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[E. Maskin, Rev. Econom. Stud. 66 (1999) 23-38] is a seminal paper in the field of
mechanism design and implementation theory. [J. Moore and R. Repullo, Econometrica

58 (1990) 1083-1099] and [B. Dutta and A. Sen, Rev. Econom. Stud. 58 (1991) 121-
128] are two fundamental papers on two-player Nash implementation. Recently, [H.

Wu, http://arxiv.org/pdf/1004.5327v1 ] proposed a classical algorithm to break through
Maskin’s theorem for the case of many agents. In this paper, we will give two examples to
break through the aforementioned results on two-agent Nash implementation by virtue
of Wu’s algorithm. There are two main contributions of this paper: 1) A two-player
social choice rule (SCR) that satisfies Condition µ2 cannot be Nash implemented if
an additional Condition λ′ is satisfied. 2) A non-dictatorial two-player weakly pareto-
optimal SCR is Nash implementable if Condition λ′ is satisfied. Although the former
is negative for the economic society, the latter is just positive. Put in other words,
some SCRs which are traditionally viewed as not be Nash implementable may be Nash

implemented now.

Keywords: Quantum games; Mechanism design; Implementation theory; Nash imple-

mentation; Maskin monotonicity.

1. Introduction

Mechanism design is an important branch of economics. Compared with game the-

ory, the theory of mechanism design just concerns a reverse question: given some

desirable outcomes, can we design a game that produces them? Ref. [1] is a fun-

damental work in the field of mechanism design. It provides an almost complete

characterization of social choice rules that are Nash implementable. In 1990, Moore

and Repullo [2] gave a necessary and sufficient condition for Nash implementation

with two agents and many agents. Dutta and Sen [3] also independently gave an

equivalent result for two-agent Nash implementation. In 2009, Busetto and Codog-

nato [4] gave an amended necessary and sufficient condition for Nash implementa-

tion with two agents. These papers together construct a framework for two-agent

Nash implementation.

In 2010, Wu [5] claimed that quantum strategies dramatically change the the-

ory of mechanism design when the number of agents is larger than three, i.e.,

by virtue of a quantum mechanism, agents who satisfy Condition λ can combat

Pareto-inefficient social choice rules instead of being restricted by the traditional

mechanism design theory. Although current experimental technologies restrict the

1



May 12, 2010 23:18

2

quantum mechanism to be commercially available, Wu [6] proposed an algorithm

that helps agents benefit from the quantum mechanism immediately when the num-

ber of agents is not very large (e.g., less than 20). Following the aforementioned

results, it is naturally to ask what will happen if quantum strategies are considered

in the field of Nash implementation with two agents. This paper just concerns this

question.

The rest of this paper is organized as follows: Section 2 recalls preliminaries of

two-agent Nash implementation published in Ref. [4]. Section 3 is the main part of

this paper, two examples that break through Moore and Repullo (1990) and Maskin

(1999) are given in detail.

2. Preliminaries

Consider an environment with a finite set I = {1, 2} of agents, and a (possibly

infinite) set A of feasible outcomes. Each agent i ∈ I has a complete and transitive

preference relation on A, which is denoted by Ri. For each i ∈ I, P (Ri) denotes

the strict preference relation corresponding to Ri. An ordered pair of preference

relations R = (R1, R2) is called a preference profile. The unrestricted domain of

preferences, denoted by RA, is the set of all preference profiles on A. The un-

restricted domain of strict preferences, denoted by PA, is the set of all profiles of

linear orderings on A. A domain of preference is a set R ⊆ RA of preference profiles.

For any i ∈ I, R ∈ R and a ∈ A, let Li(a,R) ≡ {c ∈ A : aRic}, and Mi(C, R) ≡

{a ∈ C : aRic, for allc ∈ C}, for any C ⊆ A.

Given a domain of preferences R, a social choice rule (SCR) is a correspondence

f : R → A, which associates a nonempty set f(R) ⊆ A with each preference profile

R ∈ R. An SCR f is dictatorial if there exists i ∈ I for whom f(R) = Mi(A,R),

for all R ∈ R. An SCR f is weakly Pareto optimal if for all R ∈ R and a ∈ f(R),

there is no b ∈ A such that bP (Ri)a, for all i ∈ I.

A mechanism is a function g : S → A, which associates an outcome g(s) ∈ A

with each pair of strategies s = (s1, s2) ∈ S = S1 × S2, where Si denotes the

strategy space of agent i ∈ I. For each R ∈ R, the pair (g, R) defines a game in

normal form. Let NE(g, R) ⊆ S denote the set of pure strategy Nash equilibria of

the game (g, R). A mechanism is said to implement the SCR f if for all R ∈ R,

{g(s) : s ∈ NE(g, R)} = f(R).

Definition 1 An SCR f satisfies Condition µ2 if there is a set B and, for each

i ∈ I, R ∈ R, and a ∈ f(R), there is a set Ci(a,R) ⊂ B, with a ∈ Mi(Ci(a,R), R);

moreover, for each 4-tuple (a,R, a′, R′) ∈ A×R×A×R, with a ∈ f(R), a′ ∈ f(R′),

there is e = e(a,R, a′, R′) ∈ C1(a,R)∩C2(a
′, R′); finally, for each R∗ ∈ R, we have:

(i) if a ∈ M1(C1(a,R), R∗) ∩ M2(C2(a,R), R∗), then a ∈ f(R∗);

(ii) if c ∈ Mi(Ci(a,R), R∗) ∩ Mj(B,R∗), for i, j ∈ I, i 6= j, then c ∈ f(R∗);

(iii) if d ∈ M1(B,R∗) ∩ M2(B,R∗), then d ∈ f(R∗);

(iv) if e = e(a,R, a′, R′) ∈ M1(C1(a,R), R∗) ∩ M2(C2(a
′, R′), R∗), then e ∈

f(R∗).
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Theorem 1 (Moore-Repullo, 1990): A two-player social choice function is

Nash implementable if and only if it satisfies Condition µ2.

Theorem 2 (Maskin, 1999): A two-player weakly pareto-optimal SCR is

Nash implementable if and only if it is dictatorial.

3. Main results

3.1. Breaking through Moore-Repullo’s theorem

Table 1. SCR1: a two-player SCR that satisfies condition
µ2. Hence, it can be Nash implemented traditionally. How-
ever, Wu’s algorithm makes SCR1 not Nash implementable.
As a result, the Moore-Repullo’s theorem is broken through.

State R1 State R2 State R3

agent1 agent2 agent1 agent2 agent1 agent2

a3 a2 a4 a3 a2 a2

a1 a1 a1 a1 a1 a3

a2 a4 a2 a2 a3 a4

a4 a3 a3 a4 a4 a1

f(R1) = {a1} f(R2) = {a2} f(R3) = {a2}

Table 2. SCR2: a two-player Pareto-optimal non-dictato-

rial SCR. According to Maskin’s impossibility theorem, it
can not be Nash implemented. However, Wu’s algorithm

makes it Nash implementable (see Table 1). As a result, the

Maskin’s impossibility theorem on Nash implementation with
two agents is broken through.

State R1 State R2 State R3

agent1 agent2 agent1 agent2 agent1 agent2

a3 a2 a4 a3 a2 a2

a1 a1 a1 a1 a1 a3

a2 a4 a2 a2 a3 a4

a4 a3 a3 a4 a4 a1

f(R1) = {a1} f(R2) = {a1} f(R3) = {a2}

Consider the SCR1 specified by Table 1. A = {a1, a2, a3, a4}, R = {R1, R2}.

Let B = A, Ci(a,R) = Li(a,R) for i ∈ I, R ∈ R and a ∈ f(R), i.e.,

C1(a1, R1) = L1(a1, R1) = {a1, a2, a4},

C2(a1, R1) = L2(a1, R1) = {a1, a3, a4},

C1(a2, R2) = L1(a2, R2) = {a2, a3},

C2(a2, R2) = L2(a2, R2) = {a2, a4},

C1(a2, R3) = L1(a2, R3) = {a1, a2, a3, a4},

C2(a2, R3) = L2(a2, R3) = {a1, a2, a3, a4}.
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Obviously,

a1 ∈ M1(C1(a1, R1), R1) = {a1},

a1 ∈ M2(C2(a1, R1), R1) = {a1},

a2 ∈ M1(C1(a2, R2), R2) = {a2},

a2 ∈ M2(C2(a2, R2), R2) = {a2},

a2 ∈ M1(C1(a2, R3), R3) = {a2},

a2 ∈ M2(C2(a2, R3), R3) = {a2}.

For each 4-tuple (a,R, a′, R′) ∈ A ×R× A ×R, let

e(a1, R1, a1, R1) = a1 ∈ C1(a1, R1) ∩ C2(a1, R1) = {a1, a4},

e(a1, R1, a2, R2) = a2 ∈ C1(a1, R1) ∩ C2(a2, R2) = {a2, a4},

e(a1, R1, a2, R3) = a2 ∈ C1(a1, R1) ∩ C2(a2, R3) = {a1, a2, a4},

e(a2, R2, a1, R1) = a3 ∈ C1(a2, R2) ∩ C2(a1, R1) = {a3},

e(a2, R2, a2, R2) = a2 ∈ C1(a2, R2) ∩ C2(a2, R2) = {a2},

e(a2, R2, a2, R3) = a2 ∈ C1(a2, R2) ∩ C2(a2, R3) = {a2, a3},

e(a2, R3, a1, R1) = a1 ∈ C1(a2, R3) ∩ C2(a1, R1) = {a1, a3, a4},

e(a2, R3, a2, R2) = a2 ∈ C1(a2, R3) ∩ C2(a2, R2) = {a2, a4},

e(a2, R3, a2, R3) = a2 ∈ C1(a2, R3) ∩ C2(a2, R3) = {a1, a2, a3, a4}.

Case 1): Consider R∗ = R1, f(R∗) = {a1}.

For rule (i):

M1(C1(a1, R1), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a1} ∩ {a1} = {a1},

M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a3} ∩ {a2} = φ,

M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a3} ∩ {a2} = φ.

Hence, rule (i) is satisfied.

For rule (ii):

M1(C1(a1, R1), R
∗) ∩ M2(B,R∗) = {a1} ∩ {a2} = φ,

M1(C1(a2, R2), R
∗) ∩ M2(B,R∗) = {a3} ∩ {a2} = φ,

M1(C1(a2, R3), R
∗) ∩ M2(B,R∗) = {a3} ∩ {a2} = φ,

M2(C2(a1, R1), R
∗) ∩ M1(B,R∗) = {a1} ∩ {a3} = φ,

M2(C2(a2, R2), R
∗) ∩ M1(B,R∗) = {a2} ∩ {a3} = φ,

M2(C2(a2, R3), R
∗) ∩ M1(B,R∗) = {a2} ∩ {a3} = φ.

Hence, rule (ii) is satisfied.

For rule (iii):

M1(B,R∗) ∩ M2(B,R∗) = {a3} ∩ {a2} = φ.

Hence, rule (iii) is satisfied.
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For rule (iv):

e(a1, R1, a1, R1) = a1, M1(C1(a1, R1), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a1} ∩ {a1} = {a1},

e(a1, R1, a2, R2) = a2, M1(C1(a1, R1), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a1} ∩ {a2} = φ,

e(a1, R1, a2, R3) = a2, M1(C1(a1, R1), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a1} ∩ {a2} = φ,

e(a2, R2, a1, R1) = a3, M1(C1(a2, R2), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a3} ∩ {a1} = φ,

e(a2, R2, a2, R2) = a2, M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a3} ∩ {a2} = φ,

e(a2, R2, a2, R3) = a2, M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a3} ∩ {a2} = φ,

e(a2, R3, a1, R1) = a1, M1(C1(a2, R3), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a3} ∩ {a1} = φ,

e(a2, R3, a2, R2) = a2, M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a3} ∩ {a2} = φ,

e(a2, R3, a2, R3) = a2, M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a3} ∩ {a2} = φ.

Hence, rule (iv) is satisfied.

Case 2): Consider R∗ = R2, f(R∗) = {a2}.

For rule (i):

M1(C1(a1, R1), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a4} ∩ {a3} = φ,

M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a2} ∩ {a2} = {a2},

M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a4} ∩ {a3} = φ.

Hence, rule (i) is satisfied.

For rule (ii):

M1(C1(a1, R1), R
∗) ∩ M2(B,R∗) = {a4} ∩ {a3} = φ,

M1(C1(a2, R2), R
∗) ∩ M2(B,R∗) = {a2} ∩ {a3} = φ,

M1(C1(a2, R3), R
∗) ∩ M2(B,R∗) = {a4} ∩ {a3} = φ,

M2(C2(a1, R1), R
∗) ∩ M1(B,R∗) = {a3} ∩ {a4} = φ,

M2(C2(a2, R2), R
∗) ∩ M1(B,R∗) = {a2} ∩ {a4} = φ,

M2(C2(a2, R3), R
∗) ∩ M1(B,R∗) = {a3} ∩ {a4} = φ.

Hence, rule (ii) is satisfied.

For rule (iii):

M1(B,R∗) ∩ M2(B,R∗) = {a4} ∩ {a3} = φ.

Hence, rule (iii) is satisfied.
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For rule (iv):

e(a1, R1, a1, R1) = a1, M1(C1(a1, R1), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a4} ∩ {a3} = φ,

e(a1, R1, a2, R2) = a2, M1(C1(a1, R1), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a4} ∩ {a2} = φ,

e(a1, R1, a2, R3) = a2, M1(C1(a1, R1), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a4} ∩ {a3} = φ,

e(a2, R2, a1, R1) = a3, M1(C1(a2, R2), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a2} ∩ {a3} = φ,

e(a2, R2, a2, R2) = a2, M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a2} ∩ {a2} = {a2},

e(a2, R2, a2, R3) = a2, M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a2} ∩ {a3} = φ,

e(a2, R3, a1, R1) = a1, M1(C1(a2, R3), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a4} ∩ {a3} = φ,

e(a2, R3, a2, R2) = a2, M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a4} ∩ {a2} = φ,

e(a2, R3, a2, R3) = a2, M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a4} ∩ {a3} = φ.

Hence, rule (iv) is satisfied.

Case 3): Consider R∗ = R3, f(R∗) = {a2}.

For rule (i):

M1(C1(a1, R1), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a2} ∩ {a3} = φ,

M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a2} ∩ {a2} = {a2},

M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a2} ∩ {a2} = {a2}.

Hence, rule (i) is satisfied.

For rule (ii):

M1(C1(a1, R1), R
∗) ∩ M2(B,R∗) = {a2} ∩ {a2} = {a2},

M1(C1(a2, R2), R
∗) ∩ M2(B,R∗) = {a2} ∩ {a2} = {a2},

M1(C1(a2, R3), R
∗) ∩ M2(B,R∗) = {a2} ∩ {a2} = {a2},

M2(C2(a1, R1), R
∗) ∩ M1(B,R∗) = {a3} ∩ {a2} = φ,

M2(C2(a2, R2), R
∗) ∩ M1(B,R∗) = {a2} ∩ {a2} = {a2},

M2(C2(a2, R3), R
∗) ∩ M1(B,R∗) = {a2} ∩ {a2} = {a2}.

Hence, rule (ii) is satisfied.

For rule (iii):

M1(B,R∗) ∩ M2(B,R∗) = {a2} ∩ {a2} = {a2}.

Hence, rule (iii) is satisfied.
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For rule (iv):

e(a1, R1, a1, R1) = a1, M1(C1(a1, R1), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a2} ∩ {a3} = φ,

e(a1, R1, a2, R2) = a2, M1(C1(a1, R1), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a2} ∩ {a2} = {a2},

e(a1, R1, a2, R3) = a2, M1(C1(a1, R1), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a2} ∩ {a2} = {a2},

e(a2, R2, a1, R1) = a3, M1(C1(a2, R2), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a2} ∩ {a3} = φ,

e(a2, R2, a2, R2) = a2, M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a2} ∩ {a2} = {a2},

e(a2, R2, a2, R3) = a2, M1(C1(a2, R2), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a2} ∩ {a2} = {a2},

e(a2, R3, a1, R1) = a1, M1(C1(a2, R3), R
∗) ∩ M2(C2(a1, R1), R

∗) = {a2} ∩ {a3} = φ,

e(a2, R3, a2, R2) = a2, M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R2), R

∗) = {a2} ∩ {a2} = {a2},

e(a2, R3, a2, R3) = a2, M1(C1(a2, R3), R
∗) ∩ M2(C2(a2, R3), R

∗) = {a2} ∩ {a2} = {a2}.

Hence, rule (iv) is satisfied.

To sum up, the SCR1 given in Table 1 satisfies Condition µ2. Therefore, ac-

cording to Moore-Repullo’s theorem, the SCR is Nash implementable.

However, according to Wu [6], we can design a classical algorithm by which the

Moore-Repullo’s theorem will be broken through if the following Condition λ′ is

satisfied.

1) λ′

1
: Given an SCR f , a preference profile R ∈ R and a ∈ f(R), if there exists

R′ ∈ R, R′ 6= R, a′ ∈ f(R′) such that a′Ria for each agent i ∈ N , and a′Pja for

at least one j ∈ N , then in going from R′ to R, both of two agents encounter a

preference change around a′.

2) λ′

2
: Consider the payoff to the second agent, $CC > $DD, i.e., he/she prefers

the expected payoff of a certain outcome (generated by rule 1) to the expected

payoff of an uncertain outcome (generated by rule 3).

3) λ′

3
: Consider the payoff to the second agent, $CC > $DC .

The Matlab program in Ref. [6] is directly available for two agents by simply

setting n = 2.

3.2. Breaking through Maskin’s impossibility theorem with two

agents

Maskin [1] showed that a two-agent weakly Pareto optimal SCR, defined on the

unrestricted domain of preferences, is Nash implementable if and only if it is dic-

tatorial. However, according to the aforementioned discussion, the non-dictatorial

SCR2 specified by Table 2 is weakly Pareto optimal and can be Nash implemented

by using the Wu’s algorithm. Therefore, the Maskin’s impossibility theorem on

Nash implementation with two agents is broken through. In this sense, the quan-

tum mechanism is beneficial for both the designer and the agents.
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