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ABSTRACT: In extant financial market models, including the Black-Scholes‟ contruct, the dramatic events of October 1987 and 

August 2007 are totally unexpected, because these models are based on the assumptions of „independent price fluctuations‟ and 

the existence of some „fixed-point equilibrium‟. This paper argues that the convolution of a generalized fractional Brownian 

motion (into an array in frequency or time domain) and their corresponding amplitude spectra describes the surface of the 

attractor driving the evolution of prices. This more realistic approach shows that the SP-500 Index is characterized by a high long 

term Hurst exponent and hence by a „black noise‟ with a power spectrum proportional to f- ( > 2). In that set up, the above 

dramatic events are expected and their frequencies are determined. The paper also constructs an exhaustive frequency-variation 

relationship which can be used as practical guide to assess the „value at risk‟.  

Keywords: Market Collapse, Fractional Brownian Motion, Fractal Attractors, Maximum Hausdorff Dimension of Markets and 
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I - INTRODUCTION  

    The process known as Brownian motion (B(t)), first observed by Robert Brown (1773-1858), the botanist, has 

found applications in many other areas, mainly due to its scale and time invariance properties. For example, it has 

inspired Karl Weierstrass (1815-1897) to develop a whole new class of functions that bear his name today. B (t) was 

next introduced to mathematical physics by Albert Einstein (1879-1953) and Marian Smoluchowski (1872-1917), 

and refined by another physicist Norbert Wiener (1894-1964), giving what is known today as a „Wiener Process‟. B 

(t) is also applied in medicine, chemistry, telecommunication, thermodynamics, etc. Its generalization is the 

foundation of the field of tomography where it is successfully used to model a variety of natural phenomena such as 

attractors‟ surfaces, terrains, coastlines, clouds, etc.  

    Bachelier (1900) was perhaps the first to import the regular B (t) into mathematical finance. That idea resurfaced 

in Chicago in the early 1950s where financial theorists began to use it to model a variety of stochastic processes. 

However, its importation in extenso into mathematical finance has not always been an enlightening experience.  

    To begin with, Bachelier was so convinced that commodity prices evolve according to a B (t) that he concluded, 

rather boldly, that “the mathematical expectation of a speculator is zero.” That belief was resuscitated in the 1950s 

to support the construction of stochastic models based on continuous and discrete-time random walk (Kendall, 1953; 

Osborne, 1959; and more recently, Malkiel, 1973, among others). That line of research subsequently gave rise to the 

notion of Efficient Market Hypothesis (EMH) (Fama and Blume, 1966) and to more sophisticated stochastic partial 
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differential equations describing optimal investment or stock and derivative pricing strategies (Merton, 1969, 1973; 

Black and Scholes, 1973; Cox et al., 1979).  

    Despite numerous criticisms (Basu, 1977; Shiller, 1981; Lo, 1999), however, these constructs (the later vintage in 

particular) remain the foundation of financial analyses until the cumulated effects of „black Tuesday‟ in October 

1987 and the collapse of the credit market in August 2007 sounded their death knell.  

    Many factors underline this dramatic failure. First, the naïve but convenient assumption of „independent 

increments‟ is perhaps the most damaging, because it led theorists straight to the normal distribution to assess risk. 

A close second is the failure to focus on the properties of the often unknown attractor driving the evolution of any 

market, including the capital market. Last but not least, there is the ubiquitous data problem that plagues 

socioeconomic times series.  

    Admittedly, the later problem is less severe in financial analyses where the signal-to-noise ratio is higher than in 

macroeconomic time series. However, financial data may well escape the pitfalls of aggregation and arbitrary 

sampling intervals, but they appear to be sensitive to „inherent‟ noise and to policy and technology shocks; some of 

these may permanently alter the statistical properties of these series. It goes without saying that financial time series, 

as any socio-economic ones, should be well prepared before they are analyzed. However, in so doing, one stumbles 

on the necessity to question the supposition that real world data must satisfy the mathematical requirements of 

stochastic calculus.  

    The weakness of models based on independent increments are well documented in Mandelbrot (1971, 1977), in 

Greene and Fielitz, 1977), in Cutland et al., 1995, and in Peters, 1994, among others. Mandelbrot and van Ness 

(1968), for example, have long ago and convincingly argued for the use of „fractional Brownian motion‟, (B
H 

(t)), in 

financial analyses. A few have paid heed to that recommendation and have developed new constructs that fall into 

two categories. Namely, „fractional stochastic volatility‟ models along the line of Heston (1993) and Comte and 

Renault (1998), and „extension of the Black-Scholes‟‟ model to B
H 

(t) (Sottinen, 2001; Cheredito, 2003, among 

others). There are problems with both categories. In the first category, the main difficulty stems from the fact that B
H 

(t) and volatility are not Markovian, while the second category allows for arbitrage opportunities. There is a third 

category that tries to exclude arbitrage opportunities (e. g. Guasoni, 2006), but models falling into that category do 

not seem to have any clear economic interpretation. Therefore, beyond the mere data problem, it is quite proper to 

ask also whether or not these drawbacks are mainly due to the fact that B
H 

(t) is neither a semi martingale nor a 

Markov process?  

    The extant tools of stochastic calculus were developed for time series meeting three strong conditions to which we 

will return. It suffices now to say that this study will show that socio-economic time series cannot faithfully satisfy 

these conditions. Yet, theorists in both economics and finance rely on these very socio-economic time series to 

gauge the properties of the capital market, although they approach the analysis in a different manner, which we will 

now try to reconcile into a simpler format.  



    Economists are primarily interested in distinguishing deterministic chaos from pure randomness, employing three 

procedures. That is, the determination of the correlation dimension (d
c
) (see Grassberger and Procaccia, 1983), the 

computation of Lyapunov exponents (Lc) (Lyapunov, 1907; Osedelec, 1968), and the Singular Spectrum Analysis 

(SSA) (Medio, 1992). All three procedures happen to be sensitive to the noise inherent in macro-economic time 

series, and they all fail to distinguish unambiguously between randomness and the fractal nature of socio-economic 

processes.  

   The presence of inflation and growth in socio-economic time series requires filtering which, in turn, requires 

efficient algorithms and analytical skill. When the law of motion of a dynamical system is unknown, the SSA 

method appears more reliable, but it is still not known how the filtering of SSA affects the statistics sought after. 

According to Medio (1992), there are two remaining pitfalls. The averaging implicit in the projection of a series 

onto a new basis could eliminate certain deterministic components of the motion, in particular the high frequency 

components. The second potential drawback relates to the effect of noise on the estimation of the pertinent statistics. 

The reason is that the embedding space of the attractor is divided into a „deterministic‟ subspace (where orbits 

would stay in the absence of noise) and a „stochastic‟ subspace (in which motion is due to noise). If all the noise has 

not been eliminated by filtering, all the positive eigenvalues will be raised by an amount corresponding to the „noise 

floor‟; meaning that the computed properties of the attractor will be affected. We should add a third minor drawback 

relative to the notions of accuracy and precision to which we will return.   

    In financial analysis, on the other hand, i. e., in models with which we are familiar, no explicit reference is made 

to the attractor driving the process. Yet, the reconstruction of the unknown attractor should be the ultimate goal of 

the analysis of time series. This paper will attempt to address this omission. In fact, attempting to identify the 

properties of the attractor may solve an extant puzzle. For, it is observed that regardless of the size of the embedding 

dimension, the attractor driving the dynamic process is always confined within dimensions two and three. Why? We 

believe that focusing on the attractor may provide an answer to this heretofore unanswered question.  

    The main purpose of this paper is twofold. To show first that in man-made processes such as the financial market, 

the three strong conditions allowing processes to be described by a regular Brownian motion are violated. Price 

variations evolve according to an imperfect B
H 

(t)) instead; hence, it is improper to assess risk on the normal 

distribution. The second objective is to then construct a relationship between frequencies and the intensities of 

variations within a self-affine distribution that can serve as a practical guide to assess the „value- at- risk‟.  

    The paper is organized as follows. Part I states the problem. Part II examines the reasons why the above three 

conditions, namely, scale invariance, time invariance, and independence of increments are violated, followed by the 

derivation of the three fundamental „descriptive statistics‟ necessary to uncover the fractal nature of the capital (or 

any) market. At the same time, we will attempt to assess the impacts of both „weak stationarity‟ and „noise‟ on the 

estimates. Part III discusses the data. Part IV brings to the fore the potential negative impact of the noise floor 

present in the SP-500 Index, shows that that process is governed by a power law whose spectrum exponent  > 2, 



and constructs the relationship frequency-intensity. Part V discusses our overall results, and summarizes our 

conclusions.   

II- THEORETICAL CONSIDERATIONS  

    Let (.), p))  
n
 be an unknown discrete-time dynamical system, represented by a system of difference equations, 

embedded in a space of dimension n. Taken‟s (1981) Theorem asserts that it is possible to extract all the pertinent 

information needed for decision-making from a univariate time series {p (t)} of dimension m < n, as long as {p (t)} 

is an output of the system  (.).  

    Consider then the sequence: 

(1)                                                                              p (t) = P (t)}
m-1

k=1,  

where P (t), P (t + k), P (t + 2k), . . ., P (t + m-1k) are elements of a vector defining a point in 
m
.  Following the 

evolution of that vector, one obtains an orbit in a subspace F  
m
. If m is large enough relative to n and if  is 

sufficiently small, then the m-dimensional image obtained from (1) will be a true image of the unknown attractor of 

the system. This is the first step that legitimizes the use of time series in both economics and finance.  

    Assuming that p (t) evolves as a fractional Brownian motion, B
H 

(t), it can be shown that three descriptive 

statistics suffice to describe both the appropriateness of the assumption and the properties of the unknown attractor. 

They are: 

The Hurst’s (1951) Exponent H, defined as:  

(2)                                                                      H = log (R/S) / log (t),  

where R is the range, S is the standard deviation, t is the interval, and 0 < H < 1. H is a global characteristic (or a 

long memory process) that indicates in this case the ruggedness of the attractor‟s surface. H is positively related to 

the spectral exponent, .  

The Power Spectrum. Statistical time series are governed by the homogeneous power law in the form of f
-

, where  

is the squared magnitude of the Fourier Transform. We will have more to say about  in the next section, but for 

now it suffices to note that  is negatively related to the Hausdorff dimension, d
H
, over the range of H.   

 The Hausdorff (or fractal) dimension is defined as:  

(3)                                                              d
H
 = lim r0 [log (B(r, pi) / log (1/r)],   

where B (.) stands for the number of balls of radius r necessary to cover (1). d 
H
 is often a non-integer dimension-

like quantity that measures the way orbits fill up the phase space under the action of the flow of the attractor. Thus, a 

non-integer dimension indicates that orbits do not fill up all the available space. It is also the upper limit of the 

correlation dimension, d
c
. Often d

H
 and d

 c
 are used interchangeably in informal discussion, but it should be borne in 



mind that d
c
 ( d

H
) is a probability measure indicating the frequency with which orbits visit different parts of the 

attractor. d
H
 is negatively related to both  and H, and it is the upper limit of d

c
.    

    These descriptive statistics, which are easily computable, suffice to describe the attractor. But before computing 

them, it would be instructive to show why such a computation is a preferred alternative due to the limitations of 

socioeconomic time series in meeting the requirements of stochastic calculus.  

Fractional Brownian Motion B
H
(t) is a generalized Gaussian process with mean functional zero and covariance 

functional as a fractional integral or a fractional integral derivative of the Delta- function. Using the integral form 

introduced by Mandelbrot and van Ness (1968) for H  [0, 1], (s, t)  , t  0, It can easily be shown that B
H
 (t) must 

satisfy three basic conditions. That is, scale invariance, time invariance, and independence of increments. However, 

dealing with real world data presents a number of difficulties. Consider the following:  

    Contrarily to the ease of mathematics, the self-similarity property or the scale invariance property of natural 

processes such markets is limited to finite ranges. Real world self-similar process has a largest and a smallest scale. 

It is now known that a regular B (t) scales over a range of 10 to one. But what is it for a B
H 

(t)? No one seems to 

know the answer. 

    If the statistical properties of (1) do not vary over time, then it is stationary and the spectral density function has a 

physical interpretation of a power frequency distribution. But, socio-economic time series are subject to noise, to 

policy and technology shocks, which may have long lasting effects, and which would make (1) non-stationary. 

Then, as such, (1) would not admit a power spectrum in the conventional sense. Some sort of average spectrum 

equal to 
2
/  must be assigned to it. Non-stationarity also affects all three descriptive statistics. For example, 

Casti (1995, 256) reports on a value of H = 0.78 for the SP-500 Index, based on monthly returns from January 1950 

to July 1988. Bayraktur et al. (2003) use Wavelet analysis to estimate H from price data, over different segments of 

stationarity, from January 1989 to May 2000, sampled at one-minute intervals. For segments of length 2
12

, H = 

0.6156 with a standard deviation of  = 0.0531. For segments of length 2
14

, the value of H falls to 0.6011; for 

segments of length 2
15

, H = 0.60008, etc.; however, the level of the noise floor is not mentioned in these two studies. 

James Preciado, et al. (2008), estimate H of the SP-500, from August 2007 to April 2008, at 0.7936, but form 

January 2003 to July 2007, the value falls to 0.6946. These differences may be due to noise, non-stationarity, or due 

to the fact that H is not constant in the short run. The H exponent seems to vary with the sampling interval, with the 

range, and with series‟ length. In fact, we will assume that series‟ length is crucial and that H is long term 

characteristic. We will then test for the stationarity of the SP-500 by analyzing it in three segments. That is, from 

(1928-1945), from (1946-2009) and from (1928-2009), via two different transforms (Fourier and Wavelet). 

Hopefully, this will shed light on both the constancy of H and the extent of non-stationarity if any. Anyway, for our 

estimates, we will rely on the longer segment as series‟ length is an important factor for the stability of the estimates. 

In addition, we believe that the attractor is a multi-fractal and that the spectra of its frequency intervals follow the 

power law with different exponents; hence, with different H values.  



     According to the form introduced by Mandelbrot and van Ness (1968), denoting E (.) the mathematical 

expectation, then the mean functional is E (B
H 

(t)) = 0, t  . The covariance kernel is therefore:   

(4)                                       Cov (t1, t2) = E [B
H 

(t1) B 
H
(t2)] = 1/2 [ t1

2H
  +  t2 

2H
 -  t1 – t2

2H
].   

 

This property refers to disjoint increments that are either positively or negatively correlated. This usually referred to 

as „long range dependence‟ or persistence if H > 1/ 2 or anti-persistence if H < 1/ 2.  In other words, if H 1/2, 

because economic agents remember the past, B
H 

(t) is neither a Markovian process nor a semi-martingale. A semi-

martingale is a natural process for which stochastic calculus can be developed, and can be expressed as a local 

martingale which has a finite quadratic variation and the sum of a bounded variation process. B 
H
 (t) cannot be one, 

because for H < ½, the quadratic variation   , and for H > ½, it is zero. Hence, the conventional tools of 

stochastic calculus are not directly applicable.  

    These non-conformities lead to a more fundamental question. That is, what do accuracy and precision mean in the 

social sciences? In a domain such as physics, the „accuracy‟ of measurements and „closeness‟ to actual values of 

entities are defined in terms of „fixed references‟ such as the wavelength or the speed of light, atomic vibrations, the 

Plank constant, etc. In the social sciences, there are no fixed references to go by. These domains, including the brain 

of agents (see Falconer, 1990), belong to “fractal-land” where forms are irregular and measurements are often fuzzy. 

What comes close to a constant is the Hausdorff dimension of a fractal entity. Alternatively, it is the ratio of the 

logarithm of the increase in the linear dimension to the logarithm of the decrease in the unit of measurement. Hence, 

the dimension of a fractal entity depends on the size of the unit used to measure it.   

    For all these reasons, the B 
H 

(t) referred to in natural processes are pseudo-fractional Brownian motions.  We 

could test for these properties and even force them to comply, but we risk destroying their subtle characteristics. 

This also explains why we can only deal with approximations „reasonable‟ enough to guide decision-making. With 

this qualification duly noted, we will now turn to the derivation of the descriptive statistics.  

    The Generalization of B
 H 

(t). If (1) evolves as a pseudo B 
H 

(t), it can then be generalized to a B 
H 

(t), where t is 

now a vector in 
2
. If next we consider positive increments t1 and t2, B 

H 
(t) becomes a function g: 

2
 , 

giving the elevation of a point (t1, t2) on the surface of B 
H 

(t). Then,  

                                                     g {[(t1 +  t1), (t2 + t2)] – [g (t1, t2)]}   

has a centered Gaussian distribution with variance given by:  

(5)                                                           B
2
 = [(t1)

2
 + (t2)

2
] 

H
.  

 

The exponent is H for B 
H 

(.) instead of 1/2 for a regular B (.). It follows that B 
H 

(t) has a surface index H which 

accounts for the difference between d
H

s of the surface and the embedding dimension, m s. Positing  = 2H + 1, the 

Hausdorff  dimension, d
H

s, , of the surface, which is identical to that of the attractor, is:  



(6)                                          d
H

s = ms – ( -1) / 2 = (2 ms + 1 - ) / 2. 

If m s = 3, H = ½, and  (B (.)) = 2 for an ordinary B (t), then d
H

s cannot exceed 2.5. Indeed, we expect d
H

s to be 

lower for H > 1/2  in B 
H 

(t).  

    The affine trace is obviously in 
2
, then, its fractal dimension is:  

(7)                                                     d
H

a = (2ma + 1 - ) / 2.  

This last equation follows from (6), which incidentally is identical to Schroeder‟s (1992, 135-137), except that 

here the derivation is more straightforward.  

The Equivalent Operation of Convolution. In practice, i. e., in the field of tomography, for example, (6) is 

obtained by convolving arrays in frequency domain (f) or in time domain (t) and the amplitude spectra of B 
H 

(.) 

(see, Moreira,1994). Let f  
2
 and t  

2 
stand for the frequency and time vectors, respectively, with lengths 

(f1
2
 + f2

2
)

1/2
 and (t1

2
 + t2

2
)

1/2
. Define now two arrays M (f1, f2) and M (t1, t2) and let their corresponding 

amplitude spectra be as given below. Then:  

                               M (f1, f2)  f 
–(H+1/2)

    k = n=0
N-1
n exp (-2kn/N)           time domain 

(8)                                          
-1

                                                          
-1

     

                               M (t1, t2)  t 
–(H+1/2)

 n = (1/N) k=0
N-1

 k exp (2kn/N),   frequency domain 

where  k = 0, 1, . . . , N-1; n = 1, 2, . . . , N-1; k is the forward Discrete Fourier transform, 
-1

 is the inverse 

discrete Fourier transform, and  stands for the convolution operation.  

 

    Either operation can be selected, but one must bear in mind that the transform from spatial domain to 

frequency domain quantifies the higher frequencies more coarsely. The Discrete Fast forward Fourier transform 

should be used to transform from frequency to time domain if the series is stationary. On the other hand, as 

Wavelet Transform with multi-resolution is a time-scale method and is more precise and convenient, in 

particular when high frequency components are present; it should be used to compute the Hurst exponent. We 

will use both transforms to check their performance first and, second, because the product of the convolution or 

the Fourier transform describes the surface of the attractor. The validity of this last assertion then explains why 

the fractal dimension (d
H

s) is confined between dimensions 2 and 3. We dare say in passing that it will always 

be so regardless of the dimension in which the attractor itself is embedded. We should note, however, that (6) 

applies in the general case; e. g., the Hausdorff dimension of a B (t) in an embedding space m is: (m – ½).   

    Let us now turn to Eqs. (6) and (7), as H  [0, 1], the connection between the three descriptive statistics and 

the color scheme used in physics is given in Table 1 below. The waveform in the color metaphor is another 

indication of the difference between a B (t) and a B 
H 

(t). According to Schroeder (1992), a  > 2 is a black 

noise accounting for violent swings in market processes and other natural disasters. Anyhow, if (1) evolves as a 

B
 H 

(t), the data will show that H  (1/2, 1].  



    

 Table 1: Descriptive Statistics and the Color Scheme        

H  dH
s dH

a Noise Color 

- 0 - - white 

0 1 3 2 pink 

1/2 2 2.5 1.5 brown 

1 3 2 1 black 

    

With the theoretical values of Table 1 in mind, we will now proceed to determine empirically the  of the SP-

500 Index. If it found to be higher than 2, that will explain the violent and unexpected swings in prices and 

returns in October 1987 and August 2007.  

 

III THE DATA  

 

        The SP-500 Index is a market value weighted index of stock prices times the number of shares outstanding 

in which each stock‟s weight is proportional to its market value. We examine its monthly closing prices, sampled 

at regular intervals from December 1928 to December 2009, from 1928-1945, and from 1946-2009 in two 

software packages. That is, the BenoitTM which is particularly well suited for Rescaled/range and power spectrum 

analyses, using both Fourier and Wavelet transforms. Benoit also makes use of various methods of filtration for 

white noise. One of them works by conducting a transform by modification of the transform coefficients and then 

making the reverse transform, thereby removing data points that contribute uncorrelated noise to the data set. The 

coefficients are modified by 3 parameters. It should be noted, however, that the combination horizontal/hard, the 

most common in scientific applications, removes high frequencies from the data. While horizontal/soft does the 

opposite. Since we would like to examine both high and low frequencies, we will use both Fourier and Wavelet 

transforms to size up differences in the estimates. Thus, with the Benoit software, we will first compute the 

power spectrum and the Hurst exponent. We will do likewise with the two transforms and relate their values to 

the Hausdorff dimensions of both the surface of the attractor and the self-affine profile so as to determine the 

concordance of the estimates relative to the constancy of H and as an indication of the impact of non-stationarity.  

    The other software we use is the SPSS package which is more suitable to the computation of the frequency 

distribution. Financial data is reputed to have high signal-to-noise ratio. To verify that assertion, we de-trend the 

SP-500 series using logarithmic difference. This series is identified as Log-SP500d2. Next we filtered Log-

SP500d2 for white noise; that new series is identified as Log-SP500d2 ftrd. If the series is found to be at least trend-

stationary, we will use the weighted means to center both series. Fluctuations about the means are recorded and 



tallied in three fashions, i. e., absolute, positive and negative. This will allow us to size up the impact of the noise 

floor, if any, on the estimates. However, in any event, for the computation of the Hurst exponent, power 

spectrum exponent, Hausdorff dimension, and the frequency-.deviation relationship, the stationary, de-trended 

and filtered series, i. e., Log-SP500d2ftrd will be used.  

           The distributions of deviations in both series will be compared to the normal distribution. The purpose here is 

to show that the close resemblance of the distributions may be misleading as it may obscure some subtle 

differences. But, more importantly, we wish to stress the difference between evaluating risk on the normal curve 

and risk assessment based on fractal distributions. 

 

     IV- THE RESULTS 

 

           As regards stationarity, the procedure recommended by Yaglom (1962) is not convenient in this case. Instead, 

we employ the SDP method on various segments at the beginning and end of the series, although Figure 5 shows 

that Log-SP500d2flrd is practically trend-free. No fluctuations are detected in the mean-variance relationship in the 

segments 1928-2009 and 1946-2009, but there were some fluctuations in the segment 1928-1945. We assign that 

difference to the insufficiency of the segment length for monthly sampling interval. The segment 1928-2009 

shows a slight drift. We attempt to correct sporadic entries using the formula:   

 

                                                      et = log p(t) + [ log (pt) - ] / , where  is the weighted mean.  

 

      

      The difference in entry values was about 1/100
th

. Since we restrict ourselves to just one decimal place for the 

descriptive statistics, the additional correction changes nothing. On the basis of these findings, we concluded that 

the series was clean and stationary enough for the present purpose. The overall results are given in the various 

tables and figures listed below.  

 

           More specifically, Table 2 present the results of the estimation of the power spectrum of the SP-500 series, 

sampled at one month intervals, in the three segments. Figure 1(a and b) presents the result of the Fourier 

transform in which the power spectrum  lies between 2.63 and 2.79 and 0.82  H  0.89. In Figure 2 which uses 

Wavelet analysis, 2.72    2.76 and 0.86  H  0.88. As it can be seen, the difference is rather insignificant 

beside the fact that the Fourier Transform uses 984 data points, while the Wavelet Transform uses fewer data 

points as power of 2. We believe that the differences are small enough to uphold the criteria of quasi-self-

similarity and even the property of weak stationarity either from 1928-2009 and 1945-2009.  

  

        According to Table 2, the SP-500 evolves as a fractional Brownian motion, governed by a homogeneous power 

law in the form of f
-

 as a function of frequency f. Its power spectrum is proportional to f
-2.6

 or f
-2.7

. For a  

within that range, the system falls into the category of a black noise according to Schroeder (1992). This means     

 



 

 

  

      

     Table 2: Descriptive Statistics of the SP-500, 1928-2009, 1928-1945, 1946-2009 

 

                            Fourier Transform                                 Wavelet Transform 

                 1928-2009           1928-1945            1946-2009                                            1928-2009 (1)        1928-1945 (2)       1946-2009 (1) 

    H                0.82                     0.62                        0.89              0.88                     0.78                     0.86 

                     2.63                     2.23                         2.79              2.76                     2.56                     2.72 

  dH
s                    2.18                     2.38                         2.11                         2.12                     2.22                     2.14 

  dH
a                1.18                     1.39                         1.11                             1.12                     1.22                     1.14 

              *H = Hurst Exponent;  = Power Spectrum Exponent; d
H

s = Hausdorff Dimension of the Surface of the  

              Attractor; d
H

a = Hausdorff Dimension of the Affine Profile; (1) 2
9
 data points; (2) 2

7
data points.  

 

that violent price swings in both positive and negative directions are to be expected. For additional insurance, we 

present the regression of absolute deviations and frequencies in Table 8, showing a reasonable fit ( = 2.296) 

despite the division into broad classes of frequencies. And in conformity with experimental findings, the surface of 

the fractal attractor of the SP-500 Index falls between dimensions 2 and 3. Up to now, there was no explanation for 

that phenomenon.  

 

From the descriptive statistics, it can be deduced that the segment 1928-2009 is not representative of (1); the 

segment length appears too short for the sampling interval. Normally, in such cases, the covariance kernel would 

have to undergo some modification. However, as the spectral properties of segments 1928-2009 and 1946-2009 are 

compatible, the series is considered an oscillatory discrete parameter process with a kernel representation of the 

form: K (s, t) = ∫


- e
i(t-s)

 dV (), where i = (-1)
1/2

. Also, in view of what was said before regarding the notions of 

accuracy and precision, we consider the statistics for the whole series are sufficient for decision-making.   

 

     The simplicity of this approach is now obvious. For, knowing any one of these descriptive statistics allows one to 

compute the other two. For example, Falconer (2003) reports that for parameters r = 28, b = 4 and Prandlt number  

= 16, the Hausdorff dimension d
H

s of the Lorenz deterministic fractal attractor is 2.06. Then, using Equation (7) or 

(8), its H = 0.94, and its  = 2.88. We can then conclude that its surface is quite smooth and highly persistent on any 

one of its three manifolds.  

 

     Table 3 and Figure 3 present the statistics and the histogram of Log-SP500d2, while Table 4 and Figure 4 give the 

same type of information but for Log-SP500d2ftrd. These values can now be compared to determine the impact of the 

noise floor. Both distributions can also be compared to the normal distribution superimposed. The fractal 

distributions are clearly leptokurtic. Figure 5, showing the time profile of Log-SP500d2ftrd , is added for 

completeness. 

 



 

 

 

 

 

Figure 1: Power Spectrum of Log-SP500d2ftrd, 1928-2009, 1946-2009   

  

Plate  a: 1928-2009, H= 0.817, Beta =  2.634  

 

 

 

Plate b: 1946-3009, H = 0.889, Beta = 2.779 

 

 

 

 



 

 

 

 

 

 

 

Figure 2: Wavelet Analysis of Log-SP500d2ftrd, 1928 -2009, 1946-2009  

 

Plate a: 1928-2009, H= 0.880, Beta = 2.76   

 

 

Plate b: 1946-2009, H = 0.854, Beta = 2.71 

 



       The impact of the noise floor can be seen much more clearly at the level of frequency distributions. Tables 6 

and 7 show how frequencies are distributed. We compute and tally frequencies grouped in intervals of 9/1000, 

meaning: 0.000 to 0.009, 0.01 to 0.019, etc. We next compute positive, negative and absolute deviations from the 

weighted mean on which the series are centered. Table 5 is only for a comparison with Table 6 and 7, which show 

the more reliable distributions coming from Log-SP500d2fted. For example, Table 5 shows that there are 521 positive 

deviations against 463 negative ones. There are also positive deviations at 20, 18, 16, 9 percent, etc; the first 

negative one appears at 15 percent. It must be borne in mind, however, that in Table 5 the stochastic subspace is not 

completely empty. When these values are compared with those of Tables 6 and 7, which show the more reliable 

estimates, the impact of the noise floor can easily be assed. We should also remark that in Table 6 there are 540 

positive deviations compared with 444 negative ones. There exists then an upward drift, which we could seek to 

eliminate, but it is not worth the trouble; after all the waveform of a black noise does not have to be symmetrical. 

We consider the small drift as a long run average rate of endogenous growth. The difference between the two tables, 

however, quantifies the impact of the noise floor.   

                                   

     An important point that should be stressed is that the information depicted in Table 6 may be interpreted within 

the context of the attractor. The weighted mean may be seen as the inner boundary set between a „gain-manifold‟ 

and a „loss-manifold‟. It can be inferred that in continuous time, orbits would spend 54.8 percent of the time on the 

gain-manifold and 45.2 percent on the negative one, crossing the boundary in both directions 830 times during the 

sampling interval, or about every 1.2 months; while remembering however that deviations are grouped. We, 

therefore, conclude that an investor who was patient enough to stay in the market during the sampling period would 

have come out ahead.  

 

    Another reason why we let the drift stand is that we do not know how an additional correction, i. e., approaching 

the boundary of the two manifolds, might affect the spectral exponent of the process as a whole. We are aware of at 

least one study carried out by Yanhui Liu et al. (1999) of the Center of Polymer Studies and Department of Physics 

of Boston University that shows a significant fall in that statistic as one approaches the center. Also, we are 

interested in preserving the outliers or what Nicholas Thales, the author of the Black Swan, has shown to be 

important.   

 

    What we did instead, was to subject the attractor to the multi-fractal test. A multi-fractal is one more 

generalization of the fractal concept whose purpose is to include phenomena and structures with more than one 

scaling exponents. The way positive and negative frequencies are distributed is one such applications, but according 

to Schroeder (1992, 187-190), multi-fractal distributions apply to the distribution of people and minerals on the earth 

surface, to energy dissipation in turbulence, to fractal resistor and computer networks, to games of chance, to strange 

attractors of non-linear dynamic systems, etc. From the distribution of positive and negative frequencies of log-

SP500d2ftrd, the probability of gains and losses are p = 0.548 and 0.452, respectively. We then apply the multi-fractal 

test to classes of variations over the unit interval. However, given the amount of work involved, we show the results  

 



 

Table 3: De-trended & De-trended and Filtered SP-500, 1928-2009  

 

 

Figure 3: Histogram of the De-trended SP500, 1928-2009  

 

 

 LOG_SP500_d2 LOG_SP500_d2_Fltrd 

N 984 984 
Mean 1.00112 1.00112 
Median 1.00170 1.00162 
Mode 1.00200 .99408 
Std. Deviation .02044 .01536 
Skewness .906 2.895 
Std. Error of Skewness .078 .078 
Kurtosis 30.250 67.157 
Std. Error of Kurtosis .156 .156 
Range .35790 .35684 
Minimum .84930 .86703 
Maximum 1.20720 1.22387 
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Figure 4: The Histogram of De-trended and Filtered SP500, 1928-2009 

 

of the first two iterations. Iterating this bisecting process should approach an asymptotically self-affine distribution, 

but at the same time, we should remember being in fractal-land and we have broad classes of frequencies. 

Nonetheless, this partial result shown below is sufficient to show that the SP-500 is almost surely a multi-fractal.  

 

    Table 4: Multi-Fractal Test for the Distribution of Positive and Negative Frequencies: Two Iterations 

Division of Unit 

Interval 
(1-p)

2 
(1-p) p p (1-p) p

 2 

Theoretical 

Values 
0.204 0.247 0.247 0.300 

1
st
 Iteration 

(492 points) 
0.180 0.243 0.243 0.337 

2
nd

 Iteration 

(246 points) 
0.239 0.252 0.252 0.262 

    

    A final factor to consider is impact of inflation on the index. From December 1989 to December 2009, prices 

grew at an average rate of 10.7 percent in nominal terms. That is, during Mr. Greenspan‟s era, banks were receiving 

almost free money. They pull additional resources from the rest of the economy to play with and they headed to the 
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casino, creating bubbles after bubbles; the last one busted in August 2007. Figure 5, on the other hand, shows only 

regular movements, and Figure 1and 2 seem to reflect the busting of the bubble. In Figure 1, for example, one can 

see sharp drops in power whenever bubbles busted; drops that could not be ascribed to spectral leakages.   

 

Figure 5: The Time Profile of Log-SP500d2ftrd, 1928-2009.  

Figure 6: Plot of Frequency-Absolute Deviations of Log-SP500d2ftrd, 1928-2009.  

Figure 7: Plot of Frequency-Positive Deviations of Log-SP500d2ftrd, 1928-2009.  

Figure 8: Plot of Frequency-Negative Deviations of Log-SP500d2ftrd, 1928-2009. 

 

 

Table 5: Absolute, Positive and Negative Deviations in Log-Sp500d2, 1928-2009  

Adj. Dev. Cat_Abs 
(Absolute Dev.) 

Pos._Frequencies Neg._Frequencies 

0.20 1 0 

0.19 0 0 

0.18 1 0 

0.17 0 0 

0.16 1 0 

0.15 0 1 

0.14 0 0 

0.13 0 1 

0.12 0 0 

0.11 0 3 

0.10 0 1 

0.09 2 0 

0.08 0 0 

0.07 0 2 

0.06 1 2 

0.05 2 6 

0.04 6 7 

0.03 10 15 

0.02 38 28 

0.01 97 92 

0.00 362 305 

TOTAL 521 463 
 

  

 

 



 

 

 

    Table 6: The Frequency-Deviation Intensity Relationship in Log-SP500d2ftrd,  1928-2009  

Frequency 
Positive        

Moves 

Occurrence in (0, T)  

(# of months) 
Negative Moves 

Occurrence in (0, T)         

(# of months) 

0.22 1 984 - - 

0.21 - - - - 

0.20 - - - - 

0.19 - - - - 

0.18 - - - - 

0.17 - - - - 

0.16 - - - - 

0.15 - - - - 

0.14 1 984 - - 

0.13 - - 1 984 

0.12 - - - - 

0.11 1 984 - - 

0.10 - - 1 984 

0.09 - - 1 984 

0.08 - - - - 

0.07 1 984 1 984 

0.06 1 984 3 328 

0.05 1 984 2 492 

0.04 1 984 6 164 

0.03 3 328 4 246 

0.02 14 70.2 19 51.7 

0.01 47 20.9 45 21.8 

0.00 469 2.0 361 2.7 

Total: 540  444  

   

 



Table 7:  The Frequency-Absolute-Deviation-Intensity Relationship in Log-SP500d2ftrd, 1927-2009  

Frequency Absl. Deviation Percentage Occurrence in (0, T) 

0.22 1 0.10 984 

0.21 - - - 

0.20 - - - 

0.19 - - - 

0.18 - - - 

0.17 - - - 

0.16 - - - 

0.15 - - - 

0.14 1 0.10 984 

0.13 1 0.10 984 

0.12 - - - 

0.11 1 0.10 984 

0.10 1 0.10 984 

0.09 1 0.10 984 

0.08 - - - 

0.07 2 0.20 492 

0.06 4 0.41 246 

0.05 3 0.30 328 

0.04 7 0.71 140 

0.03 7 0.71 140 

0.02 33 3.3 39.8 

0.01 92 9.3 10.7 

0.00 830 84.3 1.2 

Total 984   

 

 

 

Table8: Regression Statistics of Frequency vs. Abs. Dev. In Log-SP500d2ftrd: Panels a, b, c and d. 

 

 



V- CONCLUDING COMMENTS  

 

    This study focuses on the SP-500 Index from 1928 to 2009.  With the help of the Benoit and SPSS softwares, we 

demonstrate that the index is powered by a fractal attractor or a power law whose power spectrum is proportional to 

f
-2.6

 or f
-2.7

, depending on the transform used. For these values of , the color metaphor of the index is „black‟, 

meaning that the unexpected events during the sampling period were expected. In an attempt to preserve both high 

and low frequencies, we used the Fast Discrete Fourier Transform and Wavelet analysis in a reasonably long series. 

The two analyses are in good agreement for the two segments: 1928-2009 and 1946-2009.   

 

    The approach adopted for the analysis allows the identification of the properties of the fractal attractor driving the 

index quite easily. The Hurst exponent reveals an almost smooth surface with an H exponent lying between 0.82and 

0.89 and corresponding Hausdorff dimension between 2.18 and 2.11 and affine trace between 1.18 and 1.11. The 

surface of the attractor is between dimensions 2 and 3 in agreement with empirical tests. The high value found for H 

indicates that economic agents remember the past, contrarily to the prevailing assumptions underlying analyses in 

the financial sector. To double check the result of the power spectrum analysis, we run the regression supposing that 

variation intensity are proportional to frequency raised to some exponent  
g
 for grouped intervals. The result of the 

regressions indicate a reasonable fit, and a  
g
 = 2.296, a value close to 2.6.    

 

    Our study also demonstrates that for a fractional Brownian motion, there does not exist a fixed-point equilibrium. 

Orbits only cross the mean but do not stay there. This calls to question the practice in both economics and finance to 

suppose that orbits will always return to the mean to stay. And it goes against the notion that information arrives in 

the market at random. Information is only an intermediate input into the demand-supply interplay. It appears random 

because the dynamic process whose attractor we have tried to describe is hidden from view. It becomes also 

obvious, at the same time, that risk should not be assessed on a normal distribution; the second part of our results 

shows why.  

 

    The other purpose of the study was to make an exhaustive analysis of the distribution of frequencies. We centered 

the series on their weighted mean and tallied frequencies by classes of 9/1000
th

 of the interval. Variations, absolute, 

positive, and negative were tabulated for both the de-trended and de-trended and filtered series; the idea here was to 

assess the impact of the noise floor in the de-trended-only series. From Table 6 and 7, the present distribution can 

more easily be compared to the normal distribution. Peter Bernstein (1996) reports on a similar analysis of the SP-

500, from January 1926 to December 1995; that is, 840 monthly price-change observations; Bernstein does not 

indicate whether or not his series was filtered. The mean (arithmetic?) and standard deviation were 0.6 percent and 

5.8 percent, respectively. Bernstein then uses the normal distribution to conclude that a price decline of 10 percent 

can be expected every 15 months. He then multiplies that figure by 2 to conclude that an absolute deviation of 10 

percent is likely every 30 months. Although our measures are different, the same principle holds. Table 6 shows that 

a 10 percent decline occurred only once in 984 months. Since there was no 10 percent increase in this case, an 

absolute deviation of 10 percent happened also only once in the 984-month period (Table 7) even though our series 

is longer by 184 months. This shows why we should be mindful of the difference between the normal and fractal 



distributions. More specifically, according to the distribution of frequencies over the unit interval, ours is a self-

affine distribution in which deviations are not equally likely.      

 

    The displays of Tables 6 and 7 reveal that orbits spend more time on the gain-manifold. We deem this drift 

natural. This then shows that: The mathematical expectation of an investor is not zero, in perfect agreement with 

empirical observations.  

    To summarize, our main findings are that the capital market is governed by a power law with a spectrum 

exponent that locates it in the category of black noise. As such, violent and unexpected fluctuations in prices happen 

at computable frequencies. In other words, price changes between 20 and 15 percent were extremely rare; it did not 

happen once during in the 82-year period that we have examined. But, there was a 22 percent positive change. In 

negative territory, there were price declines at 14 percent, at 10, at 9 percent, and so on. The most frequent 

deviations, however, were confined to a reduced place in the invariant equilibrium set, that is, between 1 and 4 

percent. But, once in a while, orbits venture far away from the center of the attractor. Obviously, the future is not 

going to duplicate the past, not completely, as the data is subject to permanent shocks. However, the data say 

something about the short and intermediate runs. It goes without saying that it is better to be prepared. 
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