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Measuring the dependence structure between yield and weather variables 

Abstract 

The design and pricing of weather-based crop insurance and weather derivatives is strongly 

based on an implicit assumption that the dependence structure between yields and weather 

variables remains unchanged over time. In this paper, we prove this assumption based on 

empirical time series of weather variables and farm wheat yields from Kazakhstan over the 

period from 1961 to 2003. By employing two different methods to measure dependence in 

multivariate distributions – the regression analysis and copula approach – we reveal statistically 

significant temporal changes in the joint distribution of relevant variables. These empirical 

results indicate that greater effort is required to capture potential temporal changes in the 

dependence between yield and weather variables, and subsequently to consider them in the 

design and rating of weather-based insurance instruments.     

Key words: weather-based index insurance, dependence structure, copula estimation, Bayesian 

hierarchical model, Kazakhstan.    

 

1. Introduction 

Climate change can critically affect the productivity of agricultural producers. Effective 

adaptation to climate change in agriculture requires an array of mitigation strategies. Serious 

technological adjustments will be necessary to reduce the negative impact of climate change on 

agricultural productivity. At the same time, as the number and severity of extreme events such as 

drought and floods are expected to increase as a result of climate change (IPCC, 2007), 

agricultural producers will increasingly demand and rely on effective financial risk management 

instruments that allow them to cope with extreme weather events.    
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There are several options for reducing farm households’ exposure to weather risk. Among formal 

insurance schemes, so-called index-based crop insurance products have been considered as 

especially promising (Varangis et al., 2002), primarily because they are less vulnerable to moral 

hazard and adverse selection than common farm yield insurance (e.g. Skees et al., 1997, Skees et 

al., 1999). Recently, particular attention has been paid to crop insurance instruments based on 

weather indexes. Such instruments have been introduced as pilot programs in several countries. 

According to the United Nations (UN) Department of Economic and Social Affairs (2007), pilot 

projects on weather-based insurance have been implemented in India, Ukraine, Ethiopia, and 

Malawi. New pilot projects are planned for Nicaragua, Tanzania, Thailand, Bangladesh and 

Senegal (Barnett and Mahul, 2008).  

The literature into the feasibility of weather-based insurance shows that, generally, this type of 

insurance might be very effective in reducing the farmers’ yield risk (Skees et al., 2001, 

Breustedt et al., 2008; Musshoff et al., 2009). Yet, some recent investigations employing cross- 

validation techniques to evaluate predictive power of the potential risk reduction estimates show 

that the estimates of the hedging effectiveness of weather derivatives and weather-based index 

insurance can considerably differ between the training and test data sets (Vedenov and Barnett, 

2004; Bokusheva and Breustedt, 2008).  

By employing the out-of-sample procedure to evaluate the risk reducing efficiency of weather 

derivatives for selected states and crops in the USA, Vedenov and Barnett (2004) found that 

weather derivatives contracts designed in-sample did not perform consistently between in- and 

out-of-sample. Moreover, in several cases weather derivatives “…actually increased overall risk 

exposure …” (Vedenov and Barnett, 2004, p. 401) out-of-sample. Vedenov and Barnett conclude 
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that inconsistency between in- and out-of-sample performance “…creates a potential problem in 

designing and marketing the contracts” (Vedenov and Barnett, 2004, p. 401).  

Recently, Bokusheva and Breustedt (2008) have proposed evaluating the predictive power of the 

ex post risk reduction due to index-based insurance by comparing it with a so-called benchmark 

risk reduction. To this end, these authors distinguish between two consecutive periods in the time 

series and thus form a training data set and a test data set. Bokusheva and Breustedt estimate the 

ex post risk reduction based on the training data set and compare it with the benchmark risk 

reduction computed by employing the test data set. To measure the benchmark risk reduction, 

the study allows for annual updates of insurance contract parameters and the optimal number of 

insurance contracts to purchase. Empirical results by Bokusheva and Breustedt (2008) show that 

the ex post approach can seriously overestimate potential risk reduction due to index-based 

insurance schemes. In their study, the difference in risk reduction between ex post and 

benchmark estimates was especially pronounced for weather-based insurance instruments.  

Bokusheva and Breustedt (2008) suppose three potential sources of bias in ex post estimates of 

yield risk reduction. Based on their empirical data, they show that the predictive power of ex 

post estimates can be affected to a large extent by uncertainty about yield predictions. 

Additionally, Bokusheva and Breustedt (2008) suggest that the reliability of ex post predictions 

might depend on the extent to which available time series represent the true distributions of the 

underlying variables. A further source of poor ex post prediction, according to Bokusheva and 

Breustedt (2008), can be temporal changes in joint distributions of yield and index variables over 

time. Yet, Bokusheva and Breustedt do not consider the possible implications of two last factors 

to their estimates.  
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In fact, when pricing and evaluating index-based insurance, the literature implicitly assumes that 

the historically-determined pattern of farm yield dependence on a weather variable will remain 

unchanged over a certain time horizon. In our opinion, this assumption might be too restrictive. 

Yet, by now no attempt has been done to validate this assumption. We suppose that in the case of 

temporal changes in the joint distribution of yield and weather variables, the effectiveness of 

weather-based insurance might be affected critically, if such changes are not taken into account 

when designing and rating weather-based insurance contracts. Hence, in this study we suggest to 

prove this assumption by applying two alternative methods to measure stochastic dependence – 

the standard regression analysis and the copula approach. By employing the 43-year time series 

of weather and yield data for 10 grain producers in Kazakhstan, we show that this assumption 

does not hold for our empirical data.    

 The remainder of the paper is structured as follows: Section 2 provides an overview of the 

methodology to measure the dependence structure in multivariate distributions. Section 3 details 

the data and empirical procedure employed. In section 4, we present the results of our empirical 

application. The final section concludes. 

    

2. Methodology 

2.1 Measuring the dependence structure 

The crop insurance contract design strongly relies on a statistical analysis of the time series data. 

When designing index-based insurance, the standard regression analysis is applied to measure 

the sensitivity of farm yields to a particular index. Considering area yield insurance, the literature 

refers to the so-called critical β (Miranda, 1991), which represents the sensitivity of the farm 

yield to changes in the area yield. For weather-based insurance, an index is usually built either 
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from one or several weather indicators. Skees et al. (2001) and Turvey (2001) use either 

cumulative rainfall or temperature, while Vedenov and Barnett (2004), Bokusheva (2006) and 

Xu et al. (2008) analyze the effectiveness of weather derivatives and insurance products based on 

a combination of several weather indicators. A weather index is constructed by applying a 

regression model, which allows to evaluate the sensitivity of the farm (county) yields to selected 

weather indicators. Thereby, empirical analyses implicitly assume that the dependence structure 

between considered variables can be captured well by linear correlation.  

However, though very popular in applied economic research, linear correlation is only one 

particular measure of stochastic dependency. For long time, empirical investigations have 

neglected the fact that linear correlation is hardly applicable beyond the scope of multivariate 

normal distributions. However, empirical evidence shows that the distributions of the real world 

are seldom of this class (Embrechts et al. 2002). Hence, the use of linear correlation as a measure 

of dependence may cause a serious overestimation or underestimation of the dependency 

between the random variables of interest and thus lead to incorrect empirical results. Moreover, 

linear correlation is not adequate for representing dependency in the tails of multivariate 

distributions (McNeil et al, 2005), a quality that makes linear correlation hardly applicable in 

actuarial models that assess extremal insurance losses.    

In recent years, the copula approach has become increasingly popular in modeling multivariate 

dependence structures, particularly in fields such as finance, biostatistics and actuarial 

mathematics (Trivedi and Zimmer, 2007). According to McNeil et al. (2005) a d-dimensional 

copula  )u, ,C(u  )C( d1 u  is a multivariate distribution function on d1] [0,  with standard 

uniform marginal distributions. More generally, a copula allows to link marginal distributions 

together to form the joint distribution.  
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The usefulness of copulas for modeling multivariate dependence stems from Sklar’s theorem 

(1959), which states that if F is a joint distribution function with marginal distributions d1 F, ,F  , 

then there exists a copula 1] [0,1] [0,  :C d   such that for all d1 x, ,x   in   ,R  , 

      dd11d1 x F , ,x FC   x, ,xF 
 .
 (1) 

Accordingly, any continuous multivariate distribution can be uniquely described by two parts: 

the marginal distributions Fi and the multivariate dependence structure captured by the copula C.  

Though empirical researchers often know the marginal distributions of individual variables, the 

joint behavior of relevant variables remains hidden. Copulas can be very helpful in this context, 

because they allow researchers to describe joint distributions when only marginal distributions 

are known. A crucial advantage of copulas is that the marginal distributions may come from 

various distribution families.  

In general, it is distinguished between parametric and nonparametric (e.g. kernel) copulas. 

Empirical analyses however employ primarily parametric copulas. In turn, parametric copulas 

are divided into implicit and explicit types of copulas. Implicit copulas are copulas implied by 

the well-known multivariate distribution functions and do not themselves have simple closed 

forms (McNeil et al, 2005). The most widely applied implicit copulas are the Gaussian copula 

and Student’s t copula (hereafter referred to as t copula).  

The Gaussian copula is given by:  

           dPdd

Ga

P uuuXuXPC 1

1

1

11 ,...,,...,   Φu ,  (2) 

where P is a linear correlation matrix, Φ denotes the standard univariate normal distribution 

function, and Φ denotes the joint distribution function of the vector  X  ~ N
d
(0, P).  
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In principle, an implicit copula can be extracted in the same way from any other distribution with 

continuous marginal distribution functions. For example, the d-dimensional t copula takes the 

form:  

      dPv

t

P ututC 1

1

1

,, ,...,   tu
,  (3) 

where tν is the distribution function of a standard univariate t distribution, tν,P is the joint 

distribution function of the vector X  ~ t
d
 (ν, 0, P), and P is a linear correlation matrix. 

In general, the t copula allows a more flexible representation of dependence than the Gaussian 

copula, because it does not assume that uncorrelated multivariate random variables are 

independent (McNeil et al., 2005). The t copula displays asymptotic upper tail dependence even 

for negative and zero correlations. In contrast, the Gaussian copula has the property of 

asymptotic independence. Embrechts et al. (2002) notice that regardless of how high a 

correlation is chosen, extreme events appear to occur independently in single marginal 

distributions for Gaussian copulas.  

In contrast to the implicit copulas, the explicit copulas do have a simple closed form. An 

example of an explicit copula is the Clayton copula:  

     
 

/1

11 1...,,...
  duuuuC dd

Cl  with  0 ,  (4) 

where θ denotes the dependence parameter to be estimated. As θ → 0 it represents independence, 

while as θ → ∞ it describes perfect dependence. The Clayton copula exhibits strong left tail 

dependence and relatively weak right tail dependence. Because of this property, it has been quite 

often used in financial applications (McNeil et al., 2005). It does not, however, allow negative 

dependence (McNeil et al., 2005). 

Another example of an explicit copula is the Gumbel copula: 
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/1

11 ln...lnexp,,... dd

Gu uuuuC   with  1  .  (5) 

Similar to the Clayton copula, the Gumbel copula cannot account for negative dependence. 

However, in contrast to the Clayton copula, the Gumbel copula exhibits strong right tail 

dependence and relatively weak left tail dependence. 

Recently, Xu et al. (2009) used the copula approach to determine the magnitude of spatial 

dependence in the joint distribution of weather indices across different regions in Germany. 

While employing two explicit copulas, the Clayton and Gumbel copulas, the authors found that a 

Clayton copula is more appropriate for representing spatial dependence considering all three 

weather indices in their study. Consequently, the study applies this copula to estimate potential 

net aggregated losses of insurance companies when providing weather-based insurance. 

However, Xu et al. (2009) do not model the dependence structure between yields and weather 

variables. Instead, they assume that indemnity payments depend on the considered weather 

indices. Taking into account a relatively low dependency between weather indices and farm 

yields in Germany (Xu et al., 2008), this assumption seems to be too strong and might have 

introduced a bias into the authors’ estimates of aggregated losses.  

Vedenov (2008) used a Gaussian copula (an implicit parametric copula) and kernel copula (a 

nonparametric copula) to model joint distributions of crop yields at two different aggregation 

levels: farm- and county-yields for corn. The estimation results obtained by Vedenov suggest 

that the dependence between the farms’ and county yields has a different structure in the lower 

tail of the distribution. This indicates that regressing farm yields on area yields may cause 

inaccurate or even mistaken results when designing and pricing area-based index insurance 

(since this assumes a linear dependency between farm and area yields). In addition, the author 

argues that the application of nonparametric copulas is more relevant in empirical analyses 
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because they do not require any assumptions and are primarily data driven. Yet, Trivedi and 

Zimmer (2007) emphasize that nonparametric copulas present a straightforward approach if the 

considered random variables are independent and identically distributed. However, ‘…this may 

be a reasonable assumption with cross section data, but may be more tenuous in time series 

applications’ (Trivedi and Zimmer, 2007, p. 60). Moreover, Trivedi and Zimmer (2007) point 

out problems related to the estimation of likelihoods for nonparametric copulas, which 

complicates their evaluation. In fact, Vedenov (2008) failed to obtain valid log-likelihood values 

when approximating yield distributions by means of the Normal, Gamma and Weibull 

distributions.  

Zhu et al. (2008) applied Gaussian copula and t copula to define the dependence structure in 

multivariate distributions of crop yields and prices. By applying Akaike Information Criterion 

(AIC) and the log-likelihood test, these authors have found a better goodness-of-fit for a t copula 

than a Gaussian copula. This suggests a higher magnitude of dependency in the distribution tails. 

Consequently, by using both copulas to rate a revenue insurance contract, the authors 

demonstrate that the actuarially fair premium rates are lower for t copula than for the Gaussian 

copula.  

The results obtained by Zhu et al. (2008), Vedenov (2008), and Xu et al. (2009) demonstrate 

advantages of the copula application in the context of agricultural insurance design and rating. 

Yet, until now no study has used copulas to model the dependence between crop yields and 

weather indices. At the same time, as the application of copulas is particularly advantageous for 

determining dependence between extreme values of random variables, this method can be 

particularly relevant to measuring the structure of dependency in joint distribution tails of 

weather and yield variables in the context of weather-based insurance instruments. Additionally, 
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since the impact of climate change is expected to be especially pronounced due to an increase in 

the quantity and severity of extremal events (IPCC, 2007), the dependence structure between 

yields and single weather variables may differ noticeably in the left tail of the distribution than in 

the middle or the right tail of their joint distribution.  Accordingly, more effort will be required to 

model the tails’ dependence structure in future empirical research.  

2.2 Bayesian modeling 

Due to the seasonality of agricultural production, only relatively short time series are typically 

available for empirical studies. This often hampers the application of some advantageous 

methods applied in, e.g. financial research in the context of agricultural decision-making. In 

particular, the estimation of copula function parameters requires sufficiently long time series to 

assure a reasonable number of observations in the tails of joint distributions.  

Applying the standard regression analysis in the context of the weather-based index insurance 

design and rating is also often subject to some serious limitations. As Vedenov and Barnett 

emphasize regarding the design of weather derivatives for U.S. agriculture, ‘…rather 

complicated combinations of weather variables must be used in order to achieve reasonable fits 

of the relationship between weather and yield.…’ (Vedenov and Barnett, 2004, p.399). However, 

a limited number of weather and yield observations - typically from 10 to 15 - does not provide a 

sufficiently high number of degrees of freedom, which might seriously affect the predictive 

power of the regression estimates.       

To improve the estimations’ efficiency, Bayesian hierarchical models can be applied. In the 

framework of the Bayesian hierarchical models, the parameter estimates are obtained not in the 

way that every single study unit would have been fully independent of its counterparts in the 

whole sample population, but considering relationships and commonalities between individual 
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units in an empirical sample population. An essential advantage of such estimations is that they 

allow researchers to ‘pool’ information across individual study units. At the same time, it is 

different from the standard polled estimations, which fully disregard potential differences across 

individual units.
1
  

The Bayesian approach requires a sampling model for the observed data  nyyY ,...,1  and a 

prior distribution    on all unknown parameters θ in the model. The sampling model is given 

in the form of probability distribution f(Y|θ). When regarded as a function of the vector of 

parameters θ, this distribution is called likelihood. Compared to standard statistical analyses, the 

Bayesian approach does not consider θ as fixed parameters (i.e. scalars), but rather regards them 

as random variables. This is done by adopting a prior distribution for every parameter in the 

vector θ. The prior distribution is a probability distribution that summarizes all information we 

have about a particular model parameter not related to that provided by the data Y. The prior 

distributions are used to compute the conditional distribution of the unknown parameters given 

the observed data, i.e. the posterior distribution p(θ|Y), from which all statistical inferences arise 

(Carlin and Louis, 2009):  

   
 

 
 

   
    









dYf

Yf

dYp

Yp

Yp

Yp
Yp

,

,,

 .

 (6) 

According to equation (6), the posterior is a product of the likelihood f(Y|θ) and the prior 

distribution    renormalized so that it integrates to one. Thus, both the observed data in the 

form of the likelihood, as well as prior information in the form of the prior distribution contribute 

to obtain inference about posterior distribution. In the basic Bayesian model, the prior 

distributions of the model parameters are specified by means of a vector of hyperparameters η 

                                                 
1 In addition, the Bayesian analysis allows accounting for model estimates’ uncertainty.       
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i.e.  η . Thus, the model has two stages, i.e. the parameters and hyperparameters. In the 

hierarchical Bayesian model, more than two stages are specified; therefore the hyperparameters 

in turn can depend on a vector of further unknown parameters specified by a second-step prior 

distributions, i.e. so-called hyperpriors. By supposing that parameters and hyperparameters for 

certain groups of study units have common prior and hyperprior distributions, respectively, the 

hierarchical Bayesian model ‘gains strength’ from the likelihood contributions of the respective 

units through their joint influence on the estimate of the unknown parameters and 

hyperparameters. 

The Deviance Information Criterion (Spiegelhalter et al., 2002) is employed for the Bayesian 

model comparison. The DIC presents a generalization of Akaike Information Criterion based on 

the posterior distribution of the deviance statistics   )(log2)(log2 YhYfD   , where f(Y|θ) 

is the likelihood function for the observed data vector Y given the parameter vector θ and h(Y) is 

a function used for standardizing the data. The DIC approach captures the fit of the model by the 

posterior expectation of the deviance statistic,  DED
Y , and by the effective number of 

parameters defined as  DDpD  , where    )(   Y
EDD  . Though the DIC does not 

provide any information about the model validity, in general, models with smaller DIC values 

are preferred to those with lower DIC values. Yet the DIC is not invariant to the 

reparameterization that limits the scope of its application.  
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3. Data and empirical procedure 

3.1 Data 

For our empirical application we used wheat yield data for 12 large grain producers in Central 

Kazakhstan. The yield data were collected from rayon
2
 statistical offices and covers the period 

from 1961 to 2003.
3
 As our data covers quite a long period, including the period of economic 

transformation in Kazakhstan, we tested the yield time series for structural breaks and removed 

two farms for which we revealed a statistically significant structural break. Thus, the data for 

only 10 farms were available for our empirical application. To account for the time component in 

the farms’ yield time series, we conducted a detrending procedure considering the second- and 

third-degree polynomial functions. Additionally, the cumulative rainfall variables for single 

months during the vegetation period (April to September) were used to improve the accuracy of 

trend parameters’ estimates. The second-degree polynomial trend provided a better statistical fit 

and thus was chosen to adjust the farms’ yields to their 2003 level.  

As in 2003, the considered farms had 25,250 hectares of wheat crop area. The average farm 

wheat yield varied from 0.67 t/ha to 1.07 t/ha across the farms in the study period.  

In addition to the farm yield data, the weather data from the corresponding weather station was 

used in the analysis. The weather data (daily rainfall and average daily temperature as reported to 

the regional meteorological offices) covered the same period as the yield data. The cumulative 

precipitation during the summer months (June to August) averaged 120 mm and varied between 

48 mm and 239 mm from 1961 to 2003.  

                                                 
2 Rayons are administrative districts similar to counties. 
3 We have access to the data for a substantially larger group of farms in Kazakhstan, yet for most of them available 

yield time series are considerably shorter, primarily covering the period from 1981 to 2003, and therefore would be 

adequate considering our analysis objectives.  
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We used the available weather data to construct three different weather variables: cumulative 

rainfall index, rainfall deficit index and a drought index. We calculated all three selected indices 

considering different periods during the wheat vegetation season, i.e. from April to September.
4
 

A detailed description of these indices appears in Appendix A1.  

 

3.2 Empirical procedure 

To measure the dependence structure between weather and yield variables, we first employ the 

copula approach. We use the Clayton and Gumbel copula to estimate tail dependence in the joint 

distributions of our empirical farm yield time series and selected weather variables. By doing so, 

we determine those weather indices which influenced yield losses of the study farms most 

strongly during the period under investigation. Subsequently, we estimate the coefficients of tail 

dependence between the farms’ yields and selected weather variables considering two 

consecutive sub-periods in our time series: from 1961 to 1982, and from 1983 to 2003. Then, we 

apply the standard two-sample t-test to check whether changes in the estimates of the tail 

dependence between these two sub-periods are statistically significant.  

Subsequently, we apply the standard regression analysis to test for potential temporal changes in 

the sensitivity of the farms’ yields to a selected weather variable. Therefore, we employ two 

alternative model formulations. In the first model, we do not account for the effect of time when 

measuring the sensitivity of the farms’ yield to the selected weather indicator, i.e. we assume that 

it was constant over the considered period:  

tt wy 10   ,  (6) 

                                                 
4 Time series of the farm yields and the selected weather indices were tested for non-stationarity by employing the 

augmented Dickey-Fuller unit-roots test. The null hypothesis about non-stationarity was rejected for all time series 

considered in the analysis.     
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where ty is the vector of the farm yields, tw is the vector of respective weather observations, 0  

and 1  are the intercept and the regression coefficients, respectively, and the subscript t indicates 

time. 

In the alternative model specification of the regression equation, we assume that the regression 

coefficient 1  measuring the sensitivity of farm yields to a weather variable is not a constant, but 

a function of time. Assuming that 1  is a function of time, i.e. ),(1  tf , we obtain:  

tt wtfy ),(0    . (7) 

We test various functional forms such as linear, logarithmic and quadratic to capture the effect of 

time on the sensitivity of yields to weather. Then, the estimation results of the dynamic model 

specification in (7) are tested against those of the static model formulation in (6).  

In our study, we have a relatively long time series of the yield and weather variables that had to 

reduce problems related to low degrees of freedom and a low number of extreme observations in 

the regression and copula estimations, respectively. Yet, to increase the efficiency and 

consistency of our estimations, we suggest to estimate both copula and regression parameters by 

applying the Bayesian hierarchical models.  

 

3.2.1 Bayesian copula estimation 

To specify the Bayesian model for the copula estimation, we consider a bivariate vector (Y, W) 

representing a yield and a weather variable, respectively. Then, the joint probability function 

 θWYf , for these two variables can be defined as: 

          θθθθθθ WfYfWFYFcWYf WYWY ,, 
,
 (7) 
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where θ is the vector of copula and marginal distributions’ parameters, and f and F denote a 

particular probability and cumulative marginal distribution function, respectively; and c is a 

copula density. Then, regarding a sample of size N and length T, the respective likelihood 

function is given by:  

            NxT

itWitXitWitX wfxfwFxFcWXL
1

,, θθθθθθ
.
 (8) 

This is used to obtain the posterior distribution, defined as: 

      θθθ gWXLWXg ,, 
,
 (9) 

where  θg  is the prior distribution.  

The copulas are usually estimated by a two-step procedure: in the first step, the parameters of 

marginal distributions are obtained by fitting a parametric distribution to the empirical data; in 

the second step, the parameters of the copula function are estimated by means of the Maximum 

Likelihood (ML) method. In this research, we also apply the two-step procedure. Yet, instead of 

the ML method, Markov chain Monte Carlo (MCMC) algorithms were employed to obtain the 

joint posterior distributions of copula parameters (Gamerman and Lopez, 2006).
5
  

The fitting and ranking (by goodness-of-fit test) of different probability distributions to our time 

series in @risk showed that the Weibull and LogLogistic distributions are mostly suitable for 

representing empirical distributions of the farms’ yields.
6
 The LogLogistic distribution provided 

a good fit for two weather indices: the cumulative rainfall and drought index, whereas the 

                                                 
5 The model estimations were done in WinBUGs (Spiegelhalter et al., 2003). 
6
 The yield marginal distribution parameters differ across the study farms. However, their estimation was done 

considering that their hyperparameters stem from the prior distribution, which is common for all farms.  
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Weibull distribution was identified to describe at best the rainfall deficit index. Accordingly, 

these two distribution families were employed in the first-step estimations.  

In the second step, we then estimated copula parameters. To derive the likelihood function, the 

copula density is determined as the derivative of C with respect to each of its arguments, viz.:  

   
vu

vuC
vuc





,

,
2

,  (10) 

where  vuC ,  is a bivariate copula function, u and v are uniform marginal distributions of farms’ 

yield and weather indices, respectively, i.e.  YtY yFu   and  WtW wFv  , where Y and W  

are the vectors of the parameter estimates for marginal distributions of the farms’ yields and 

selected weather indices, respectively.   

Accordingly, for the Clayton copula we obtained the following density function: 

      


   11
1

2
11, vuvuvucCl  , 

with   denoting the dependence parameter of the Clayton copula. 

The Gumbel copula density is defined as follows:  
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lnlnexp
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,

1

1

vuvu

vu
vu

vu
vucGu

 , (11) 

with   representing the dependence parameter of the Gumbel copula, and u  and v  denoting 

marginal survival functions (McNeil et al., 2005, p. 62) of farms’ yields and selected weather 

variables, respectively, i.e.      YtYtY yFyFu  1  and    WtWtW wFyFv  1 . We 

determine the Gumbel copula by employing marginal survival functions, because it allows  the 
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measurement of the dependence structure in the upper tail of joint distributions. Thus, when 

replacing the distributions of farms’ yields by their survival distributions, we represent the 

downwards yield risk by the upper tail of the yields’ marginal distributions. The same is valid for 

two of the selected weather indices - the cumulative rainfall index and the drought index. 

Considering the rainfall deficit index, the marginal survival distribution of this index was 

employed in (10), while its marginal distribution was used in (11).
7
  

The gamma distribution was used as the prior distribution of the dependence parameter for the 

Clayton copula, i.e. ),(~  rGamma . The respective hyperpriors are )2,2(~ Gammar  and 

)100,2(~ Gamma . By choosing a quite large value of the scale hyperparameter, we obtain a 

rather flat probability density of the gamma distributions, which in turn enables us to form rather 

non-informative priors.
8
  

We employed the uniform distribution as the prior in the Gumbel copula model, which allowed 

us to easily account for the left-hand censoring of the dependence parameter in the Gumbel 

copula. In this case, the prior is ),(~ baU and the hyperpriors are )10,1(~ Ua  and 

)100,10(~ Ub .  

The Clayton copula parameter estimates were used to calculate the coefficients of lower tail 

dependence  1,0l  
measured in the left tail of the joint distribution of yield and weather 

variables as:   

                                                 
7 For two of the selected weather indices – the cumulative rainfall index and drought index – lower values 

correspond in general with lower values of yields. So in this case we employ the marginal survival distributions of 

both farms’ yields and weather indices in the Gumbel copula model. Yet, in the case of the rainfall deficit index, 

higher values of the index correspond with lower values of yields generally (i.e. the higher the rainfall deficit, the 

lower the yields). Hence, regarding this weather index, we employ the marginal distribution of the index and the 

survival marginal distributions of the yields to estimate the Gumbel copula, whereas we use the marginal survival 

distribution of the index and the marginal distributions of the yields to estimate the Clayton copula. 
8 The use of rather non-informative priors and hyperpriors is essential if one wants to exercise minimum influence on 

the empirical data. This is the case in our study, in which we are primarily seeking empirical evidence to validate a 

theoretical assumption.  
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where q is the chosen quantile level (McNeil et al., 2005). According to (10), the coefficient of 

the lower tail dependence is defined as probability of the variable Y exceeding its q-quantile, 

given that the weather variable W exceeds its q-quantile when moving to the left tail of the joint 

distribution.  

The upper tail dependence coefficient  1,0u  is defined as the probability that the variable Y 

exceeds its q-quantile given that the variable W exceeds its q-quantile when moving to the right 

tail of the joint distribution:    
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The stronger is the dependence in the left tail of the joint distribution of the farm yields and a 

particular weather indicator, the closer the value of the respective tail dependence coefficient will 

be to one. Hence, a comparative analysis of the values of the coefficient can provide a valuable 

basis for selecting weather indicators, which are relevant for insurance contract design.  

 

3.2.2 Bayesian regression  

Several specifications of the regression model are employed. As mentioned above, we are 

primarily interested in the comparison of the model specifications with and without the effect of 

time on the parameters measuring the sensitivity of the farms’ yields to a particular weather 

variable.  
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To capture the effect of time, three alternative functional forms, linear, logarithmic, and 

quadratic, are employed:  

   ttt wty   00 , (13) 

   ttt wty ln00   , (14) 

   ttttt wtty 2

00   , (15) 

respectively. 

We also test whether the time effect has a systemic character, i.e. whether coefficients t  and tt  

are of the same magnitude or exhibit significant differences across the study farms, respectively.  

The comparison of the model specifications is done based on the DIC, but also by minimizing 

the posterior predictive loss measured as the mean squared predictive error (MSPE). Therefore, 

we computed the MSPE as the expected sum of squared deviations of the predicted yields from 

the observed yields for each year from 1996 to 2003.  

 

4. Estimation results  

We begin discussion with the copula estimation results. First, our estimations of the copula 

models show that the estimates of the farms’ yields distribution parameters based on the Weibull 

distribution in general have lower values of DIC than those obtained by assuming the 

LogLogistic distribution for the farms’ yields. Hence, below we refer to the copula models based 

on the Weibull distribution parameter estimates of the farms’ yields. Second, for each of the 

three weather indices considered, the highest values of posterior mean estimates of the tail 
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dependence coefficient
9
 are found for the cumulative rainfall index calculated for the summer 

months from April to July, the Selyaninov drought index measured for June and July, and the 

rainfall deficit index computed from May to July, respectively. The individual posterior means of 

the tail dependence coefficient are highly significant with Monte Carlo (MC) errors lower than 

0.001; their convergence was obtained for 5,000 MC iterations. Therefore, in the following we 

refer to the weather indices, which were calculated for the period noted above, respectively. 

Table 1 about here 

Table 1 summarizes the estimates of the Clayton and Gumbel copula for individual farms.   

According to both copula estimates, the cumulative rainfall index (calculated from April to July) 

provides the highest level of tail dependence. The average posterior mean estimates of the 

coefficients of the lower and upper tail dependence amount to 0.66 and 0.70, respectively, across 

farms. This indicates that – if this index falls below its expected value – the study farms’ yields 

fall below their respective expected values with a probability of approximately 0.70. The 

estimates for the Selyaninov drought index and the rainfall deficit index are rather similar and 

amount to ca. 0.62 and 0.69 for the Clayton and Gumbel copulas, respectively, in each case. An 

interesting result is that the estimates of tail dependency do not vary much across farms, which is 

often the case if the weather indices are fitted to individual farm yields by linear regression. 

Although for all considered weather indices, the Gumbel copula estimates are associated with 

lower values of the DIC compared to the Clayton copula estimation results, a direct comparison 

                                                 
9 The posterior mean estimates of the tail dependence were quite robust to the changes of the quintiles at which the 

coefficient of tail dependence was measured. In the paper, we refer to our estimates at the 0.5-quintile level, i.e. at 

the mean of the distribution.  
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of the estimation results from both models in terms of the DIC is not possible, as the DIC is not 

neutral to the reparameterization.
10

   

Table 2 and 3 about here 

Tables 2 and 3 present the estimation results of the Clayton and Gumbel copula models 

involving two parameters of dependence: one from 1961 to 1982, and the other from 1983 to 

2003, respectively. The estimations of the tail dependence coefficient differ significantly across 

these two periods across almost all copula model estimates according the two-sample-mean 

difference t-test. Considering the Clayton copula (Table 2), the hypothesis H0 about equal 

sample means were rejected for all three weather indices at the 0.01-level of significance. The 

Gumbel copula model does not provide as distinctive results as does the Clayton copula model 

estimation (Table 3). The two-sample-mean test could not reject H0: for the cumulative rainfall 

index, however, it was rejected in the case of the Selyaninov drought and rainfall deficit indices, 

at the 0.05 and 0.01 confidence levels, respectively. Except the estimates for the cumulative 

rainfall index based on the Gumbel copula, the estimates indicate a significant increase in the tail 

dependence between the farms’ yields and the weather indices in the second sub-period. These 

results suggest that the dependence structure in the joint distributions of weather and yield 

variables was not constant from 1961 to 2003, and the dependence of the farm yields on weather 

was more pronounced in the second sub-period.  

Moreover, our estimates show that changes in tail dependence are uneven regarding single 

weather indices. The shift in the tail dependence coefficient was especially pronounced 

considering the Clayton copula estimates. Figure 1 shows that the shift in the tail dependence 

coefficient was strongest for the rainfall deficit index and less evident for the cumulative rainfall 

                                                 
10 While the Clayton copula is defined based on absolute values of marginal distributions, the Gumbel copula 

involves logarithms of those values. This reparameterization does not allow a direct comparison of two models by 

means of the DIC.    
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index (see also Figures A1 and A2 in the Appendix).
11

 This result implies that there can be 

differences in that how well single weather indices represent extreme dependence between yields 

and weather in different periods.  

Figure 1 about here 

Now we turn to the estimation results of the Bayesian regression models. To reduce the scope of 

the analysis, the regression estimations were done considering only the cumulative rainfall index 

that exhibited the strongest influence on the farms’ yields according to the copula estimations. 

First we estimated the specifications of the regression model (6) and (13) to (15) for the entire 

period from 1961 to 2003. The estimations were carried out considering that the effect of time 

can have either an idiosyncratic or a systemic effect. Accordingly, we estimated regression 

models with individual coefficients t  and tt  for each study farm, but also with the same 

coefficients t  and tt  over all study farms. According to the DIC, all three specifications, i.e. 

from (13) to (15), provided a better fit than the specification in (6) considering both the 

idiosyncratic and systemic formulations of the time effect, respectively (Table 4).
12

 Moreover, 

the t  and tt   coefficient estimates are highly significant across all model specifications with 

time effect. In addition, the dynamic specifications of the model allow the reduction of the MC-

errors of the intercept estimates for individual farms: while the intercept estimates in the static 

                                                 
11 While Figures 1 presents the distribution of the posterior mean estimates of the tail dependence coefficient across 

farms, Figures A1 and A2 (Appendix) show the posterior distributions of the tail dependence coefficient for each 

single farm. For both representations, we can observe a more pronounced shift in the distribution of the tail 

dependence coefficient for the rainfall deficit index compared to the cumulative rainfall index.  
12 We present the estimates of the specification in (14), as it has been proven to be superior to the specifications in 

(13) and (15). The estimation results of the specifications in (13) and (15) can be obtained from the author upon 

request.  
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specification are significant at the 0.10-level for most of study farms, in the dynamic formulation 

the corresponding estimates become significant at the 0.05-level.
13

  

Table 4 about here 

Among the three functional forms employed, the logarithmic was found to capture dynamics in 

the sensitivity of the farm yields to the weather index considered as best according to the DIC. In 

addition, we could not find serious differences in the systemic and idiosyncratic formulations of 

the model; indeed, for the logarithmic specification (14), the DIC values are found to be almost 

the same, i.e. 2,132.4 and 2,131.9, respectively (Table 4).  

To assess the posterior predictive loss, we estimated model specifications (6) and (14), i.e. 

without time effect and with time effect, captured by means of the logarithmic function, for the 

sub-period from 1961 to 1995. We then used the yields’ predictions of respective models to 

compute the MSPE for the consecutive sub-period from 1996 to 2003. Table 5 summarizes the 

respective estimates. Tin general the estimation results for the sub-period from 1961 to 1995 are 

very similar to those for the whole period, i.e. from 1961 to 2003. In terms of the DIC, both 

dynamic formulations of the model – with idiosyncratic and a systemic effect of time – 

outperform the static formulation. Yet, the static formulation provides lower prediction errors: 

the MSPE criterion is lower for this formulation than in both dynamic formulations. These 

results suggest that, though there are temporal changes in the sensitivity of the farms’ yields to 

the selected weather index, predicting the future trajectory of such temporal changes can be 

complicated and might increase the predictions’ uncertainty.  

 

                                                 
13 All other parameters are found to be highly significant (i.e. at the 0.01-level) according to the MC-error statistic for 

all model specifications.  
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Conclusions 

When pricing and evaluating index-based insurance, the literature implicitly assumes that the 

joint distribution of farm yields and a weather variable captured by means of empirical time 

series will remain unchanged in future. In this paper, we attempt to validate this assumption by 

employing the copula approach, as well as by a dynamic regression model formulation. The 

empirical exercise is completed based on the wheat yield and weather time series for 10 large 

grain-producing farms in Kazakhstan for the period from 1961 to 2003.  

According to our estimates, the dependence structure in the joint distributions of the study farms’ 

yield and weather variables was changing during the considered period. The estimation results 

based on two copula models – the Clayton and Gumbel copulas – suggest that the dependence of 

the farm’s yields on weather was significantly higher from 1983 to 2003 compared to the period 

from 1961 to 1982 regarding almost all weather indices considered in this study. We also 

obtained significant positive estimates for the regression parameters representing the effect of 

time on the sensitivity of farm yields to weather. Consequently, the estimations’ results for both 

the copula and regression models imply an increase in the dependency of the study farms’ yields 

on the selected weather variables during the study period. We suppose that as such temporal 

changes might become even more pronounced and fast due to climate change, neglecting them – 

when rating weather-based insurance – might lead to an undervaluation of the involved risks, and 

thus might negatively affect the actuarial fairness of the insurance premium.     

Finally, the copula estimations suggest a rather high level of dependence between the farms’ 

yields and weather variables considered – up to 0.7 on average across farms considering the 

Gumbel copula and the cumulative rainfall index measured for the period from April to July. 

This implies that the dependence of yields on weather can be well described by applying the 
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copula approach. In contrast to the standard regression analysis which measures the dependence 

in the joint distributions without considering the dependence in the tails, a copula allows to 

capture extreme dependence between random variables. As farmers look for an efficient 

instrument to hedge their downside yield risks, the copula approach might be more relevant in 

the context of weather-based insurance. Hence, future research should focus on developing the 

methodology for integrating the copula approach into the design and rating of weather-based 

insurance instruments.  
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Table 1: Summary statistics of the tail dependence posterior mean estimates
1)

 for selected 

weather indices (10 farms, 1961-2003) 

  Mean SD Min Max DIC 

Clayton copula 

   Cumulative Rainfall, April-July 0.662 0.007 0.649 0.675 830 

   Selyninov Index, June-July 0.629 0.008 0.616 0.639 920 

   Rainfall Deficit,  May-July, k=0.92)   0.619 0.005 0.613 0.629 920 

Gumbel copula 

   Cummulative Rainfall, April-July 0.697 0.005 0.692 0.707 390 

   Selyninov Index, June-July 0.685 0.003 0.680 0.688 410 

   Rainfall Deficit,  May-July, k=0.92)   0.686 0.003 0.682 0.692 410 

1)
  The Monte Carlo error < 0.001 for single estimates  

2)
  k stands for strike level, s. Appendix  A1 

Source: own estimates 

 

Table 2: The posterior mean estimates of the tail dependence coefficient for selected weather 

indices, two period estimates
1)

, Clayton copula 

  Cumulative Rainfall2) Selyaninov Index2) Rainfall Deficit2) 

  1961-1982 1983-2003  1961-1982 1983-2003  1961-1982 1983-2003 

Farm 1 0.659 0.669 0.621 0.641 0.607 0.638 

Farm 2 0.649 0.663 0.608 0.638 0.602 0.636 

Farm 3 0.661 0.665 0.618 0.641 0.598 0.640 

Farm 4 0.655 0.673 0.617 0.645 0.598 0.650 

Farm 5 0.653 0.662 0.609 0.637 0.602 0.637 

Farm 6 0.662 0.676 0.614 0.646 0.603 0.653 

Farm 7 0.649 0.676 0.614 0.646 0.600 0.639 

Farm 8 0.659 0.670 0.614 0.641 0.605 0.638 

Farm 9 0.653 0.669 0.618 0.637 0.602 0.642 

Farm 10 0.669 0.690 0.623 0.654 0.605 0.661 

Mean, µ  0.657 0.671  0.616 0.642  0.602 0.643 

SD 0.006 0.008 0.005 0.005 0.003 0.009 

H0: µ1961-1982 = µ1983-

2003 
rejected

3)
  rejected

3)
  rejected

3)
 

1)
  The Monte Carlo error < 0.001 for single estimates 

2)
  The weather indices refer to the same periods as in Table 1, respectively. 

3)
  at the 0.01-significance level 

Source: own estimates 
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Table 3: The posterior mean estimates of the tail dependence coefficient for selected weather 

indices, two period estimates
1)

, Gumbel copula  

  Cumulative Rainfall
2)

 Selyaninov Index
2)

 Rainfall Deficit
2)

 

  1961-1982 1983-2003  1961-1982 1983-2003  1961-1982 1983-2003 

Farm 1 0.707 0.699 0.697 0.691 0.694 0.694 

Farm 2 0.700 0.698 0.684 0.694 0.691 0.691 

Farm 3 0.714 0.697 0.694 0.693 0.685 0.696 

Farm 4 0.702 0.707 0.690 0.702 0.684 0.709 

Farm 5 0.702 0.693 0.685 0.690 0.689 0.693 

Farm 6 0.713 0.711 0.691 0.701 0.690 0.719 

Farm 7 0.697 0.708 0.688 0.700 0.687 0.694 

Farm 8 0.705 0.708 0.688 0.698 0.691 0.699 

Farm 9 0.703 0.700 0.692 0.689 0.689 0.695 

Farm 10 0.720 0.733 0.697 0.716 0.691 0.722 

Mean, µ  0.706 0.705  0.691 0.697  0.689 0.701 

SD 0.007 0.011 0.004 0.008 0.003 0.011 

H0: µ1961-1982 = µ1983-

2003 
not rejected  rejected3)  rejected4) 

1)
  The Monte Carlo error < 0.001 for single estimates 

2)
  The weather indices refer to the same periods as in Table 1, respectively. 

3)
  at the 0.05-significance level 

4)
  at the 0.01-significance level 

Source: own estimates 
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Table 4: Regression model estimates
1)

: static and dynamic formulations, 1961-2003  

  
static 

dynamic 
   systemic  idiosyncratic 
const[1]  3.396  *  3.348 **  2.841 ** 
const[2]  3.059  **  3.096 **  2.481 ** 
const[3]  2.119  **  2.152 **  2.315 ** 
const[4]  1.439  **  1.345 **  1.736 ** 
const[5]  2.230  **  2.309 ** 2.330 **

const[6]  1.568  **  1.510 **  1.883 ** 
const[7]  1.810  **  1.765 **  2.004 ** 
const[8]  3.380  *  3.268 **  2.840 ** 
const[9]  1.634  **  1.700 **  2.052 ** 
const[10]  1.223  ***  1.151 ***  1.597 ** 
alpha[1]  0.051  ***  0.037 ***  0.036 *** 
alpha[2]  0.051  ***  0.037 ***  0.035 *** 
alpha[3]  0.044  ***  0.032 ***  0.034 *** 
alpha[4]  0.040  ***  0.027 *** 0.031 ***

alpha[5]  0.044  ***  0.032 ***  0.033 *** 
alpha[6]  0.041  ***  0.028 ***  0.032 *** 
alpha[7]  0.040  ***  0.027 ***  0.031 *** 
alpha[8]  0.051  ***  0.036 ***  0.036 *** 
alpha[9]  0.040  ***  0.028 ***  0.032 *** 
alpha[10]  0.040  ***  0.027 ***  0.031 *** 
beta_systemic   ‐‐  0.005 ***   ‐‐ 
beta[1]   ‐‐   ‐‐  0.007 *** 
beta[2]   ‐‐   ‐‐  0.007 *** 
beta[3]   ‐‐   ‐‐  0.003 *** 
beta[4]   ‐‐   ‐‐  0.003 *** 
beta[5]   ‐‐   ‐‐  0.003 *** 
beta[6]   ‐‐   ‐‐  0.002 *** 
beta[7]   ‐‐   ‐‐  0.003 *** 
beta[8]   ‐‐   ‐‐  0.007 *** 
beta[9]   ‐‐   ‐‐  0.002 *** 
beta[10]   ‐‐   ‐‐  0.002 *** 
DIC  2149  2132  2132 
MSPE (1996‐2003)  461  537  522 

1)
  the number in the brackets corresponds with the respective farm number;   *, **, *** - 

significant at the 0.01, 0.05 and 0.10-significance level according to the Monte Carlo error, 

respectively;  
2)

  dynamic model formulation presented in the table refers to the logarithmic specification of the 

effect of time; 
3)

  the MSPE was computed based on the model estimations for each year in the period from 1995 

to 2003.  
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Source: own estimates 

Figure1: Posterior mean estimates of the tail dependence coefficient between farm yields and 

three considered weather indices: Cumulative Rainfall Index (CRI), Selyaninov Drought Index 

(Sel) and Rainfall Deficit Index (RDI); two period estimates, Clayton copula 
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Source: own estimates 
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Appendix  

Appendix A1: Specification of weather indices  

The cumulative rainfall index (CRI) was calculated as the sum of the monthly cumulated rainfall 

(MCR), viz.: 


j

jtt MCRCRI  

where t and j are the year and the month subscripts, respectively.    

The Selyaninov drought index (SDI) was computed according to Selyaninov (1958) (quoted in 

Shamen, 1997) as the ratio of cumulative rainfall in a particular period and the sum of the 

average daily temperatures in each month in the same period:  






j

jt

j

jt

t
Temp

MCR

SDI

*10

 , 

where jtTemp  is the sum of the daily average temperatures in month j. 

The rainfall deficit index (RDI) is a cumulated sum of the monthly rainfall deficit (MRD) 

determined as follows:    

)0;max( jtjjt wwkMRD  ,  

where jw  is the long-term mean cumulated rainfall for month j, jtw is the actual realization of the 

cumulated rainfall in the respective month, and k is the factor which was set to three alternative 

strike levels: 0.9, 1.0, and 1.1. Then, the rainfall deficit index (RDI) is obtained as: 

 
j

jtt MRDRDI .       
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Figure A2-1:  Posterior distributions of the tail dependence coefficient between farm yields and 

the Cumulative Rainfall Index; two period estimates (1961-1982: blue line; 1983-2003: red line), 

Clayton copula. 
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Figure A2-2:  Posterior distributions of the tail dependence coefficient between farm yields and 

the Rainfall Deficit Index; two period estimates (1961-1982: blue line; 1983-2003: red line), 

Clayton copula. 
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