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Abstract. The paper is an eclectic study of the uses of the Kalman filter in existing econometric

literature. An effort is made to introduce the various extensions to the linear filter first developed

by Kalman(1960) through examples of their uses in economics. The basic filter is first derived

and then some applications are reviewed.
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1 Introduction

In statistics and economics, a filter is simply a term used to describe an
algorithm that allows recursive estimation of unobserved, time varying pa-
rameters, or variables in the system. It is different from forecasting because
forecasts are made for future, whereas filtering obtains estimates of unob-
servables for the same time period as the information set. The Kalman
filter is a recursive linear filter, first developed as a discrete filter for use
in engineering applications and subsequently adopted by statisticians and
econometricians. The basic idea behind the filter is simple - to arrive at
a conditional density function of the unobservables using Bayes’ Theorem,
the functional form of relationship with observables, an equation of motion
and assumptions regarding the distribution of error terms. The filter uses
the current observation to predict the next period’s value of unobservable
and then uses the realization next period to update that forecast. The linear
Kalman filter is optimal, i.e. Minimum Mean Squared Error estimator if the
observed variable and the noise are jointly Gaussian. Else, it is best among

∗My thanks to Prof. Cheung for guidance and help.

1



the class of linear filters.

The paper discusses the linear Kalman filter, its derivation and some
applications in economics. The basic linear filter with Gaussian, uncorre-
lated error terms is often inadequate for economic applications. Several ex-
tensions have been developed for adapting the algorithm to handle non-linear
measurement equations, non-gaussian or correlated error terms. These and
their related economic applications are discussed in Section 3. Section 4
concludes.

2 The Kalman Filter

Let Zt ∈ ℜn, be the observed values for variable(s) Z and let Xt ∈ ℜm

be the vector of unobserved variable(s) of interest (also called the state(s)
of the nature)1. The relationship between Z and X is assumed known and
described by the measurement equation:

Zt = H ′
tXt + vt (1)

where Ht is known, and vt is Gaussian white noise with E[vt.v
′
s] ≡ Rtδts

where δts is Kronecker delta, which is 1 for t = s and 0 otherwise. Xt is
assumed to evolve according to the equation of motion:

Xt+1 = FtXt + wt (2)

where wt is Gaussian white noise, with E([wt.w
′
s] = Qtδts

Additional assumptions are that vt and wt are independent, initial
state X0 is a Gaussian random variable with mean E[X0|Z−1] = E[X0] = X̄0

and V ar(X0|Z−1) = Σ0, independent of wt and vt. The Kalman filter
gives an algorithm to determine the estimates X̂t|t−1 ≡ E[Xt|Zt−1] and

X̂t|t ≡ E[Xt|Zt] the corresponding covariance matrices Σt|t−1 and Σt|t. It
comprises of the following equations:

X̂t+1|t = [Ft − KtH
′
t]X̂t|t−1 + KtZt (3)

X̂0|−1 = X̄0 (4)

1The discussion in this section is based on Anderson and Moore (1979) and Meinhold

and Singpurwalla(1983)
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Kt = FtΣt|t−1Ht[H
′
tΣt|t−1Ht + Rt]

−1 (5)

Σt+1|t = Ft[Σt|t−1−Σt|t−1Ht(H
′
tΣt|t−1Ht +Rt)

−1H ′
tΣt|t−1]F

′
t +GtQtG

′
t (6)

Σ0|−1 = Σ0 (7)

X̂t|t = X̂t|t−1 + Σt|t−1Ht(H
′
tΣt|t−1Ht + Rt)

−1(Zt − H ′
tXt|t−1) (8)

Σt|t = Σt|t−1 − Σt|t−1Ht(H
′
tΣt|t−1Ht + Rt)

−1H ′
tΣt|t−1] (9)

Notice that (4) and (8) imply:

FtX̂t|t = KtZt + (Ft − KtH
′
t)X̂t|t − 1 (10)

so (3) is equivalent to
X̂t+1|t = FtX̂t|t (11)

The matrix Kt is called the gain matrix and equation (6), which de-
termines recursively the conditional error covariance matrix, is called the
Riccati equation. The equations can be understood better when the sys-
tem is viewed as unidimensional. Equations (3) and (6) are the prediction
equations, which give the optimal estimates of future values based on cur-
rent information set and equations (8) and (9) are updation equations that
update the previous period’s forecast based on the current realization of the
observable. Notice that the gain matrix Kt depends inversely on Rt - the
larger the variance of the measurement error, the lower the weight given to
the measurement in making the forecast for the next period, given today’s
information set. A similar relationship holds when predicting the value of
Xt|t (8) - the forecast made with the previous period’s information set is up-
dated by the difference between the current measurement and the previous
period’s forecast of that measurement (i.e. Zt − H ′

tX̂t|t−1), but the weight
attached to this error depends inversely on the variance of vt.

When Xt is non-stationary, the algorithm can be initialized with ar-
bitrary values for X0|−1 and Σ0|1, but with large diagonal elements for the
latter to reflect the uncertainty about X0|−1. Most of the weight would then
be given to the new information in the second round of iteration. Also, the
filter assumes that Ft, Ht, Rt and Qt are known. When these are unknown,
they can be estimated using Maximum Likelihood Estimation (MLE). For
given values of parameters, the Kalman Filter gives ηt|t−1 = Zt − Zt|t−1

and the conditional variance of the forecast error, Dt|t−1 ≡ E[η2
t|t−1] =

H ′
tΣt|t−1Ht + Rt. If X0, vt and wt are Gaussian, then the conditional dis-

tribution of Zt is also normal and MLE can be used to estimate unknown
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parameters.

One of the main strength of the algorithm comes from its recursive
nature. The filter has consecutive prediction and updation cycles, whereby
an estimate of Xt is first obtained based on information at t-1 and the new
observation Zt is used to update and improve the prediction. This means
that the filter automatically utilises all information contained in previous
forecasts and information sets, without having to store and process the en-
tire historical data at every step.

Now we derive equations (3) - (9) from first principles. The random
variable [X ′

0 Z ′
0]
′ has mean [X

′
0 X

′
0H

′
0]
′ and covariance:

[
P0 P0H0

H ′
0P0 H ′

0P0H0 + R0

]

Since X0 and Z0 are jointly gaussian, X0 conditioned on Z0 has mean

X̂0|0 = X0 + P0H0(H
′
0P0H0 + R0)

−1(Z0 − H ′
0X0)

and covariance

Σ0|0 = P0 − P0H0(H
′
0P0H0 + R0)

−1H ′
0P0

The independence assumptions (1) then imply that X0|Z0 is normally dis-
tributed with mean

X̂1|0 = F0X̂0|0

and covariance Σ1|0 = F0Σ0|0F
′
0 + G0Q0G

′
0

These and (2) imply that Z1|Z0 is normally distributed with mean and co-
variance

Ẑ1|0 = H ′
1X̂1|0 and H ′

1Σ1|0H1 + R1

This implies that E[(X1|0 − X̂1|0)(Z1|0 − Ẑ1|0)|Z0] = Σ1|0H1 This implies

that [X ′
1 Z ′

1]
′ conditioned on Z0 has mean [X̂ ′

1|0 H ′
1X̂1|0]

′ and covariance:
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[
Σ1|0 Σ1|0H1

H ′
1Σ1|0 H ′

1Σ1|0H1 + R1

]

Using this, we deduce that X1|(Z0, Z1) has mean

X̂1|1 = X̂1|0 + Σ1|0H1(H
′
1Σ1|0H1 + R1)

−1(Z1 − H ′
1X̂1|0

and covariance

Σ1|1 = Σ1|0 − Σ1|0H1(H
′
1Σ1|0H1 + R1)

−1H ′
1Σ1|0

Iterating the above steps, we get Equations (3) through (9).

3 Economic Applications of Kalman Filter

All ARMA models can be written in the state-space forms, and the Kalman
filter used to estimate the parameters. It can also be used to estimate time-
varying parameters in a linear regression and to obtain Maximum likelihood
estimates of a state-space model. Another application of the filter is to ob-
tain GLS estimates for the model yt = β′xt + ut, where the error term ut is
Gaussian ARMA(p,q) with known parameters. This section discusses some
economic models that have been estimated using either the linear Kalman
filter described above, or its extensions.

3.1 Time Varying Parameters in a Linear Regression:

Demand for International Reserves

The classical regression model, yt = β′xt + ut where ut is white noise, as-
sumes that the relationship between the explanatory and explained variables
remains constant through the estimation period. When this assumption is
an unreasonable one (for example, while studying macroeconomic relation-
ships for countries that have undergone structural reforms during the sample
period, for example, India in 1991 and the erstwhile Socialist Republics),
and the model is specified as one with β′

ts, the Kalman filter can be used
to estimate the parameters. An example of this approach is the study by
Bahmani-Oskooee and Brown (2004) that postulates structural changes in
demand for international reserves during the 1970’s. The reserve demand
(Rt) of a country is specified as a function of its real imports (Mt), a vari-
ablility measure of balance of payments (V Rt), and its average propensity
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to import (mt). i.e.

logRt = β0 + β1logMt + β2logV Rt + β3logmt + ǫt (12)

The βs are assumed to follow a random walk. The instability of
βs is first demonstrated (and then estimates of time-varying parameters
obtained using the Kalman Filter) by estimating rolling regressions. For
the same sample size, the beginning of the sample period is shifted by one
to repeatedly estimate yt = β′xt + ut, correcting for serial correlation in
errors. Quarterly data for 19 OECD countries is used, for the period 1959-
94. The problem with this specification is that it ignores the supply side
and takes the equilibrium quantities as realised demands. Another issue
here (and with all time-varying parameter models) is that in order for the
system to be identified, the βs are assumed to be a random walk. This
would, without further restrictions, mean that the dependent variable is
non-stationary (since it is a linear combination of the β′s) and invalidate
the usual t and F tests.

3.2 Modeling Regime Changes: Markov Switching Models

A number of macroeconomic and financial variables can plausibly be mod-
eled to have different statistical and dynamic properties depending on the
state of the nature and for the probabilities of moving from one state of
nature to another to be well defined and constant. For example, the persis-
tence of shocks to stock returns may be different during boom times than
during recessions. These can be modeled using Markov Switching model if
we assume that the switch between the boom and recession is governed by
a Markov chain (and could alternatively be modeled using the Stochastic
Volatility models discussed in Section 3.5 below).

Markov Switching approach can also be applied to extend or com-
plement a number of other models. For example, in the time- varying pa-
rameters models discussed above, one could add a Markov structure to the
variability of the parameters or add Markov Switching heteroskedasticity in
the error term, to incorporate changing uncertainty due to future random
shocks. In the the unobserved components models (see Section 3.4 below),
for example where GDP is decomposed into trend and cyclical components,
the trend component of the GDP may be modeled as a random walk with
drift, where the latter evolves according to a Markov chain. Models of
Markov Switching that can be put in state-space form can be estimated us-
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ing the Kalman Filter. Such models may be written as:

Zt = HSt
Xt + ASt

Yt + vt (13)

Xt = µ̃St + FSt
Xt−1 + GSt

wt (14)

(
vt

wt

)
∼ N

[(
0
0

)
,

(
RSt

0
0 QSt

)]
(15)

where the subscripts St indicate that some elements of the concerned matri-
ces may be state-dependent. The state, St = 1, 2, ....,M is an unobserved,
discrete-valued markov variable, with probabilities given by:

p =




p11 p21 . . . pM1

p12 p22 . . . pM2
...

...
. . .

...
p1M p2M . . . pMM




where pij = Pr[ST = j|St − 1 = i] with ΣM
j=1pij = 1 for all i. The purpose

here is to calculate estimates of Xt based on the information set at t-1,
Ψt−1, conditional on St taking value j and St−1 taking on value i. When the
parameters of the model are known, the Kalman filter modifies as follows:

X̂
ij
t|t−1 = µ̃j + FjX̂

ij
t−1|t−1 (16)

Σij
t|t−1 = Fj [Σ

i
t−1|t−1F

′
j + GiQjG

′
j (17)

η
ij
t|t−1 = Zt − HjX

ij
t|t−1 − AiYt (18)

D
ij
t|t−1 = HjΣ

ij
t|t−1H

′
j + Rj (19)

X̂
ij
t|t = X̂

ij
t|t−1 + Σij

t|t−1H
′
j [D

ij
t|t−1]

−1η
ij
t|t−1 (20)

where X̂
ij
t−1|t−1 is the prediction of Xt−1 based on information available at

time t-1, and given state St−1 = i, etc, η
ij
t|t−1 = Z

j
t − Z

ij
t|t−1 and D

ij
t|t−1 is

the conditional variance of the forecast error, η
ij
t|t−1. The above procedure,

however is almost unimplementable as the number of cases would multiply
M-fold with each iteration. To handle this, Kim and Nelson(1999) use the
following procedure, which is a modification to the one suggested by Har-
rison and Stevens (1976). The idea is to collapse M x M posteriors into M
posteriors at each stage. Although the resulting posteriors are approxima-
tions, they are crucial to making the procedure of any practical use.
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X̂
j
t|t =

ΣM
i=1Pr(St−1 = i, St = j|Psit)X

ij
t|t

Pr(St = j|Ψt)
(21)

Σj
t|t =

ΣM
i=1Pr(St−1 = i, St = j|Psit)[Σ

ij
t|t + (Xj

t|tX
ij
t|t)(X

j
t|tX

ij
t|t)

′]

Pr(St = j|Ψt)
(22)

The probabilities in the above equations are obtained through the
Hamilton filter which essentially involves the prediction and updation rules
used also in the Kalman filter.

The Hamilton filter gives conditional density of Zt and f(Zt|Ψt−1) for
all t. These can be used to optimize the approximate log-likelihood function:

L = ΣT
t=1ln(f(Zt|Ψt−1)) (23)

with respect to underlying parameters using a non-linear optimizing proce-
dure, which completes the description of the estimation procedure for the
case where the parameters are not known.

3.3 Kalman Filter with Correlated Error Terms:

Exchange Rate Risk Premia

The Kalman filter described in Section 2 assumes that the errors in the
measurement and transition equations are uncorrelated. This assumption
would fail in situations where shocks to a third factor cause movements in
both the observed variable and the unobserved variable under consideration.
An example of this can be found in the market for exchange rates, where
new information that causes the spot rate to jump may also cause the risk
premium to change. Examples of such new information include shocks to
money supply and interest rates, a switch in currency regime, a repudiation
of debt by the country or announced change in currency’s convertibility.
Cheung (1993) uses the Kalman filter algorithm for the state space model
given by:

Dt = Pt + vt+1 (24)

Pt = φPt−1 + at (25)

(
at

vt

)
∼ iidN

[(
0
0

)
,

(
Q2 C

C R2

)]
(26)
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Also,
Dt ≡ Ft − St+1 (27)

Pt ≡ Ft − EtSt+1 (28)

vt+1 ≡ EtSt+1 − St+1 (29)

where Pt is the unobservable risk premium, Dt is the prediction error from
using forward rate as a one-period ahead forecast of the spot rate, Ft and
St are one period ahead forward and spot exchange rates respectively. All
variables are in natural logs. The filtering algorithm for this problem takes
the following form:

P̂t+1|t = φP̂t|t + C(Σt|t−1 + R2)−1(Dt − P̂t|t−1) (30)

Σt+1|t = φ2Σt|t + Q2 − C2(Σt|t−1 + R2)−1 − 2φCKt (31)

Kt = Σt|t−1(Σt|t−1 + R2)−1 (32)

P̂t|t = P̂t|t−1 + Kt(Dt − P̂t|t−1 (33)

Σt|t = Σt|t−1[1 − Kt] (34)

The filter is initialized using the unconditional mean and variance of
risk premium. Maximum likelihood estimates of the parameters (φ,R2, Q2,
and C) are obtained by first fitting an ARMA model to the prediction error,
Dt. The risk premium series so obtained is used to test the validity of three
theoretical formulations of risk premia based on Lucas (1982) asset pricing
model.

3.4 Extended Kalman filter: Unobserved Components Model

Extended Kalman filter is simply the standard Kalman filter applied to a
first order Taylor’s approximation of a non-linear state-space model around
its last estimate. This technique can be used, for example, to decompose
the trend and cyclical components of the GDP when the parameters are also
allowed to be time-varying. Ozbek and Ozale (2005) estimate the decompo-
sitions for Turkish GDP between 1988 and 2003. The model is as follows:
The GDP at time t, Yt is postulated to be composed of the trend compo-
nent, Tt and the cyclical component, Ct, where the latter becomes a measure
of the output gap. The cyclical component is assumed to follow an AR(2)
process whose parameters themselves are independent random walks. The
trend component is modeled as a random walk with drift, which captures
the impact of (often) extreme policy changes in the transition economies on
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the steady state growth path. i.e.

Ct = γ1,tCt−1 + γ2,tCt−2 + ǫt (35)

γ1,t = γ1,t−1 + ζγ2,t (36)

γ2,t = γ2,t−1 + ζγ2,t (37)

Tt = µt + Tt−1 + zt (38)

µt = µt−1 + ζa, k (39)

where the error terms are assumed iid with zero means and constant vari-
ances. The presence of time-varying parameters along with unknown state
variables introduces linearities in the model which can be handled using the
extended Kalman filter.

3.5 Kalman filter in Financial Econometrics: Stochastic Volatil-

ity Models

Financial data have been observed to have certain regularities in statistical
properties, including leptokurtic distributions, volatility clustering (cluster-
ing of high and low volatility episodes), leverage effects (higher volatility
during falling prices and lower volatility during stock market booms) and
persistence of volatility. The financial econometrics literature spawns econo-
metric models that seek to capture many of these stylized facts of the data.
The most popular approach uses GARCH models, where the variance is
postulated to be a linear function of squared past observations and vari-
ances. Another approach is Stochastic Volatility (SV) models, first pro-
posed by Taylor(1986), where log of the volatility is modeled as a linear,
unobserved stochastic AR process. An ARSV(1) model models asset re-
turns for t = 1, 2, ...., T as:

yt = σ∗σtǫt (40)

ht+1 = φht + ηt (41)

ηt ∼ iid(0, σ2
η), |φ| < 1 (42)

where yt is the return observed at time t, σt is the corresponding volatility,
ht = log(σ2

t ), ǫt are iid random with 0 mean and a known variance, σ2
ǫ and

σ∗ is a scale parameter introduced to keep (25) constant-free. Equation (25)
captures volatility clustering and if ǫt and ηt+1 are allowed to be negatively
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correlated, then the model can capture the leverage effect. The model is not
identified if the variance of (log of) future volatility, σ2

η is 0. The process
yt is a martingale difference and is stationary when |φ| < 1. Several ways
of estimating the parameters of the model have been proposed. One is to
linearize (23) by squaring it and taking logs and obtain estimators based
on log(y2

t ). This method is called the Quasi-Maximum Likelihood (QML)
and was proposed independently by Nelson(1988) and Harvey et al. (1994).
Linearizing (23), we obtain

log(y2
t ) = µ + ht + ξt (43)

where µ = log(σ2
∗) + E(log(ǫ2t )), ht = log(σ2

t ) and ξt = log(ǫ2t )−E(log(ǫ2t )).
Here, hT is the unobserved stochastic process. This, along with (41) are
in the familiar state-space form of the Kalman filter. However, using the
filter directly here would yield only the Minimum Mean Squared Linear es-
timators, rather than the minimum mean squared estimators. Harvey et al.
(1994) proposed treating ξt as if it were iid Gaussian and estimating the
QML function of log(y2

t ) given by (ignoring constants):

logL[log(y2)|θ] = −
1

2

T∑

t=1

logΩt −
1

2

T∑

t=1

v2
t

Ωt
(44)

where vt = log(y2
t )−

ˆlog(y2
t ) is the one-step ahead prediction error of log(y2

t )
and Ωt is the corresponding mean-squared error. Note that the Kalman
filter gives estimates of vt and Ωt, i.e., provides an algorithm for comput-
ing the maximum likelihood function [In the model given by (3) to (8),
vt = Xt−X̂t|t−1 and Ωt = (H ′

tΣt|t−1Ht+Rt)
−1. Correspondingly, we can get

equations defining vt and Ωt in the context of the current model]. The like-
lihood function is maximized using numerical methods to obtain estimates
of θ = [φ σ2

η σ2
∗]. This procedure gives estimators of ht that are consistent

and asymptotically normal, but still inefficient as the density function used
is an approximation.

While the QML method discussed above was based on log(y2
t ), there

are other methods of estimation of an ARSV(1) model that are based on the
statistical properties of yt itself. The most frequently used are the Gener-
alized Method of Moments (GMM) estimator, Maximum Likelihood (ML)
estimators and estimators based on an auxiliary model. The ML estimators
use techniques in importance sampling and the Monte Carlo Markov Chain
(MCMC) procedures and do not make use of the Kalman filter in their im-

11



plementation. The GMM methods don’t yield estimates of the underlying
volatilities σ2

t and these can be obtained using the Kalman Filter.

4 Summary

The Kalman Filter is a powerful tool and has been adapted for a wide
variety of economic applications. It is essentially a least squares (Gauss
Markov) procedure and therefore gives Minimum Mean Square Estimators,
with the normality assumption. Even where the normality assumption is
dropped, the Kalman filter minimizes any symmetric loss function, including
one with kinks. Not only is it used directly in economic problems that can
be represented in state-space forms, it is used in the background as part
of several other estimation techniques, like the Quasi-Maximum Likelihood
estimation procedure and estimation of Markov Switching models.
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