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Abstract

We propose to discuss a new technique to derive an good approximated solution for the
price of a European Vanilla options, in a market model with stochastic volatility. In par-
ticular, the models that we have considered are the Heston and SABR(for β = 1). These
models allow arbitrary correlation between volatility and spot asset returns. We are able
to write the price of European call and put, in the same form in which one can see in the
Black-Scholes model. The solution technique is based upon coordinate transformations
that reduce the initial PDE in a straightforward one-dimensional heat equation.
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1 Volatility Risk

Let us consider the simple case of a stock price model. The underlying variable is today’s
observed stock price. The most popular market model is the Black-Scholes model. It as-
sumes for the underlying process, a geometric Brownian motion with constant volatility,
that is

dSt = rStdt + σStdW̃t

dBt = rBtdt

where r is the constant risk-free rate, St is the stock and σ is the constant volatility of the
stock. Under these assumptions, closed form solutions for the values of European call and
put options, are derived by use the PDE method.

The assumption of constant volatility is not reasonable, since we require different val-
ues for the volatility parameter for different strikes and different expiries to match market
prices. The volatility parameter that is required in the Black-Scholes formula to reproduce
market prices is called the implied volatility. This is a critical internal inconsistency, since
the implied volatility of the underlying should not be dependent on the specifications of
the contract. Thus to obtain market prices of options maturing at a certain date, volatil-
ity needs to be a function of the strike. This function is the so called volatility skew or
smile. Furthermore for a fixed strike we also need different volatility parameters to match
the market prices of options maturing on different dates written on the same underlying,
hence volatility is a function of both the strike and the expiry date of the derivative secu-
rity. This bivariate function is called the volatility surface. There are two prominent ways
of working around this problem, namely, local volatility models and stochastic volatility
models. For local volatility models the assumption of constant volatility made in Black
and Scholes [1973] is relaxed. The underlying risk-neutral stochastic process becomes

dSt = r(t)Stdt + σ(t, St)StdW̃t

where r(t) is the instantaneous forward rate of maturity t implied by the yield curve and
the function σ(St, t) is chosen (calibrated) such that the model is consistent with market
data, see Dupire [1994], Derman and Kani [1994] and [Wilmott, 2000, x25.6]. It is claimed
in Hagan et al. [2002] that local volatility models predict that the smile shifts to higher
prices (resp. lower prices) when the price of the underlying decreases (resp. increases).
This is in contrast to the market behavior where the smile shifts to higher prices (resp.
lower prices) when the price of the underlying increases (resp. decreases). Another way
of working around the inconsistency introduced by constant volatility is by introducing
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a stochastic process for the volatility itself; such models are called stochastic volatility
models. The major advances in stochastic volatility models are Hull and White [1987],
Heston [1993] and Hagan et al. [2002]. Such models have the following general form

dSt = µtStdt + σδ
t a2(St)dW

(1)
t

dσj
t = b1(σ, t)dt + ασδ

t dW 2
t

dW
(1)
t dW

(2)
t = ρdt.

dBr = rBtdt

and varying its parameters we obtain different models::
• for δ = 1, µt = 0, j = 1 a2(S) = Sβ and b1 = 0, we get the SABR model, by Hagan;

• for δ = 1, j = 2, a2(S) = S and b1 = k(θ − σt), we get Heston model, by Heston;

• for δ = 1, α = 0, we get Black-Scholes model time dependent volatility, by Black-
Scholes-Merton;

• for δ = 1, α = 0 and b1 = 0 we get Black-Scholes model with constant volatility, by
Black-Scholes-Merton;

where the tradeable security St and its volatility σt are correlated, i.e. dW̃StdW̃σt = ρdt.

We are going to use some geometrical transformations in order to simplify the pricing
PDE; our method can be used whenever it is possible to write the second derivative term

as following: ∂2f1

∂x2 + 2ρ ∂2f1

∂x∂ν̃ + ∂2f1

∂ν̃2 , but this will be clear later.

2 Heston’s Model and Pricing Options

The stochastic volatility model proposed by Heston (1993), assumes that the asset price S
satisfies

dSt = St(µtdt +
√

νt)dW
(1)
t S ∈ [0,∞) (1)

with the instantaneous variance ν governed by the SDE

dνt = k(θ − νt)dt + α
√

νtdW
(2)
t , ν ∈ (0,∞); k, θ, α ∈ R (2)
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where W (1) and W (2) are standard one-dimensional Brownian motions defined on filtered
probability space (Ω, F, P), which the cross-variation 〈W (1), W (2)〉 = ρt for some constant
ρ ∈ (−1, 1). In this case, it is more convenient to express the pricing function f and the
market price of volatility risk λ in terms of variables (S, ν, t), rather than (S, σ, t). We
now make a judicious choice of the market price of volatility risk; specifically, we set
λ(νt, t) = λ

√
νt for some constant λ such that λα 6= k. Hence, under a martingale measure

Q, equations (1) (2) become

dSt = St(rdt +
√

νt)dW
(1)
t,(Q) (3)

and

dνt = κ(Θ − νt)dt + α
√

νtdW
(2)
t,(Q) (4)

where we set

κ = (k − λα), Θ = θk(k − λα)−1, (5)

and where W
(1)
(Q) and W

(2)
(Q) are standard one-dimensional Brownian motions such that

〈dW (1), dW (2)〉 = ρdt. It is now easy to see that the pricing PDE for European derivatives
in Heston model, by Itô’s lemma, has the following form:

∂f

∂t
+

1

2
νS2 ∂2f

∂S2
+ ρναS

∂2f

∂S∂ν
+

1

2
να2 ∂2f

∂ν2
+ κ(Θ − ν)

∂f

∂ν
+ rS

∂f

∂S
− rf = 0 (6)

with the terminal condition f(S, ν, T ) = φ(S) for every S ∈ R+, ν ∈ R+ and t ∈ [0, T ].
We take here for granted the existence and uniqueness of (nonnegative) solutions S and
ν to Heston’s SDE. It is common to assume 2KΘ/α2 > 1, so that, the solution ν is strictly
positive if ν0 > 0.

3 Numerical methods for Option Valuation

For the Heston model we are able to compute the solution by numerical techniques, as:

• Finite Difference method (Crank Nicolson);

• Monte-Carlo simulation method combined with a variance reduction technique:

• Fourier Transform Technique.

• Geometrical Approximation.
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Here, we want to highlight some important aspects. The PDE method is a flexible method
which can be used for many pay-offs: European Options or certain path dependent deriva-
tives; in this case, the drawback is that we have to approximate the option prices on a grid.
Accurate pricing requires a substantial amount of grid points. The PDE method is some-
what expensive.

The Monte-Carlo method is the most general, but it has long computation times.

The Fourier transformation technique has been used to evaluate the model option prices.
This method is both fast and accurate. Its major technical difficulty lies in the derivation
of a characteristic function, i.e., the Fourier transform of the risk-neutral density function.
See Carr and Madan for further details. The Fourier transformation technique can take
advantage of a very numerical algorithm called the Fast Fourier Transform (FFT) tech-
nique, which drastically improves the numerical efficiency of the calibration.

Now, we focus on proposed method, that we have called ”Geometrical Approximation”,
it is based only on considerations about the pay-off function. For suitable values of ρ, ν, α,
where ǫ = ρν

α << 1, we have a closed form solution of the exact PDE, but with modified

Cauchy condition, in which we consider the following pay-off function (ST e−
ρν
α − E)+,

instead of, the standard pay-off function (ST − E)+. It is clear that the former goes to the
latter for ǫ that goes to zero.

e−ǫ ≃ (1 − ǫ)

thus

f(T, S, ν) =
(

ST e−ǫ − E
)+ ≃ (ST (1 − ǫ) − E)+

lim
ǫ→0

(ST (1 − ǫ) − E)+ = (ST − E)+

In order to evaluate a European call option, first we simplify the PDE (6) at hand. To this
end, let us introduce a new variable x and a new function f1:

S = ex, ν = ν̃α, x ∈ (−∞,∞), ν ∈ [0,∞), t ∈ [0, T ]]

f(t, S, ν) = e−r(T−t)f1(t, x, ν̃)
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so that we have a new PDE

∂f1

∂t
+

1

2
ν̃α

(

∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+

∂2f1

∂ν̃2

)

+
κ

α
(Θ − ν̃α)

∂f1

∂ν̃
+

(

r − 1

2
ν̃α

)

∂f1

∂x
= 0,

(7)

now we consider only the terms that have derivatives of the second order and after that,
we try a new set of coordinates that transform the PDE in its canonical form. It is im-
portant to remember that our PDE, is of parabolic kind and its canonical form is the heat
equation, and we want to transform the above PDE in a heat equation. First step, we write
the characteristic equation associated to the second order terms of our PDE (7) , thus we
compute its roots:

∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+

∂2f1

∂ν̃2
= 0.

The characteristic equation results to be

(

dx

dν̃

)2

− 2ρ

(

dx

dν̃

)

+ 1 = 0,

∆ = 42(1 − ρ2) ≤ 0, ρ ∈ (−1, 1)

so that the squared term is of elliptic kind, and the roots belong at the set of complex
numbers

(

dx

dν̃

)

1/2

= ρ ± ı
√

1 − ρ2.

At this point we can define the characteristic lines (these are also defined like geodesics)
as follows

x − (ρ + ı
√

1 − ρ2)ν̃ = z

x − (ρ − ı
√

1 − ρ2)ν̃ = w.

Through another change of variable, that we show hereafter, we obtain a linear system
easy to solve

z = ξ + ıη; w = ξ − ıη;

so that results w = z

ν̃ = − η
√

1 − ρ2
x =

ξ
√

1 − ρ2 − ρη
√

1 − ρ2

η = −ν̃
√

1 − ρ2 ξ = x − ρν̃

(8)
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where η ∈ (−∞, 0) and ξ ∈ (−∞,∞) and it is clear that our function f1 must be trans-
formed in another f2. At this point is fundamental to make the following geometrical
consideration, in order to understand our method. We have defined a new system of
coordinates, where ~eη, ~eξ, ~et , are orthogonal directions; we can think of x, ν as vectors,
whose projections on the axes are respectively given by

~x = (0)~eη + (x)~eξ
~̃ν = (ν̃ cos θρ)~eη + (ν̃ sin θρ)~eξ

where, we have supposed ρ = sin θρ and
√

1 − ρ2 = cos θρ, θρ ∈ (−π/2, π/2) . Now we

can define a new vector, that we call ~V , whose projections are

~V ≡ (Vη, Vξ) Vη = −ν̃ cos θρ Vξ = x − ν̃ sin θρ

by which, we can show the vectorial relation that exists between the variables (x, ν̃).

Now, from the Cauchy’s condition, we are able to write the new function f2, like func-
tion of variables t and Vξ(x, ν̃), because, the function f depends, at the time T , only on the
projection terms upon the axis ξ,

f(T, S, ν) = (ST − E)+ =
(

ex′ − E
)+

=

(

e

“

~V ′+ ~̃′ν
”

·~eξ − E

)+

=

(

S′e−
ρν′

α − E

)+

(where with the apex (′) we indicate the variables at the time t = T ), therefore, because of
the continuity properties of the Feynman-Kač formula, we can suppose that is true at any
time t.

f1(t, x, ν̃) = f2(t, Vξ(x, ν̃)); t ∈ [0, T ]

now we may substitute them in the old squared term

∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+

∂2f1

∂ν̃2
= (1 − ρ2)∇2

Vξ
f2(t, Vξ(x, ν̃)).

Thus, the new Black-Scholes PDE of Heston’s model has become

∂f2

∂t
− αVη

√

1 − ρ2

[

(1 − ρ2)

2

∂2f2

∂V 2
ξ

+

(

1

2
− κ

α
ρθ

)

∂f2

∂Vξ

]

+
(

r − κ

α
ρθ

) ∂f2

∂Vξ
= 0 (9)
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where we have changed the final condition (ST − E)+, in

(

S′e−
ρν′

α − E

)+

=
(

eV ′

ξ − E
)+

Now, we can compute the solution of PDE (9) in a closed form, that is an approximation
of the original problem for ρν

α << 1.

By another change of coordinates is sufficient to simplify last PDE. We may define a new
transformation of coordinates; and the new function f3, as follows

γ = Vξ +

(

r − k

α
ρθ

)

(T − t), γ ∈ (−∞,∞);

τ = −
∫ T

t
ds

αVη
√

1 − ρ2
=

∫ T

t
dsν(s), τ ∈

[

0,

∫ T

0
dsν(s)

]

;

f2(t, Vξ) = f3(τ(t, Vη), γ(t, Vξ));

for t = T we have

f3(0, γ′) =
(

eγ′ − E
)+

.

Substituting what we have just found, in the previous equation, we finally have a very
easy partial differential equation

∂f3

∂τ
=

(1 − ρ2)

2
∇2

γf3 +

(

1

2
− κρ

α

)

∂f3

∂γ

γ ∈ (−∞,∞), τ ∈
[

0,

∫ T

0
dsν(s)

]

;

(10)

Now we can rewrite the function f3 as follows, in order to obtain the one-dimensional
heat equation:

f3(τ, γ) = eλτ+βγf4(τ, γ);
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where

λ = −(1/2 − κρ/α)2

2(1 − ρ2)
, β = −(1/2 − κρ/α)

(1 − ρ2)
;

so we have

∂f4

∂τ
=

(1 − ρ2)

2
∇2

γf4

At this point we have another problem that has an easier solution:

∂f4

∂τ
=

(1 − ρ2)

2
∇2

γf4 γ ∈ (−∞,+∞), τ ∈
[

0,

∫ T

0
dsν(s)

]

f4(0, γ′) =
(

eγ′ − E
)+

Now, we are able to write the solution, that is

f4(τ, γ) =
1

√

2π(1 − ρ2)τ

∫ +∞

−∞

dγ′f4(0, γ′) exp

[

− (γ′ − γ)2

2(1 − ρ2)τ

]

=

∫

∞

−∞

dγ′f4(0, γ′)G(γ′, 0|γ, τ) (11)

where

G(γ′, 0|γ, τ) =
1

√

2π(1 − ρ2)τ
exp

[

− (γ′ − γ)2

2(1 − ρ2)τ

]

where

f(t, S, ν) = e−r(T−t)+λτ+βγf4(τ, γ)

f(T, S, ν) = eβγ′

f4(0, γ′)

f4(0, γ′) = e−βγ′

(

eγ′ − E
)+
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At this point we have

f4(τ, γ) =
1

√

2π(1 − ρ2)τ

∫ +∞

−∞

dγ′e−βγ′

(

eγ′ − E
)+

exp

[

− (γ′ − γ)2

2(1 − ρ2)τ

]

=
1

√

2π(1 − ρ2)τ

∫ +∞

ln E
dγ′e−βγ′

(

eγ′ − E
)

exp

[

− (γ′ − γ)2

2(1 − ρ2)τ

]

Thus we can write the price of a European Call option in Heston’s market model as fol-
lows

f(t, S, ν) =
e−r(T−t)+λτ+βγ

√

2π(1 − ρ2)τ

∫ +∞

ln E
dγ′e−βγ′

(

eγ′ − E
)

exp

[

− (γ′ − γ)2

2(1 − ρ2)τ

]

=
(

Ste
−

ρν
α

)

eδρ
1N(dρ

1) − Eeδρ
2N(dρ

2) (12)

where

δρ
1 = −

[

κ

α
ρΘ −

(

λ +
(1 − β)2

2
(1 − ρ2)ν

)]

(T − t);

δρ
2 = −

[

r −
(

λ +
β2

2
(1 − ρ2)

)

ν

]

(T − t);

νρ =
1

(T − t)

∫ T

t
ds(1 − ρ2)ν(s)

νρ=0 = ν =
1

(T − t)

∫ T

t
dsν(s)
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dρ
1 =

ln(S/E) − ρ
αν +

[(

r − κ
αρΘ

)

+ (1 − β)νρ

]

(T − t)
√

νρ(T − t)

dρ
2 =

ln(S/E) − ρ
αν +

[(

r − κ
αρΘ

)

− βνρ

]

(T − t)
√

νρ(T − t)

dρ
2 = dρ

1 −
√

νρ(T − t)

Thus for ǫ = ρν
α << 1, the final value of Call option is given by:

Cρ,α,Θ,κ(t, St, νt) = St (1 − ǫ) eδρ
1N(dρ

1) − Eeδρ
2N(dρ

2), (13)

and for a Put, the final value is

Pρ,α,Θ,κ(t, St, νt) = Eeδρ
2N(−dρ

2) − St (1 − ǫ) eδρ
1N(−dρ

1); (14)

3.1 Hedging and Put-Call-Parity

In order to find the better hedging strategy, we use a replicant portfolio. So that we need to
know the value of the first and second, derivative of the price, with respect to St, that we
respectively call ∆ and Γ strategies for a European call option and European put option,
where ǫ << 1:

∆call =
∂Cρ,α,Θ,κ

∂S
= (1 − ǫ) eδρ

1N(dρ
1)

Γcall =
Eeδρ

1−(dρ
1)2/2

S
√

2πνρ(T − t)

(15)
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and

∆put =
∂Pρ,α,Θ,κ

∂S
= − (1 − ǫ) eδρ

1N(−dρ
1)

Γput =
Eeδρ

1−(dρ
1)2/2

S
√

2πνρ(T − t)

(16)

Thus we have

Γput = Γcall

It is necessary to highlight that, in the Heston’s model, the Put-Call-Parity condition is
verified, and this proves that we are in a free arbitrage market.

4 SABR Model

Another popular stochastic volatility market model proposed and analyzed by Hagan
et al. (2002) is the SABR model. The latter is specified as follows: under a martingale
measure Q the forward price is assumed to obey the SDE

dF T
t = σF

t (F T
t )βdW

(1)
t,(Q) β ∈ (0, 1] (17)

where

dσF
t = ασF

t dW
(2)
t,(Q) α ∈ R (18)

where W
(1)
Q and W

(2)
Q are Brownian motions with respect to a common filtration FW , with

a constant correlation coefficient ρ ∈ (−1, 1). The model given by (17)-(18) is known like
the SABR model. It can be seen as a natural extension of the classical CEV model, pro-
posed by Cox(1975). The model can be accurately fitted to the observed implied volatility
curve for a single maturity T . A more complicated version of the model is needed if we
wish to fit volatility smiles at several different maturities. More importantly, the model
seems to predict the correct dynamics of the implied volatility skews (as opposed to the
CEV model or any model based on the concept of a local volatility function). To support
this claim, Hagan et al. (2002) derive and study the approximate formulas for the im-
plied Black and Bachelier volatilities in the SABR model. It appears that the Black implied

12



volatility σ̂(K, T ), in this model can be represented as follows:

σ̂(K, T ) =
σ0

(S0/K)(1−β)/2
(

1 + (1−β)2

24 ln2(S0/K) + (1−β)4

1920 ln4(S0/K) + .....
)×

z

x(z)

{

1 +

[

(1 − β)2σ2
0

24(S0K)(1−β)
+

ρβσ0ν

4(S0K)(1−β)/2
+

(2 − 3ρ2)ν2

24

]

T + .......

}

, (19)

where K is the strike price, S0 is the underlying asset value at the time t = 0 and σ0 is the
value of the volatility at time t = 0,

z =
ν

σ0
(S0/K)β̂/2 ln(S0/K),

and

x(z) = ln

{

√

1 − 2ρz + z2 + z − ρ

1 − ρ

}

.

In the case of at-the-money option, the formula above reduces to

σ̂(S0, T ) =
σ0

S
(1−β)
0

{

1 +

[

(1 − β)2σ2
0

24(S0)2(1−β)
+

ρβσ0ν

4(S0)(1−β)
+

(2 − 3ρ2)ν2

24

]

T + .......

}

.

5 SABR Model for β = 1

5.1 SABR Model and Option Pricing

It is our intention to use the method proposed in previous section also for SABR market
model for β = 1.

Be given the following market, where β ∈ (0, 1], under natural measure P

dSt = µ
(S)
t Stdt + σtS

β
t dW

(1)
t,(P)

dσt = µ
(σ)
t σtdt + ασtdW

(2)
t,(P)

dBt = rBtdt

dW
(1)
t,(P)dW

(2)
t,(P) = ρdt.

(20)
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in which St is the underlying asset value at the time t, σt is the stochastic volatility, ρ is
the correlation factor between W (1), W (2), that are Brownian motions, and for last Bt is a
zero coupon bond with borrowing interest rate r. The market price risk for St is given by

λ
(S)
t (St, σt, t) =

r − µ
(S)
t

Sβ−1
t σt

. (21)

Now we choose the market price of volatility risk, in order to have the SABR model, as
follows

λ
(σ)
t (σt, t) =

r(1 − β) − µ
(σ)
t

α
(22)

Under the martingale measure Q, the forward price is assumed to obey the SDE:

dF T
t = σ

(F )
t (F T

t )βdW
(1)
t,(Q), F T

t ∈ [0,∞), t ∈ [0, T ], β ∈ (0, 1)

dσ
(F )
t = ασ

(F )
t dW

(2)
t,(Q), α ∈ R

dW
(1)
t,(Q)dW

(2)
t,(Q) = ρdt, ρ ∈ (−1, 1)

Bt = rBtdt

f(F T
T = ST , σF

T , T ) = φ(ST )

where F T
t is the forward price of St,

F T
t = er(T−t)St

and φ(ST ) is the generic pay off of contracts of some derivatives.

The pricing PDE for European derivatives in SABR model is given by:

∂f

∂t
+

1

2
(σF )2

(

(F T
t )2β ∂2f

∂(F T
t )2

+ 2ρ(F T
t )βα

∂2f

∂F T
t ∂σF

+ α2 ∂2f

∂(σF )2

)

− rf = 0;

F T
t ∈ [0,∞), σF ∈ [0,∞), t ∈ [0, T ];

f(T, F T
t=T = ST , σF

T ) = φ(S(T )).

(23)
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Suppose being in a market equal to the one seen before, obtained for β = 1, under the
martingale measure Q, the forward price is assumed to obey the following SDE:

dF T
t = σ

(F )
t (F T

t )dW
(1)
t,(Q), F T

t ∈ [0,∞), t ∈ [0, T ], β ∈ (0, 1)

dσ
(F )
t = ασ

(F )
t dW

(2)
t,(Q), α ∈ R

dW
(1)
t,(Q)dW

(2)
t,(Q) = ρdt, ρ ∈ (−1, 1)

Bt = rBtdt

f(T, F T
T , σF ) = φ(ST )

(24)

where F T
t is the forward price of St, and σF

t = σt

F T
t = er(T−t)St

and φ(ST ) is the generic pay off of contracts of some derivatives. The price of the risk
market of St is given by

λ
(S)
t (St, σt, t) =

r − µ
(S)
t

σt
.

and we choose the market price of volatility risk, in order to have the SABR model, as
follows

λ
(σ)
t (σt, t) = −µ

(σ)
t

α

Also in this case is possible to use our method, that we have called as Geometrical Ap-
proximation. The pricing PDE, is

∂f

∂t
+

1

2
(σ)2

(

(F T
t )2

∂2f

∂(F T
t )2

+ 2ρF T
t α

∂2f

∂F T
t ∂σ

+ α2 ∂2f

∂(σ)2

)

− rf = 0;

(25)

In order to simplify the eq. (25), we change some variables:

x = lnF T
t , x ∈ (−∞,∞) t ∈ [0, T ]

σ̃F
t =

σF
t

α
, α ∈ R σ̃F

t ∈ [0,∞);

f(F T
t , σF

t , t) = e−r(T−t)f1(x, σ̃F
t , t)

∂f1

∂t
+

1

2
(σ̃)2α2

(

∂2f

∂x2
+ 2ρ

∂2f

∂x∂σ̃
+

∂2f

∂(σ̃)2

)

− 1

2
(σ̃)2α2 ∂f1

∂x
= 0;
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Using the same method that we have used in the previous sections, we have

Vξ = x − ρσ̃, Vξ ∈ (−∞, +∞)

τ =

∫ T

t
ds

V 2
η α2

2(1 − ρ2)
=

∫ T

t
ds

(σF )2

2
, τ ∈

[

0,

∫ T

0
ds

(σF (s))2

2

]

;

f1(t, x, σ̃, t) = f2(τ(t, Vη), Vξ(x, σ̃))

where we have considered the pay-off function, as we have made in the previous cases;
i.e.

(F T
t e−

ρ
α

σ − E)+ = (F T
t e−ǫ − E)+

where ǫ = ρσ/α << 1, for suitable values of our parameters, we have that the PDE to
solve is

∂f2

∂τ
= (1 − ρ2)

∂2f2

∂V 2
ξ

− ∂f2

∂Vξ
.

Now in order to eliminate the linear term, we make the following transformation

f2(τ, Vξ) = e
Vξ

1−ρ2 f3(τ, Vξ),

and we obtain

∂f3

∂τ
= (1 − ρ2)

∂2f3

∂V 2
ξ

, Vξ ∈ (−∞, +∞), τ ∈
[

0,

∫ T

0
ds

1

2
(σF (s))2

]

f3(0, V ′

ξ ) = e
−

V ′

ξ

1−ρ2

(

eV ′

ξ − E
)+

(26)

Thus, the solution of the PDE (26) is given by

f(t, F T
t , σ) =

e
−r(T−t)+

Vξ

1−ρ2

2
√

π(1 − ρ2)τ

∫ +∞

−∞

dV ′

ξe
−

V ′

ξ

1−ρ2 (eV ′

ξ − E)+exp

[

−
(V ′

ξ − Vξ)
2

4(1 − ρ2)τ

]

=
(

Ste
−

ρσ
α

)

e

„

ρ4

1−ρ2
σ2(T−t)

2

«

N(dρ
1) − Ee

−

“

r− σ2

2(1−ρ2)

”

(T−t)
N(dρ

2)
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for ǫ = ρσ
α << 1 we can write

f(t, F T
t , σ) ≃ St (1 − ǫ) e

„

ρ4

1−ρ2
σ2(T−t)

2

«

N(dρ
1) − Ee

−

“

r− σ2

2(1−ρ2)

”

(T−t)
N(dρ

2)

Again, we can write that the price of a Call option, in a SABR market model, for β = 1
and ǫ = ρσ

α << 1, is given by

C(t, St, σt) = St (1 − ǫ) e

„

ρ4

1−ρ2
σ2(T−t)

2

«

N(dρ
1) − Ee

−

“

r− σ2

2(1−ρ2)

”

(T−t)
N(dρ

2)

where

dρ
1 =

ln
(

Se−
ρσ
α /E

)

+ (r − ρ2σ2)(T − t)
√

(1 − ρ2)σ2(T − t)

dρ
2 = dρ

1 −
√

(1 − ρ2)σ2(T − t)

σ =
1

T − t

∫ T

t
dsσ2(s)

For a Put option we have:

P (t, St, σt) = Ee
−

“

r− σ2

2(1−ρ2)

”

(T−t)
N(dρ

2) − St (1 − ǫ) e

„

ρ4

1−ρ2
σ2(T−t)

2

«

N(dρ
1)

5.2 Hedging and Put-Call-Parity

Exactly like in the Heston’s model, also in the SABR model, in order to find the better
hedging strategy, we use a replicant portfolio. So that we need to know the value of the
first and second derivative of the price, with respect to S, that we respectively call ∆ and

17



Γ strategies:

∆call =
∂C(t, s, σ)

∂S
= (1 − ǫ) e

ρ4

1−ρ2
σ2

2
(T−t)

N(dρ
1)

Γcall =
Ee

ρ4

1−ρ2
σ2

2
(T−t)−

(d
ρ
1)

2

2

S
√

2πσ2(T − t)

(27)

and

∆put = − (1 − ǫ) e
ρ4

1−ρ2
σ2

2
(T−t)

N(−dρ
1)

Γput =
Ee

ρ4

1−ρ2
σ2

2
(T−t)−

(d
ρ
1)

2

2

S
√

2πσ2(T − t)

(28)

Thus we have

Γput = Γcall (29)

Also in the SABR model, the Put-Call-Parity condition is verified, and this proves that we
are in a free arbitrage market.

6 Numerical Experiments

Now, we can compare options prices calculated according to techniques described above,
with our approximation method. The Monte-Carlo algorithm was implemented in C + +
code, while other algorithms are implemented in MatLab code. For ρ = 0, we obtain the
Black-Scholes solution with averaged volatility, as in Hull-White formula. This proves
that our approach, even if only an approximation, is correct.

For values of ρ = −1,+1 we have two degenerate cases, and they are not interesting. In
order to have an idea of the derivatives price, we compute Vanilla Call Option value in
Black-Scholes market model; and after that, one can see the price of Vanilla Call Option
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Table 1: Black-Scholes price S(0) = 100, E = 100

σt r T Value

0.1 0.03 0.5 3.6065
0.1 0.05 0.5 4.1923
0.3 0.03 1 13.2833
0.5 0.05 1 21.7926
0.5 0.05 5 49.5965

for Heston market model. Here, we have compared our method, G.A., with others ob-
tained by Heston and Lipton, Fourier transform method, and by finite difference method,
f.d.m.(Crank Nicolson). Our results are suitable, and this proves in analytical way, the
goodness of method proposed. It is interesting that our prices go to heston prices, by in-
creasing maturity date T, unlike that for f.d. method. We compare also our results with
those obtained by Monte Carlo method, for different values of parameters.

Table 2: Heston price S(0) = 100, E = 100, Err = ‖(Heston)value − (G.A.)value‖

r ρ κ α Θ νt T G.A. Value H. Value f.d.m. Value Err

0.03 0.1 1.0 0.2 0.01 0.01 0.5 3.2992 3.4386 3.4376 0.139
0.03 0.1 1.0 0.2 0.01 0.01 1 5.2461 5.2953 5.2840 0.049
0.03 0.1 1.0 0.2 0.01 0.01 2 8.4954 8.4583 8.5943 0.037
0.05 0.1 1.0 0.2 0.01 0.01 1 6.4339 6.5025 6.5223 0.0686
0.05 0.1 1.0 0.2 0.01 0.01 2 10.9954 11.0196 11.2186 0.0242
0.03 0.4 1.0 0.6 0.01 0.01 2 7.4459 7.3439 7.7829 0.102
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Table 3: Heston price S(0) = 100, E = 50 Err = ‖(Heston)value − (G.A.)value‖

r ρ κ α Θ νt T G.A. Value H. Value f.d.m. Value Err

0.03 0.1 1.0 0.7 0.04 0.01 0.5 50.7421 50.7341 50.8215 0.08
0.03 0.2 1.0 0.5 0.0225 0.01 0.5 50.1853 50.7336 50.7756 0.548
0.03 0.1 1.0 0.5 0.0225 0.01 1 50.7597 51.4585 51.8893 0.698
0.05 0.1 1.0 0.5 0.0225 0.01 2 53.7232 54.6672 55.9912 0.994
0.03 0.1 1.0 0.5 0.0225 0.01 0.5 50.6919 50.7352 51.0340 0.043
0.03 0.1 1.0 0.5 0.0225 0.01 1 51.5730 51.5830 56.3770 0.01

Table 4: Heston price for a Call with S(0) = 100, E = 100, Err = ‖(M.C.value −
(G.A.)value‖ for Monte Carlo method we used day pass (1/250) and 106 trajectories

r ρ κ α Θ νt T G.A. Value M.C. Value S.S.E. Err

0.03 0.1 1.0 0.2 0.01 0.01 0.5 3.2992 3.4591 0.0022 0.1599
0.03 0.1 1.0 0.2 0.01 0.01 1 5.2461 5.3417 0.0031 0.0956
0.03 0.1 1.0 0.2 0.01 0.01 2 8.4954 8.5857 0.0042 0.0903
0.05 0.1 1.0 0.2 0.01 0.01 5 22.9333 23.4234 0.0039 0.4901

Generally the SABR model is used as market model for derivatives whose underlying
is the interest rate, but here we have used the SABR model, to evaluate European Call and
Put options, upon an asset using its forward price.

As our tables show, we can be satisfied. The Geometrical Approximation method does
work when the following condition is verified:

(

ST e−
ρνT

α − E
)+

≃ (ST − E) ,+ t ∈ [0, T ]; (30)

where

‖1 − e−
ρνT

α ‖ ∼ ‖10−2‖. (31)

So that, before using the G.A. method is necessary to estimate the value of volatility, or
variance, at maturity date T.
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Table 5: Call Options value in SABR market model for β = 1, F T
t = 100 (where F T

t is
forward price), E = 100, Err = ‖ǫ‖ = ‖ρσT

α ‖

r ρ α σ0 T G.A.Value Err

0.03 0.1 0.2 0.1 1 4.0565 0.05
0.03 -0.1 0.2 0. 1 10.4849 0.05
0.05 0.15 1 0.3 1 4.6426 0.09
0.03 -0.3 1 0.5 1 26.3879 0.15
0.05 -0.3 10 0.7 1 24.0808 0.021

Table 6: Call Options value in SABR market model for β = 1, F T
t = 100 (where F T

t is
forward price), E = 50, Err = ‖ǫ‖ = ‖ρσT

α ‖

r ρ α σ0 T G.A.Value Err

0.03 0.1 0.2 0.1 1 48.6796 0.05
0.03 -0.1 0.2 0.1 1 59.1993 0.05
0.05 0.15 1 0.3 1 49.1608 0.075
0.03 -0.3 1 0.5 1 63.7801 0.15
0.05 -0.3 10 0.7 1 50.0696 0.021

7 Conclusions

The G.A. method is a good technique, for suitable values of the parameters α, ρ, K, θ; and
it is less expensive than the other numerical methods F.F.T(inverse Fourier transform),
Monte-Carlo and F.D.M. The proposed method can be used for every market model in
which the associated PDE has the second derivative term, by Ito’s lemma, of the form:

∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+

∂2f1

∂ν̃2
= (1 − ρ2)∇2

Vξ
f2(t, Vξ(x, ν̃)), (32)

we can call the latter condition as necessary condition. We want to remark that our idea
is to approximate a closed form solution obtained by using a different Cauchy’s condi-
tion, to that obtained by above indicated numerical methods, in this case using the correct
Cauchy’s condition. The proposed method has the advantage to compute a solution in
closed form, therefore, we do not have the problems that there are using numerical meth-
ods. For example, one can consider the inverse Fourier transform method, in which we
have to compute an integral between zero and infinity. In this case in fact, there is always
some problem in order to define the correct domain of integration; or equivalently, con-
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sidering also the finite difference method, in which we have to define a suitable grid, in
other words we have some problems about the choice of the grid’s meshes. Thus we can
conclude that our method is easier, from the algorithmic point of view.

Another important aspect of our method is to compute in an explicit way the greeks
(∆, Γ). This is very interesting when we want to use the VaR technique in Risk Man-

agement. In fact we need to know the values of (∆,Γ) if our portfolio is composed even
by derivative securities. In this case we have to know the sensibility of first and second
order with respect to underlying asset, to evaluate how difference our distribution is com-
pared to Normal-distribution of yields, and by using the proposed method we are able to
accomplish this.

The G.A. method can be used to price derivative as Digital options, options in Ameri-
can style and some Asian options. Besides we can extend G.A. technique also when we
add jump processes in our market model. Therefore if the necessary condition (32) is
verified, we can say that our methodology is a general technique.
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