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HEAVY TAILS AND ELECTRICITY PRICES: DO TIME SERIES MODELS 

WITH NON-GAUSSIAN NOISE FORECAST BETTER THAN THEIR GAUSSIAN 

COUNTERPARTS?  

1. Introduction 

In the last decades, with deregulation of power markets and introduction of 

competition, electricity price forecasts have become a fundamental input to an energy 

company's decision-making mechanism [3][14]. Short-term price forecasts (STPF) are of 

particular interest for participants of auction-type spot electricity markets who are 

requested to express their bids in terms of prices and quantities. In such markets buy (sell) 

orders are accepted in order of increasing (decreasing) prices until total demand (supply) is 

met. Consequently, a generator that is able to forecast spot prices can adjust its own 

production schedule accordingly and hence maximize its profits.  

It has been long known that financial asset returns are not normally distributed. 

Rather, the empirical observations exhibit excess kurtosis [4][11][12]. This heavy-tailed 

(also called fat-tailed or leptokurtic) character of the distribution of price changes has been 

repeatedly observed in various financial and commodity markets. The pertinent questions 

are whether electricity prices are also heavy-tailed, what probability distributions best 

describe the empirical data and whether models with heavy-tailed innovations perform 

better in terms of forecasting accuracy than their Gaussian counterparts.  

This paper is a continuation of our earlier studies on STPF of California electricity 

prices with time series models [10][14][15]. Here we focus on the above raised questions. 

In fact, only on the latter as the answer to the first question is pretty straightforward and the 

second has been already addressed in [2][9][13][14] (and we build on these results). 

Consequently, we limit the range of analyzed models to autoregressive time series 
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approaches that have been found to perform well for pre-crash California power market 

data. We expand them by allowing for heavy-tailed innovations in the form of α-stable or 

generalized hyperbolic noise.  
 

 

Figure 1: Hourly system prices (top panel) and hourly system loads (bottom panel) in California for the period July 5, 

1999 – December 3, 2000. The changing price cap (750 → 500 → 250 USD/MWh) is clearly visible in the top panel. The 

day-ahead load forecasts (i.e. the official forecasts of the system operator CAISO) are indistinguishable from the actual 

loads at this resolution; only the latter have been plotted. 

Like in the previous papers, an assumption is made that only publicly available 

information is used to predict spot prices, i.e. generation constraints, line capacity limits or 

other fundamental variables are not considered. The available dataset1 includes hourly 

system prices, system-wide loads, and day-ahead load forecasts for the California market. 

The time series used in this study are depicted in Figure 1. The data from the period July 5, 

1999 – April 2, 2000 was used for calibration and from the period April 3 – December 3, 

2000 for out-of-sample testing. Since in practice the market-clearing price forecasts for a 

given day are required on the day before, we used the following testing scheme. To 

compute price forecasts for hour 1 to 24 of a given day, data available to all procedures 

included price and demand historical data up to hour 24 of the previous day plus day-ahead 

load predictions for the 24 hours of that day. 

                                                 
1 The dataset CA_hourly.dat is part of the MFE Toolbox, see [14]. 
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2. The base model and its extensions 

The best autoregressive model structure, in terms of forecasting performance for the 

first week of the test period (April 3-9, 2000), was found to be [10][14][15]:  
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where the autoregressive part ,)( 41683482241 tttttt mpapapapappB −−−−= −−−φ   was 

the minimum of the 24 hourly prices on the previous day,  was the load forecast and 

 were the dummy variables (for Monday, Saturday and Sunday). In this 

base model, denoted in the text as ARX, the noise term 
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SunSatMon DDD ,,

tε  is i.i.d. Gaussian.  

The model’s extensions differ in that the noise term is governed by a different, 

heavy-tailed distribution: hyperbolic, NIG or α-stable. The resulting models are denoted by 

ARX-H, ARX-N and ARX-S, respectively. In addition we study simplified versions of all 

four models without the system load component, i.e. with 01 =ψ . The letter ‘X’, which 

stands for ‘eXogenous variable’, is dropped from the respective names.  

Let us now briefly recall the basic characteristics of the three heavy-tailed families 

(for a more thorough treatment see [12]). The generalized hyperbolic distribution is 

defined as a normal variance-mean mixture where the mixing distribution is the 

generalized inverse Gaussian law with parameter λ, i.e. it is conditionally Gaussian. The 

hyperbolic and NIG (normal inverse Gaussian) laws are special cases obtained for λ = 1 

and λ = –0.5, respectively. The PDF of the hyperbolic H(α, β, δ, µ) law can be written as: 
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and of the NIG(α, β, δ, µ) distribution as: 
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where δ > 0 and µ∈R are the usual scale and location parameters, while α and β  determine 

the shape, with α being responsible for the steepness and β, |β| < α, for the skewness.  The 

normalizing constant K1(t) is the modified Bessel function of the third kind with index 1. 

The tail behavior is often classified as ‘semi-heavy’, i.e. the tails are lighter than those of 

non-Gaussian stable laws, but much heavier than Gaussian. It is characterized by the 
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following asymptotic relation: (( xxxf βαλ +−
mexp~)( 1 ) ) . In particular, the hyperbolic 

log-density forms a hyperbola – hence the name of the distribution [1]. 

The parameter estimation of generalized hyperbolic distributions can be performed 

by the maximum likelihood method, since there exist closed-form formulas (although, 

involving special functions) for the densities of these laws. The computational burden is 

not as heavy as for α-stable laws, but it still is considerable. The main factor for the speed 

of the estimation is the number of modified Bessel functions to compute. For a dataset with 

n observations we need to evaluate n Bessel functions for the NIG distribution and only 

one for the hyperbolic. The optimization is also challenging: the likelihood function can be 

very flat and can have local minima. 

Stable laws – also called α-stable, stable Paretian or Lévy stable – require four 

parameters for complete description: the tail exponent α∈(0,2], which determines the rate 

at which the tails of the distribution taper off, the skewness parameter β∈[−1, 1] and the 

usual scale, σ > 0, and location, µ∈R, parameters. When α = 2, the Gaussian distribution 

results. When α < 2, the variance is infinite and the tails are asymptotically equivalent to a 

Pareto law, i.e. they exhibit a power-law decay of order . In contrast, for α = 2 the 

decay is exponential. From a practitioner’s point of view the crucial drawback of the stable 

distribution is that, with the exception of three special cases (α = 2, 1, 0.5), its probability 

density function (PDF) and cumulative distribution function (CDF) do not have closed 

form expressions. They have to be evaluated numerically, see [12] for details, either by 

approximating complicated integral formulas or by taking the Fourier transform of the 

characteristic function φ(t): 
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The estimation of stable law parameters is in general severely hampered by the lack 

of known closed–form PDFs. Numerical approximation or direct numerical integration are 

nontrivial and burdensome from a computational point of view. As a consequence, the 

maximum likelihood (ML) estimation algorithm based on such approximations is difficult 

to implement and time consuming for samples encountered in practice. Yet, the ML 

estimates are almost always the most accurate, followed by regression-type estimates and 

quantile methods. 
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3. Empirical results 

To assess the prediction performance of the models, different statistical measures 

can be utilized. The most widely used measures are those based on absolute errors, i.e. 

absolute values of differences between the actual, , and predicted, , prices for a given 

hour, h. The Mean Absolute Percentage Error (MAPE) is a typical example. However, 

when applied to electricity prices, MAPE values could be misleading. In particular, when 

electricity prices drop to zero, MAPE values become very large regardless of the actual 

absolute differences . The reason for this is the normalization by the current 

(close to zero, and hence very small) price . Alternative normalizations have been 

proposed in the literature. For instance, the absolute error  can be normalized by 

the average price attained during the day: 
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The forecast accuracy was checked afterwards, once the true market prices were 

available. The error statistics for the whole test period (April 3 – December 3, 2000) and 

all models – separately for models with and without the exogenous variable – are given in 

Table 1. Furthermore, to distinguish the rather calm first 10 weeks of the test period from 

the more volatile weeks 11-35 (see Fig. 1), the summary statistics are displayed separately 

for the two periods. These statistics are based on the 245 Mean Daily Errors. In particular, 

the number of days a given model was best in terms of MDE, the number of times a given 

heavy-tailed model was better than its Gaussian counterpart in terms of MDE, the mean 

and standard deviation of MDEs, and the mean deviation from the best model. The latter 

statistics is defined as (∑ =
−T

t ttiT 1  model,Best, MDEMDE1 ), where i ranges over all evaluated 

models (i.e. i = 4) and T is the number of days (70, 175) in the sample. 

All computations were performed in Matlab 7.0. The AR(X) models were 

calibrated using the armax.m function, which minimizes the Final Prediction Error 

criterion [8]. The heavy-tailed models were calibrated by numerically maximizing the 

likelihood function with the AR(X) models’ parameters as starting points of the 

unconstrained simplex search routine (fminsearch.m function). Obviously this approach 

requires large computational times, as the PDFs have to be evaluated many times.   
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The obtained results are somewhat surprising. In both periods and both categories 

(with/without the exogenous variable) most often the Gaussian model yielded the best 

point forecasts. And this picture is not blurred by the ‘large’ number of its heavy-tailed 

competitors – generally they performed inferior rather than superior compared to AR(X). 

The only exceptions are the AR-H model in the volatile period (88 out of 175 days better 

than AR) and the ARX-H model in the calm period (38 out of 70 days better than ARX). 

The picture is a bit more favorable to the heavy-tailed models if we look at the other 

statistics. In the calm period, the heavy-tailed models not only yielded lower on average 

and less dispersed MDEs, but also gave lower mean deviation from the best model for a 

given week. In other words, the heavy-tailed models were closer to the ‘optimal model’ 

composed of the best performing model in each week. In particular, the AR-N, ARX-N 

and ARX-S specifications performed particularly well. However, in the volatile period the 

AR(X) models were again the best (except for the standard deviation of MDEs). 

 
 

 AR AR-H AR-N AR-S 
 Weeks 1-10 (relatively calm period) 

Times best 35 11 10 14 
Times better than AR (max. 70) – 27 21 29 

Mean MDE 12.57 12.58 12.30 12.41 
Standard deviation of MDE 13.18 12.35 11.59 11.79 

Mean deviation from the best 1.09 1.10 0.82 0.93 
 Weeks 11-35 (volatile, atypical period) 

Times best 68 31 35 41 
Times better than AR (max. 175) – 88 72 81 

Mean MDE 18.24 18.29 18.54 18.47 
Standard deviation of MDE 23.55 21.92 19.12 19.71 

Mean deviation from the best 1.39 1.44 1.69 1.63 
 ARX ARX-H ARX-N ARX-S 
 Weeks 1-10 (relatively calm period) 

Times best 27 13 20 10 
Times better than AR (max. 70) – 38 31 32 

Mean MDE 11.98 11.94 11.64 11.63 
Standard deviation of MDE 12.71 12.06 11.61 11.66 

Mean deviation from the best 1.20 1.16 0.86 0.85 
 Weeks 11-35 (volatile, atypical period) 

Times best 71 26 41 37 
Times better than AR (max. 175) – 82 77 77 

Mean MDE 17.71 18.01 18.10 18.15 
Standard deviation of MDE 21.22 21.24 17.13 17.59 

Mean deviation from the best 1.80 2.11 2.20 2.25 
 

Table 1: Error measures for the considered models. Best results in each category are emphasized in bold. 
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 AR AR-H AR-N AR-S 
Weeks 50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99% 
1-10 42.62 14.05 6.01 55.60 14.46 4.17 62.62 15.06 3.27 61.43 16.31 0.60 
11-35 43.90 13.52 5.74 56.38 15.88 4.45 64.71 17.60 1.95 62.83 18.45 0.55 

 ARX ARX-H ARX-N ARX-S 
Weeks 50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99% 
1-10 41.96 13.93 5.60 53.69 14.52 4.35 60.95 14.70 3.39 58.57 15.48 0.77 
11-35 46.10 13.60 5.52 58.86 16.74 4.26 65.02 18.40 2.05 65.38 19.31 0.60 

 
Table 2: Mean percent of exceedances of the 50%, 90% and 99% two-sided day-ahead confidence intervals (CI) by the 

actual system price for the considered models. 
 

Apart from point forecasts, we investigated the ability of the models to provide 

interval forecasts. For all considered models interval forecasts were determined 

analytically; for details on calculation of conditional prediction error variance and interval 

forecasts we refer to [7][14]. Afterwards, following [5] and [10], we evaluated the quality 

of the interval forecasts by comparing the nominal coverage of the models to the true 

coverage. Thus, for each of the models we calculated confidence intervals (CIs) and 

determined the actual percentage of exceedances of the 50%, 90% and 99% two sided day-

ahead CIs of the models by the actual system price, see Table 2. If the model implied 

interval forecasts were accurate then the percentage of exceedances should be 

approximately 50%, 10% and 1%, respectively. Note that in the calm period (first 10 

weeks) 1680 hourly values were determined and compared to the system price for each of 

the models, while in the volatile period (weeks 11-35) – 4200 hourly values. 

Examining the exceedances of the 50% interval we note that while the Gaussian 

models yield too wide CIs, all of the heavy-tailed alternatives behave quite the opposite. In 

this respect they exhibit a performance similar to the Markov regime-switching model 

analyzed in [10]. Also, the AR(X)-H model is better than the NIG and α-stable 

competitors, and comparable to AR(X). Looking at the exceedances of the 90% interval we 

see all models performing alike and yielding too narrow CIs. Yet, the AR(X) CIs are  

slightly better (wider) than those of the other models. Finally, the exceedances of the 99% 

interval present a different picture. The α-stable innovations lead to the widest (even a bit 

too wide) and closest to the optimal CIs. Next in line are the NIG, hyperbolic and Gaussian 

models, all of which yield too narrow CIs. In this category, ARX-H and ARX-N models 

behave comparably to the nonlinear Threshold ARX (TARX) model analyzed in [10]. 
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4. Conclusions 

In this paper we investigated the forecasting power of time series models for 

electricity spot prices. Motivated by the good fit of various heavy-tailed distributions to 

electricity price returns we focused on comparing linear autoregressive models with 

Gaussian and heavy-tailed innovations (hyperbolic, NIG and α-stable). The models were 

tested on a time series of hourly system prices and loads from California. We evaluated the 

quality of the predictions both in terms of the Mean Daily Error (for point forecasts) and in 

terms of the nominal coverage of the models to the true coverage (for interval predictions).  

The is no unanimous winner of the presented competition. During relatively calm 

weeks the AR-N, ARX-N and ARX-S models led to the best ‘on average’ point forecasts, 

but could not beat the AR(X) models in the number of best forecasts. Surprisingly, in the 

volatile period the AR(X) models yielded the best point forecasting performance. 

Regarding interval forecasts the evidence is also mixed. Gaussian models behave well for 

the 50% and 90% intervals, but are worse for the 99% CI than the rest. Overall the NIG 

models seem to be reasonable heavy-tailed alternatives to AR(X), but the performance 

does not fully justify the computational burden involved.  
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CIĘŻKIE OGONY A CENY ENERGII ELEKTRYCZNEJ: CZY MODELE 
SZEREGÓW CZASOWYCH Z SZUMEM NIEGAUSSOWSKIM PROWADZĄ DO 

LEPSZYCH PROGNOZ NIŻ MODELE GAUSSOWSKIE? 
 

Residua modeli szeregów czasowych wykorzystywanych do prognoz procesów 
energetycznych, m.in. cen na giełdach energii elektrycznej, nie mają rozkładu 
gaussowskiego, lecz charakteryzują się znacznie cięższymi ogonami. Jednak dotąd, w 
literaturze naukowej wykorzystywano metody zakładające właśnie gaussowski rozkład 
innowacji. Niniejsza praca ma na celu odpowiedzieć na pytanie, jaki wpływ na 
dopasowanie modeli oraz na jakość prognoz ma zastosowanie modeli z szumem 
ciężkoogonowym (hiperbolicznym, NIG bądź α-stabilnym). Wyniki analiz 
przeprowadzonych na danych kalifornijskich nie są jednoznaczne. Okazuje się, że modele 
z szumem NIG oraz α-stabilnym prowadzą do średnio dokładniejszych prognoz, ale 
modele gaussowskie częściej zwracają najlepsze wyniki. 
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