficients are
maintained fixed at their originally estimated values, and the model is solved
over all the sample period, obtaining for the endogenous variables the vectors
Vor=12,...,T

3. The vectors §, are treated as a new set of observations of the endogenous
variables and are used to re-estimate the model, thus obtaining a new vector,
i, of pseudo-estimated coefficients (or new matrices 4 and B if the model is
linear).

4. The coefficients & are inserted into the model to produce, via deterministic
solution, a vector of pseudo-forecasts at time h, §,.

The process is repeated from step 1 to 4 and the desired results follow from the
computation of the sample variances of the elements of all the §, computed in the
various replications.

Some complications arise from the treatment of lagged endogenous variables
in the simulation phase (in other words simulation can be static or dynamic) and
in the re-estimation phase (they can be maintained ‘static’, i.e. fixed at some given
(historical) value, or their simulation value can be chosen). This problem is
discussed in Schink (1971, pp. 101-108);in all the experiments here performed the
static—static combination has been adopted.

This method is frequently used in the literature to derive small-sample
distributions of estimators for simultaneous-equation systems when analytical
methods are not available The main theoretical limitation is in the possible
nonexistence of finite moments in the small-sample distribution of the structural
form or reduced form coefficients (these last directly related to forecasts); this
topic is discussed, for example, in Dhrymes (1970, p. 182), McCarthy (1972b),
Sargan (1976), and Mariano (1980).

As pointed out in McCarthy (1972b, p. 761), “. .. 1t should be noted that the
non-existence of moments has some implications for those engaged Monte Carlo
studies. Outliers can be expected. Computation of mean squared forecast errors
and the mean squared errors of the restricted reduced form coefficient estimates
will not converge as the number Monte Carlo runs increases. These computations
really will not yield meaningful information. Throwing out the outliers in making
these calculations is also of questionable value. What is accomplished by
throwing them out?...".

Whether the nonconvergence of this method is a purely theoretical problem or,
on the contrary, is an actual problem for real world models will be clear from the
examples in Sections 13.5 and 13.6.

134.2 Monte Carlo on coefficients

This method can be summarized as follows. Let ¥/T be the available estimate of
the covariance matrix of the structural coefficients 4.

1. A vector a of pseudo-random numbers, with mean 4 and covariance matrix
W¥/T, is generated.

2. The pseudo-random coefficients vector @ replaces the original estimates 4 and
the model is solved deterministically in the forecast period h, obtaining the
vector of pseudo-forecasts ¥.

The process is repeated from step 1 to 2 and the desired results follow from the
computation of the sample variances of the elements of all the §, computed in the
various replications.

A difficulty may arise in the generation of the pseudo-random vectors 4. The
usual generation methods are, in fact, based on Choleski triangularization of the
matrix /T (see Cooper and Fischer, 1974, or Nagar, 1969, for example) and this
is possible only if such a matrix is positive definite. Unfortunately, this is not
always the case. For example when, in a large-scale model, the length of the time
series does not allow the application of system estimation methods, the matrix
¥/ Tmust be built block by block (see, for example, Brundy and Jorgenson, 1971,
p. 215, for LIVE estimates) and it is not necessarily of full rank. In this case the
generation of the pseudo-random coefficients vectors a should pass through the
generation of shorter vectors with full rank covariance matrix (see, for example,
Rao, 1965, pp. 498-501) with some additional computational difficulties.

This problem clearly does not arise if only the diagonal blocks of the ¥/T
matrix are taken into account, as in the work of Cooper and Fischer (1974),
Haitovsky and Wallace (1972), and Fair (1980). In the experiments that will be
described in the following sections, the complete matrix ¥/ T will be taken into
account whenever possible, otherwise only its diagonal blocks will be used. It
must, however, be pointed out that ali the experiments performed with the
complete /T matrix have also been repeated with the diagonal blocks only,
usually obtaining quite similar results (a similar conclusion is in Bianchi ez al.,
1981).

With respect to stochastic simulation and re-estimation this method seems to
be more sensitive to outliers, so that a kind of ‘instability” in the convergence of
the Monte Carlo process has been encountered more often; examples are given in
Section 13.6 and more details on the problem of outliers are given in Section
13.6.5.



13.4.3 Analytic simulation on coefficients

This method, described in detail in Bianchi and Calzolari (1980), is an extension
to nonlinear models of the fully analytical method developed for linear models by
Goldberger er al. (1961).

The method relies on the property, well known in large-sample theory (see, for
example, Rao, 1965, p. 322), that asymptotic normality of sample statistics can be
maintained through transformations, even nonlinear, provided they are
continuous and differentiable.

If we assume that, as T increases, asymptotically

JT@E—-2a)~NQOY) 4.3.1)

(and ¥ is a consistent estimate of W) then, asymptotically,

VTG~ 0 = /T ¥(x,4,0) — y(x4,3,0)]] ~ N(O,G,¥G;)  (4.3.2)

where G, 1s the (m x s)matrix of first-order partial derivatives of the elements of y
with respect to the elements of a, computed at the point (x;,a,0).

If the computation is performed at the point (x,, 4,0) and ¥ is used in equation
(4.3.2), then G,¥G; is a consistent estimate of G,¥G;; the division by the sample
period length, T, leads to the result we are looking for, the estimate of the
covariance matrix of a multinormal distribution which approximates the small
sample distribution of the random vector (¥, — ¥,).

Continuity and differentiability of the elements of the (unknown) vector of
reduced form functional operators y is ensured by the implicit function theorem,
which also provides the way of computing the partial derivatives

-1
9y _ _(ﬂ) (ﬂ) (4.33)
oa’ dy’ ca’

where the derivatives of the structural form operators vector f (known) can be.
also analytically computed, once the deterministic solution of the model at time h
is known.

For medium- or large-scale models it can be more convenient to perform the
computation of the above derivatives with numerical methods (finite differences),
rather than analytically; this criterion has been followed for all the models used
here, with the exception of the Klein-I model, where both analytical and
numerical derivation has been performed (of course, with coincident results).

If the model is linear, recalling equation (3.9) and making use of the formula
proposed in Nissen (1968), the above method can be made more explicit as
follows:

~

ST @ =¥ = /T = T)x, = /T vec[I(I1 - M)x,]
= JT(x; ® Dvec(fl — 1) (4.3.4)

where I'is the (m x m) unit matrix.

Equation (4.3.4) represents a linear combination of the elements of (-1
with fixed coefficients, so that the asymptotic covariance matrix of \_..""I: Fr — ¥4)
can be computed with no difficulty as soon as the asymptotic covariance matrix
of /T vec(fT — II) has been computed, and this can be done with the methods

proposed by Goldberger et al. (1961) or Dhrymes (1973).

13.5 FIRST SET OF EXAMPLES

This section is concerned with the numerical results obtained from experiments
performed on three nonlinear models, plus the linear Klein-I model. Some
general considerations hold for all the experiments and must be taken into
account for a clear understanding of the tables of results.

1. For all the models, forecasts are related to the first period (year or quarter)
outside the sample estimation period:

2. In all the tables, the first numerical column displays the forecast values of
some of the main endogenous variables of the model.

3. Analyticsimulation on coefficients, not being a Monte Carlo method, leads to
results that are not affected by simulation sampling errors. Only minor
changes can be expected from the third decimal digit, due to approximations
in the numerical computation (for example due to the choice of the finite
increments to compute the derivatives). The estimated standard errors of the
component of the forecast errors under consideration, computed with this
method, are displayed in the second column of each table.

4. Results based on stochastic simulation and re-estimation have been obtained
with a number of replications varying from 100 to 1000 and are, therefore,
affected by the sampling variability characteristic of Monte Carlo methods. In
no case, however, have significant changes in the results been observed after
the first 40 or 50 replications.

5. What has just been observed for stochastic simulation and re-estimation
means also that in no case has the generation of outliers produced any kind of
‘instability’in the computed sample moments (at least up to the second order).
The standard errors of the component of the forecast error under
consideration, computed with this method, are displayed in column 3 of each
table.

6. Also for the Monte Carlo on coefficients method, no problem of *stability’ in
the computation of sample variances has been encountered for any of the
models used in this section ; in other words, no trouble due to outliers has been
encountered. The results (standard errors of the component of the forecast
error under consideration), all obtained with 1000 replications, are displayed
in the fourth column of each table.

7. The last column (fifth) on the right-hand side of each table displays the
reduced form standard errors, i.¢. the standard errors of that component of the



forecast errors which is not treated in detail in this paper. They are displayed
only for the sake of completeness. In Section 13.3, we observe that the
standard error of the (complete) forecast error can be obtained, for each
variable, by taking the square root of the sum of the square of the values in
column 5 and columns 2, 3, or 4 (according to the method adopted).

8. For all the models in this section, the results obtained with the three different
methods (columns 2, 3, and 4) are quite similar, but this statement is not of
general validity, as will be clear from the examples of Section 13.6.

13.5.1 Klein-1 model: LIVE estimates 1921-1941

The model proposed in Klein (1950) consists of three stochastic plus three
definitional equations; there are 12 estimated coefficients, 4 for each equation.
Estimation has been performed with the limited information instrumental
variables efficient method proposed in Brundy and Jorgenson (1971), on the
sample period 1921-1941. Forecasts are related to year 1948, using, for the
predetermined variables, the values in Goldberger et al. (1961) (Table 13.1).

Table 13.1 Klein-I model: LIVE estimates 1921-1941.
One-period forecasts at 1948

(1) 2) (3) (4) ©)

C 78.1 1.5 1.7 1.7 2.0
i 9.22 091 091 1.2 14
W, 59.8 1.2 1.4 1.4 1.7
Y 955 23 2.4 28 33
P 27.0 14 1.4 1.7 1.9
K 207.0 0.91 091 1.2 14
Glossary

C = Consumption

I = Net investment

W, = Private wage bill

Y = National income

P = Profits

K = End-of-year capttal stock

13.5.2 ISPE model of Italian economy

The nonlinear model analysed in this section is an annual model of the Italian
economy developed by a team led by ISPE (Istituto Studi Programmazione
Economica).

The model, originally described in Sartori (1978), consists of 19 stochastic plus
15 definitional equations; there are 75 estimated coefficients. It has been re-

estimated for the period 1955-1976 using limited information instrumental
variables efficient method (LIVE) (Table 13.2).

The name LIVE has been maintained since the estimation method 1s exactly
the method of Brundy and Jorgenson (1971), but it must be recalled that
instrumental variables estimates are generally not efficient when applied to
nonlinear models; the problem is discussed in Amemiya (1977) and Hatanaka
(1978).

The results in column 2 (analytic simulation) and 4 (Monte Carlo on
coefficients) have been obtained with the complete covariance matrix of
coefficients.

Table 13.2 I1SPE model of lialian economy: LIVE
estimates 1955-1976. One-period forecasts at 1977

(h 2) (3) 4 (5)
CPNCF 36735 277 278 281 470
DXML 292 0.07 0.07 0.07 0.07
IFIT 6949 206 209 209 268
LI 7735 67 70 66 148
MT 13806 293 288 312 391
PCL 302 003 0.03 0.03 0.04
VAP 55818 460 449 487 599
XT 16971 519 522 541 603

Glossary

CPNCF = Private consumption
DXML = Price deflator for exports

IFIT = Private investment

LI = Employees in industrial sector

MT = Imports of goods and services

PCL = Price deflator of private consumption
VAP = Gross output of private sector

XT = Exports of goods and services

13.5.3 1BM model of United Kingdom

The model analysed in this section is the model of the United Kingdom,
developed by the IBM Economics Department. It is a quarterly model, with 120
equations, 21 of which are stochastic, and includes 32 exogenous variables; there
are 68 structural estimated coefficients. The start of the sample period varies from
195611 to 19691 but always ends at 19751V. Estimation has been performed by
means of the limited information instrumental variables efficient method (LIVE)
(Table 13.3).

For the experiments with analytic simulation and Monte Carlo on coefficients,
the complete covariance matrix of the structural coefficients has been used.



Table 13.3 IBM model of United Kingdom: LIVE
estimates. One-period forecasts at 19761

() 2) 3) (4) ()

BI 2.37 0.05 0.05 0.05 0.07
CPI 108 0.57 0.65 0.59 1.40
EM 227 0.03 0.04 0.03 0.09
GNP 26.7 0.14 0.15 0.14 0.33
GNPC 28.9 0.21 0.23 0.22 0.40
M 7.33 0.05 0.05 0.05 0.20
XipP 102.0 0.87 1.00 0.89 1.80
Glossary

BI = Private fixed investment

CPI = Consumer price index

EM = Private sector employees

GNP = Gross national product
GNPC = GNP in current prices

IM = Imports

XIP = Index of industrial production

13.5.4 Bonn model 10 of Germany (real sector)

The submodel, for the real economy, of the Bonn Forecasting System n. 10, used
for these experiments, consists of 136 equations, 59 of which are stochastic; it
includes 39 exogenous variables and 163 estimated coefficients (data are annual).
For most of the equations, the estimation period is 1960-1977. For a detailed
description of the model, reference should be made to Krelle (1976) and to
Conrad and Kohnert (1979).

The model has been re-estimated by means of limited information instrumental
variables efficient method (LIVE) (Table 13.4).

As the estimated covariance matrix of structural coefficients could not be
triangularized, experiments with Monte Carlo on coefficients have been
performed assuming the matrix to be block diagonal.

Analytic simulation on coefficients has been performed both with the complete
covariance matrix and with the block diagonal matrix; as the results did not
change significantly, at least for most variables, only results obtained with the
complete matrix are displayed in column 2.

13.5.5 Klein—Goldberger model: 2SLS-8PC estimates

The model on which the experiments have been performed is the revised
Klein—Goldberger model described in Klein (1969). It is nonlinear and consists of
16 stochasticand 4 definitional equations, with 54 estimated coeflicients; data are

Table 134 Bonn forecasting system n. 10 for Germany (real
sector): LIVE estimates. One-period forecasts at 1978

(1 {2) (3) (4) (5)
BP'BPGS 29.1 34 34 3.5 6.6
C'PR 463.0 23 24 28 43
M'GSNO 3470 346 3.5 3.8 6.8
PC 1.54 0004 0004 0.004 0.01
WR'P 18.6 0.14 0.14 0.13 0.22
U°DIR 1.33 024 025 023 0.39
T 5100 57 5.7 5.0 11
Fw 1.70 0.10 0.10 0.10 0.17
YDP'P 7340 43 49 5.5 6.1
Glossary
BP'BPGS = Bal. of paym. goods and services
CPR = Private consumption
M'GSNO = Imports of goods and services
PC = Price index of consumption
WR’P = Wage rate private
U’DIR = Unemployed persons
T = Total tax payment
Fw = Foreign workers

YDP’P = Gross domestic product private

annual and the sample period is divided into two parts: 1929-1941 and
1947-1964 (Table 13.5).

Estimation has been performed by means of 2SLS with 8 principal
components, as in Klein (1969); forecasts are related to 1965.

13.6 COUNTEREXAMPLES

This section is concerned with the numerical results obtained on three models,
one of which is again Klein-I estimated in two different ways.

The results obtained in Section 13.5 still hold for the analytic simulation
method; they hold for stochastic simulation and re-estimation in all cases except
one: they do not hold at all for the Monte Carlo on coefficients method. With
Monte Carlo on coefficients the sample variances did not converge as the number
of replications increased; outliers caused, from time to time, abnormal
fluctuations in the experimental results. This effect is demonstrated by inserting,
in the tables, more columns of results, indicated by 4/1, 4/2, etc., with the
indication of the numbers of replications to which they refer.

The same problem has occurred in one case with stochastic simulation and re-
estimation and also in this case the effect of outliers has been demonstrated by
inserting columns 3/1, 3/2, etc., with the indication of the number of replications
to which they refer.



Table 13.5 Klein—Goldberger revised model 2SLS-8PC
estimates. One-period forecasts at 1965

(1 (2) 3) 4) (5)

C, 56.5 1.1 1.2 1.1 2.4
C, 304 1.5 1.6 1.5 3.7
R 229 0.58 0.56 0.57 1.2
H 7.60 0.10 0.10 0.10 0.25
L, 29.9 0.56 0.55 0.54 1.1
X 534 36 3.7 36 84
h.100 102 0.78 0.88 0.81 2.6
W 313 1.9 2.0 1.9 46
w 5.51 0.02 0.02 0.02 0.07
r 4.86 0.13 0.12 0.13 0.36
I 46.7 1.1 1.0 1.1 24
D 59.1 0.70 0.71 0.70 1.3
ry 4.63 0.15 0.14 0.16 0.35
P, 43.7 30 3.6 31 6.9
N, 680 0.48 0.61 0.50 11
Y 375 2.6 2.7 2.6 59
p 1.22 0.014 0.018 0.015 0.04
S, 3.61 2.8 34 29 6.6
n 88.2 29 33 29 6.5
11, 339 0.35 0.45 0.38 0.86
Glossary

When not otherwise specified the variable is expressed in billions
of 1954 dollars

C, = Consumption of durables

C, = Consumption of nondurables and services
= Residential construction

H = Stock of inventories

I, = Imports

X = Gross national product

h = Index of hours worked per week, 1954 = 1.

W = Wages and salaries

=

= Annual earnings, thousands of dollars
= Average yield on corporate bonds, percent

,
I = Investments in plant and equipment

D = Capital consumption allowances

r = Yield on prime commercial paper, percent
P. = Corporate profits

N.. = Wage and salary workers, millions

Y = Personal disposable income

p = Implicit GNP deflator, 1954 = |

Se = Corporate savings

[T — P, = Proprietors’ income

I = Rental income and net interest

~

One of the experiments is based on ordinary least squares estimates. In this
case not all the assumptions concerning consistency of the estimates still hoid.
From a purely technical point of view, however, the three methods can be applied
without any change. The statistical properties of the results will be completely
unpredictable, but this does not mean that they cannot be of practical use.

13.6.1 Bonn model 5 of Germany

The model used in these experiments is the Bonn University Model 5, described in
Krelle (1974) and Quinke (1978). It consists of 126 equations, 50 of which are
stochastic, with 20 exogenous variables; the estimation period is 1960-1975 for
most equations, but some equations have been estimated on 1960-1977; the first
year outside the sample period is, therefore, 1978; data are annual (Table 13.6).

The re-estimation of the model has created some difficulties, giving rise to some
convergence problems in the solution of the model inside the sample estimation
period. LIVE estimates have been performed, but they led to some unacceptable
values of a few coefficients and to unreasonable forecasts at 1978. It was,
therefore, decided to maintain the model in its original form, with ordinary least
squares estimates.

Monte Carlo on coeflicients has been performed using a block-diagonal
covariance matrix for the structural coefficients.

Stochastic simulation and re-estimation has been performed replicating OLS
estimates.

Analytic simulation on coefficients has been first performed using the block-
diagonal covariance matrix for the coefficients, then has been repeated with a
complete matrix obtained with the same formula used for instrumental variables,
but with the historical values of endogenous variables instead of the instruments.
The results slightly changed; those obtained with the full matrix were closer to
those obtained with stochastic simulation and re-estimation, so those displayed
in column 2 are referred to the complete matrix, whatever the statistical
properties of such a matrix may be.

13.6.2 Klein-I model: FIML estimates

The Klein-1 model has been estimated by means of full information maximum
likelihood (Table 13.7). The estimated coefficients and standard errors can be
found, for example, in Hausman (1974).

13.6.3 Klein-1 model: LIVE estimates 1921-1939

For this experiment the Klein-I model has been re-estimated by means of
instrumental variables on a sample period shortened two years (Table 13.8).



Table 13.6  Model 5 of Boan University for Germany: OLS estimates. One-period Table 138 Klein-I model: LIVE estimates 1921-1939. One-period forecasts at 1940
forecasts at 1978

310 - 320 440 1000

370 380 1000 repl. repl. repl. repl.
repl. repl. repl. () (2) (3) 4/1) (4/2) (4/3) (4/4) (5)
(1) (2) (3) {4/1) {4/2) {4/3) {3)
C 65.6 1.0 1.1 1.3 2.0 2.7 2.3 2.0
YDP 653.0 16.0 13.0 28.0 162.0 102.0 11.0 I 2.97 0.67 0.64 0.98 14 2.6 2.4 1.5
Y'PP 277.0 21.0 150 220 626.0 386.0 14.0 W 45.9 0.80 0.84 0.95 1.3 1.9 1.7 1.8
C'PNO 715.0 17.0 11.0 210 369.0 228.0 95 Y 743 1.6 1.6 2.2 33 52 4.6 34
I'PN 239.0 19.0 15.0 33.0 901.0 556.0 14.0 P 20.4 1.1 1.0 1.5 22 3.5 3.0 1.9
T 508.0 12.0 12.0 19.0 413.0 255.0 14.0 K 204 0.67 0.64 0.98 14 2.6 2.4 L.5
GS'GD 168.0 19 1.7 1.8 1.80 1.80 19
HW 45.0 1.0 0.70 1.5 8.60 5.40 0.67
M'GSNO 326.0 7.8 6.4 10.0 171.0 106.0 83
X'GSNO 345.0 8.0 8.9 8.0 g.10 8.40 53 . .
BP'GS 183 82 79 10.0 170.0 1050 10.0 13.64 Kliein—Goldberger model: 2SLS—4PC estimates

For this experiment the Klein—Goldberger model has been estimated by means of
2SLS with 4 principal components, as in Klein (1969) (Table 13.9).

Glossary
?%’; _ grrggf g]ocrc?;se“i)r?\fz?eu‘:t Table 139 Klein-Goldberger revised: model 2SLS-4PC estimates. One-period forecasts
C’PNO = Private consumption at 1965
I'PN = Gross private investment ’
T = Total tax payments 10 50 100 40 200 1000
GS'GD = Gov. demand goods and services repl. repl.  repl.  repl. repl. repl.
HW = Hours of work (1) 2y /)y 32y (33 @l (42 4/3) (3)
M GSNO = Imports of goods and services
X'GSNO = Exports of goods and services Ca 553 1 072 64 46 1.1 14 160 24
BP'GS = Bal. of paym. goods and services C, 303.0 1.5 15 6.1 45 14 22 15.0 3.6
R 224 055 0.4 1.5 12 048 058 29 1.2
H 755 010 006 059 042 008 015 14 0.25
I 304 070 071 350 250 077 6.5 870 L1
X 5300 3.5 34 540 390 36 110 1360 85
h.100 1020 083 14 290 210 11 43 500 23
Table 13.7  Klein-1 model: FIML estimates 1921-1941. One-period forecasts at 1948 v 15 o0 oo, 0 180 184S 610 dhy
r 489 014 017 014 013 013 015 014 036
380 390 500 1000 i 467 11 12 10 10 11 11 L1 24
repl.  repl.  repl.  repl. D 591 070 085 084 072 069 072 070 13
(1) (2) N A A e N O N S U ©)) r, 463 015 019 014 014 0.8 015 015 035
P, 20 35 53 140 110 53 6.1 760 6.1
C 76.5 1.4 1.3 1.7 9.2 8.2 6.1 23 N. 679 071 1.0 360 260 13 6.5 510 14
1 6.27 1.0 1.0 1.2 6.8 6.1 45 19 Y 369 2.6 1.9 350 250 26 7.1 680 6.1
W, 58.2 1.4 1.3 1.5 5.8 5.2 39 2.2 p 122 0022 0035 62 44 0043 052 50 0036
Y 91.0 23 22 2.7 16 14 i 4.2 S. 1.90 3.6 53 180 140 57 7.5 750 6.0
p 24.1 1.2 1.2 1.6 10 9.2 6.8 22 i 86.2 3.2 4.8 9.7 76 44 40 750 58
K 204 1.0 1.0 1.2 6.8 6.1 45 1.9 11 33.8 057 083 6.4 4.7 095 19 1.8 1.1

~




13.6.5 Comments

The Klein-1 model, being linear and sufficiently manageable, can be used to try to
explain the abnormal fluctuations in the results obtained, in Section 13.6, with
Monte Carlo on coefficients. It seems quite reasonable to believe that a similar
explanation can be extended to the other models.

The structural form of the model 1s:

C =a,+a,P+a;P_| +a, (W + W)+ u,

I =das+aP+a,P_| +asK_, +u,

Wi=as+a oY+ T—Wo)+a  (P+ W +T)_| +a,t+u;
Y =C+I1+G-T

P =Y-W —W,

K =K_, +1

By substitution into the three stochastic equations, the three identities can be
eliminated, obtaining:

C ‘al_le(C+1"‘W1_WZ—T+G)_a3P;1‘_a4(Wl+W2):U1

I —as—ag(C+1—-W —W, —T+G)—a,P_, —agK_, = u,

W, —ag—a)olC+1T—W, +G)—a ((P+ W, + T)_y —a st =us.

In the notation of equation (2.2), the matrix A4 is

1 —a, —a, 4a; —dg
A=| —asg 1 —a, ae |-
—djo —djo 1

The inverse of the matrix A4, invoived in the reduced form equations (3.2) (and
therefore, in forecasts), has the denominator of each element equal to the
determinant of 4, which is

D=1—-a, —dy+a5.a,90 — a4.d,¢ + ag.a,p.

Performing Monte Carlo on coefficients, assuming for the coeflicients a
multinormal distribution with zero mean and covariance matrix equal to that of
FIML estimates (as well as FIML estimates of the coefficients), produces first of
all a control value of the determinant equal to 1.6, then a distribution of the
determinant with mean, approximately, 1.6 (practically equal to the control
value) and standard error, approximately, 0.62; values of this determinant
between plus and minus 1/5 of its control value occur approximately in 1.7 % of
cases. If the numerators of the elements of the inverse of 4 and of B were all
constants {and this is clearly not the case, but can be supposed for a while), there
would be 1.7% replications that would produce forecasts larger, in absolute
value, than S times the control forecasts. A smaller percentage would produce

forecasts at least 10 times larger, 20 times larger, and so on. 1t is clear that these
outliers produce a kind of instability in the Monte Carlo process, so that there is
no warranty about convergence by increasing the number of replications. The
standard error and the value 1.79% have been computed using the asymptotic
normal approximation to the distribution of the determinant, then they have
been confirmed by means of Monte Carlo with 10° replications.

The same can be said for the model estimated by LIVE on the period
1921-1939. In this case the control value of the determinant is 0.67 and its
approximate standard error is 0.22; approximately 0.89, of the values fall
between plus and minus 1/5 of the control value. As above, the standard error and
the value 0.8 % have been computed by means of a normal approximation to the
distribution of the determinant and then have been confirmed by means of Monte
Carlo with 105 replications.

If, as in Section 13.5.1, LIVE estimates are performed on the period 1921-1941,
the control value of the determinant is 0.66; using a normal approximation, the
standard error of the determinant would be 0.16 and only 0.04% of the values
would be expected to fall between plus and minus 1/5 of the control value (again,
Monte Carlo with 10° replications confirms the value 0.04 %;); the probability of
encountering outliers is, therefore, so small (or at least so much smaller than in the
previous two cases) as to exclude, in practice, problems of instability in the
convergence of Monte Carlo.

This exemplifies and, in some sense, explains with numerical evidence the
presence or absence of dangerous outliers in the experiments with Monte Carlo
on coefficients. The same examples can be used to show why, in the same cases, no
outlier has ever produced trouble in the experiments with stochastic simulation
and re-estimation. For the Klein-1 model, estimated by LIVE on the sample
period 1921-1939, 10* replications of stochastic simulation and re-estimation
have been performed, each time computing the determinant of the matrix 4. The
results, as far as moments of the first two orders are concerned, are almost the
same as those obtained with Monte Carlo on coefficients or with the asymptotic
normal approximation; however, the distribution of the determinant was
strongly skewed (Figure 13.1), with the left tail much shorter than the right tail, so
that no value of the determinant was ever less than 1/5 of the control value.

We can reasonably presume that something similar must happen for the other
estimates of the Klein-I model and for Bonn’s model 5, even if, since the latter is
nonlinear, the transformations from the structural form to the reduced form
cannot be followed explicitly; but it clearly does not happen for the
Klein—-Goldberger model estimated by means of 2SLS with 4 principal
components. Among all the experiments described in this paper, only this case
demonstrates evidence that the nonconvergence risk involved in stochastic
simulation and re-estimation method is actual and not purely theoretical;
however, the entire set of experiments suggests that such a risk seems to be smaller
than in the case of Monte Carlo on coefficients.
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13.7 ANALYTIC SIMULATION VERSUS MONTE CARLO ON
COEFFICIENTS

It has been pointed out in Section 13.4 that the basic conceptual difference
between analytic simulation and Monte Carlo on coefficients lies in the choice of
the stage of the computation where asymptotic estimates are considered as
approximating the corresponding small sample estimates; the effects of this
different choice can be dramatic, as in the examples of Section 13.6.

The two methods are also computationally quite different. However, it is
possible to introduce a slight modification into the Monte Carlo method which
makes it exactly equivalent to the analytic simulation method (and, in fact, leads
to identical results, apart from the sampling variability). This modified Monte
Carlo is derived from the method described and applied, for different purposes
(standard errors of dynamic multipliers), in Bianchi et al. (1979). It is proposed
again simply because it shows a kind of logical connection between the two
methods.

This Monte Carlo method is carefully designed to take into account explicitly
that the normality of the estimated coefficients is asymptotic; the procedure is the
following (recall that a and §, are kept fixed over all the experiment).

1. A tentative value n (greater than 1) is fixed: for example n = 10.

2. A vector 4 of pseudo-random numbers with multivariate normal
distribution, mean equal to 4 and covariance matrix equal to W/nT, is
generated.

3. The elements of 4 are inserted into the model and the model is solved in the

forecast period h, producing §,.

- -

4. The vector of differences (§, — §,) 1s computed.

Remultiplying by the scaling factor ﬁ we compute \/n(§, — §4)-

6. The steps from 2 to 5 are repeated a certain number of times (for example
1000}; each time a new vector \/Z(yh — ¥,) Is computed.

7. The sample variances (or the covariance matrix) can now be computed for
the elements ofﬁ(yh — ¥,); they are a first approximation to the estimated
asymptotic variances of the component of the forecast errors under
consideration.

8. After the process has been performed for the first time, n must be increased
(for example, by a factor of 10) and a new iteration must be started from step
2;in the other cases, the sample variances obtained in the last iteration must
be compared with those of the previous one; if significant differences are
found, a new iteration must be started from step 2, after increasing n (for
example, again by a factor of 10).

b

The process is stopped when no differences are found in the first three or four
significant digits of the sample variances in two consecutive iterations. To avoid
the problem of differences caused by the sampling variability, it is warmly
recommended that the same set of pseudo-random numbers are used for each
iteration.

The role of the scaling, and final re-scaling, by a value ﬁ should be clear at this
point. The above experiment with n =1 is nothing but the Monte Carlo on
coefficients method described in Section 13.4.2. A large (and increasing, in theory,
to infinite) value of n simulates the behaviour of an increasing sample size (T); it
generates a narrow and collapsing distribution of the generated pseudo-random
numbers a around 4 (as asymptotically the distribution of 4 collapses around a);
for §,, this generates a distribution collapsing around §y, (as asymptotically the
distribution of §, collapses around ¥,); finally the collapsed differences (¥, — ¥,)
are re-scaled by \/; (as the covariance matrix to be estimated is that of the
asymptotic distribution ofﬁ(y,, — ¥,), divided by the actual value of the sample
period length T'). Moreover, a large value of n generates pseudo-random numbers
with a very narrow distribution, thus avoiding in practice the instability effects
due to outliers.

Numerical results obtained with this method do not need to be displayed ; they
are, in fact, equal to those obtained by means of analytic simulation on
coeflicients, apart from small differences due to the sampling variability of the
Monte Carlo method.

13.8 CONCLUSIONS

This paper has been mainly concerned with empirical comparisons of three
methods of analysing the effects of coefficient estimation errors, on forecasts
produced by structural econometric models.



The experiments have been designed to include a sufficiently wide and
representative set of real-world models. However, it has been pointed out that the
methods present not only technical, but also conceptual, differences, so that we
cannot conclude with precise criteria for ranking among the three methods. We
shall, therefore, confine ourselves to these concluding remarks.

1. From a purely technical point of view, all methods can be applied to macro-
economic models of practical interest.

2. The applicability of analytic simulation strictly depends on the assumption
of asymptotic normality of estimated coefficients; in practice, however, the
method can be applied also when this assumption is violated and the resulis
seem to be ‘numerically’ reasonable, even if with unpredictable statistical
properties.

3. Monte Carlo on coefficients is not confined to the assumption of coefficient
normality. Its correct application, however, would require the knowledge of
the distribution of estimated coefficients and the technical availability of a
pseudo-random numbers generator from such a distribution. If, in the
absence of this information, which usually involves overwhelming difficuities,
a normal distribution is adopted, problems like those discussed in Section
13.6 can be encountered.

4. Analytic simulation requires the model to be solved as many times as the
number of structural estimated coefficients; furthermore, to compute
derivatives with sufficient precision, it needs a computational accuracy much
greater than in the usual simulation experiments. Therefore, it could be more
efficient to use Monte Carlo for models with more than 40 or 50 coefficients;
if outliers do not affect the stability of the Monte Carlo process, in fact, 40 or
50 replications (with fewer problems of accuracy) are usually enough to
provide a sufficient approximation to the desired standard errors.

5. Stochastic simulation and re-estimation is computationally the most
inefficient method. However, it does not need, among input data, the
covariance matrix of all the structural coefficients, thus avoiding the
cumbersome problems of its estimation and storing and the problem of its
triangularization, which is required by Monte Carlo on coefficients;
furthermore, it avoids the problem of storing the matrix of partial derivatives
(usually large), which is required by analytic simulation.

6. The method discussed in Section 13.7 can be of some interest for the
experimenter; it is, in fact, technically similar to Monte Carlo on coefficients,
but conceptually equivalent to analytic simulation.

7. The main problem in applying stochastic simulation and re-estimation or
Monte Carlo on coefficients is, in any case, the possible instability in the
convergence process due to outliers; in practice stochastic simulation and re-
estimation seems to be less sensitive than the other to the presence of outliers.
Inany case the experimenter cannot simply prefix a number of replications to

be performed and then take uncritically the final results; the experimenter, on
the contrary, should carefully take into account intermediate results as well.

8. Analternative empirical way of detecting the presence of outliers could be the
comparison of the standard errors due to the structural coefficients with the
standard errors due to the structural disturbances (the so called ‘reduced
form’ standard errors); it seems reasonable, when forecasting in the first
period outside the sample estimation period, to expect two standard errors
with the same size, or the error due to structural disturbances slightly larger
than the other; when, on the contrary, the error due to coefficients is larger
than the other (2, 3, 4 times or more, as in Tables 13.6-13.9), problems of
outhers have probably occurred.

9. When problems of instability in the convergence process have not been
encountered, the three methods always produced similar results, thus
suggesting a kind of empirical equivalence of the methods themselves.

NOTES

! The authors gratefully ack nowledge helpful comments and criticisms from John Bradley,
Ray C. Fair, Lawrence R. Klein, Jacques Mairesse, Joel L. Prakken, and Peter K.
Schoenfeld, but retain sole responsibility for any errors.

2 Reference can be made, for example, to Goldberger et al. (1961), Denton and Kuiper
(1965), Feldstein (1971), Schink (1971), Haitovsky and Wallace (1972), Cooper and
Fischer (1974), Schmidt (1974), Oliver (1979), Bianchi and Calzolari (1980), and Fair
(1980).

3 It is perhaps worth mentioning that these means and variances are sometimes referred to
as deterministic simulation bias and reduced form variances, respectively.
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