
Munich Personal RePEc Archive

Open Source Software Production,

Spontaneous Input, and Organizational

Learning

Garzarelli, Giampaolo and Fontanella, Riccardo

Institutions and Political Economy Group (IPEG), School of
Economic and Business Sciences, University of the Witwatersrand

2010

Online at https://mpra.ub.uni-muenchen.de/22949/

MPRA Paper No. 22949, posted 30 May 2010 06:34 UTC

Open Source Software Production, Spontaneous Input,

and Organizational Learning

Giampaolo Garzarelli (Corresponding author)

Institutions and Political Economy Group (IPEG)

School of Economic and Business Sciences

University of the Witwatersrand

Private Bag X3, WITS 2050

Johannesburg, Republic of South Africa

+27.11.717.8128 (Tel.)

+27.11.717.8081 (Fax)

Giampaolo.Garzarelli@Wits.ac.za

Riccardo Fontanella

Institutions and Political Economy Group (IPEG)

School of Economic and Business Sciences

University of the Witwatersrand

Private Bag X3, WITS 2050

Johannesburg, Republic of South Africa

fontiric@gmail.com

Forthcoming American Journal of Economics and Sociology.

Acknowledgement: We are indebted to Lyndal Keeton and two anonymous referees for their very

valuable feedback.

Open Source Software Production, Spontaneous Input,

and Organizational Learning

Abstract

This work shows that the modular organization of voluntary Open Source Software

(OSS) production, whereby programmers supply effort of their accord, capitalizes

more on division than on specialization of labor. This is so because voluntary OSS

production is characterized by an organizational learning process that dominates the

individual one. Organizational learning reveals production choices that would

otherwise remain unknown, thereby increasing productivity and indirectly reinforcing

incentives to undertake collective problem solving. (71 words.)

Key Words

Division of Labor, Mistake-ridden Learning, Modularity, Open Source Software,

Self-selection, Voluntary Production

JEL Codes

D20, L17, L23

1

1. Introduction

With success stories such as Apache, Linux and Mozilla, Open Source Software

(OSS) has entered into the vocabularies of millions of individuals worldwide. The

increasing number of OSS users
1
 has stimulated a vast and growing interest on the

economics, and more generally social science, research front.
2
 What seems to puzzle

most of this research is that, contrary to more familiar economic theory, the

development method of OSS should not have accounted for its success. How can a

number of individuals dispersed around the world who mostly rely on open standards

and an ethos of code sharing lead to a stable production process? Thus OSS

production is perceived to be at odds with many traditional production paradigms

(Feller and Fitzgerald 2002). This is especially the case for OSS development that is

voluntary in nature.

Voluntary OSS development – the principal interest of this paper – is in fact a

production process whereby individuals supply their input of their own accord. That is

to say that it is a process where there is mostly self-selection in – rather than direction

of – task performed (Langlois and Garzarelli 2008). By letting individuals contribute

effort according to their own volition, voluntary OSS development tries to profit from

the “distributed intelligence” of members of virtual communities (Kogut and Metiu

2001). That is, to maximize the gains from the creation, reuse, and trade of one factor:

knowledge (Garzarelli et al. 2008). This “mindshare” approach has been referred to

also as “collective invention” (Osterloh and Rota 2004).

In more ways than one, then, voluntary OSS production can be conceived of

as another tangible illustration of the advantages that can emerge from the

spontaneous interaction of many individuals each possessing limited knowledge and

1 See for example the regularly-updated statistics freely available on Netcraft: http://news.netcraft.com/.
2 One reference for all: the MIT website that collects OSS papers, http://opensource.mit.edu/.

2

pursuing their own interests (Hayek 1937, 1945; Jensen and Meckling 1992;

Raymond 2001). In other words, voluntary OSS production is a contemporary

illustration that shows how “the productivity of social cooperation surpasses in every

respect the sum total of the production of isolated individuals” (Mises 1960, p. 43).

But this poses the question of the origin of the emergent benefits of voluntary

OSS development. By considering production as a set of interrelated tasks rather than

as a mere technological relationship
3
, we offer a counterintuitive answer to this

question, namely, that in the main the emergent benefits of voluntary OSS production

do not derive from specialization but from division of labor. The division of labor of

voluntary OSS production is not ordered sequentially as specialization would require,

but rather in a parallel and overlapping form. And the benefits from this parallel and

overlapping division of labor, it is suggested, trump those of specialization. This is so

because in voluntary OSS production the learning by doing is primarily organizational

rather than individual.

To express our claim in other terms, voluntary OSS production is a social

learning process that gives off signals that reveal problems regarding production

relationships and their inputs and outputs. The need to correct problems acts as a

mechanism that stimulates internal urges, compelling individuals to seek out new

problem-solving techniques. These incentives that are awakened by problems

ultimately also increase productivity, because they reveal production choices that

would otherwise remain unknown.
4

3 On which see, for example, Georgescu-Roegen (1970), Winter (2005), and Dosi and Grazzi (2006).
4 Cf. Rosenberg (1969).

3

2. Modularity and two divisions of labor

Before exploring the rudimentary building blocks of the division of labor of voluntary

OSS production, it is useful to quickly do two things. The first is to introduce the rules

governing voluntary OSS division of labor. Without at least a basic awareness of

these rules it is difficult to convey a sense of how a parallel and overlapping process

of production can work. The second is to shed some light on the specific

characteristics that define vertical and horizontal divisions of labor, i.e., the two

divisions of labor that Smith (1981[1776]) obliquely alludes to (Leijonhufvud 1986).
5

As will be clear before long, in fact, vertical and horizontal divisions of labor are two

useful heuristic expedients that will help us to more easily understand how voluntary

OSS production relates to more familiar structures of production.

2.1. Modularity rules

Software production is an activity that is very knowledge intensive: it embodies the

knowledge of many programmers, each of whom only knows a portion of what others

know. As such, it manifests useful give-and-take: software programming is a social

learning process (Baetjer 1998). But in order for the learning to be sufficiently

coherent with the overall aims of a software project, there must be some basic rules in

place that channel it in the right direction. This is especially so in cases of voluntary

OSS production where input is spontaneous.

Most voluntary OSS projects rely on the rules of modularity (Simon

1998[1962]). As the name implies, modularity is about breaking up a system into

parts (modules) in the attempt to make it more manageable. By making a project more

manageable through decomposition, modularity assists the division of labor (e.g.,

5 In a recent contribution, Leijonhufvud (2007) returns to these themes, but for some reason inverts his

original classification, calling the horizontal division of labor vertical and, by difference, implying that

the vertical division of labor is the horizontal. Here, we will stick to the original 1986 definitions.

4

Baldwin 2008). And to leverage from divided labor, modular decomposition

minimizes modular interdependencies by hiding information. Instead of all knowledge

being communicated across modules, information hiding lets modules keep some of

their knowledge ‘secret’ from the rest of the project. In this fashion, no module can

interfere with the data and functions of other modules. Knowledge is thus

encapsulated within modules, and a programmer need not necessarily hold any

information about the other modules of the project with which his module interacts

(Parnas 1972). More generally, information hiding is important because it “allows

developers to understand the system better by viewing it at a high level of abstraction”

(Baetjer 1998, p. 107).

However, given that separate modules form part of the same system,

communication among modules cannot be entirely blocked. Or, more precisely, as

long as we acknowledge that the system is directed towards a goal, as is for instance

the case of a software project, the system cannot be completely decomposable, but

only in part. Modules need to know what their functions are as well as the functions

of complementary modules (the architecture of the system), the nature of their

relationships with their complementary modules (the interface of the system), and

their performance relative to other modules (the standards of the system). Baldwin

and Clark (2000) refer to these modular properties as the visible design rules of a

modular system. Therefore, a modular system directed towards an end is one that

should be nearly decomposable, preserving the possibility of cooperation among

complementary modules by sharing and communicating visible design rules, while at

the same time preserving the hidden design parameters specific to each module (e.g.,

Langlois and Garzarelli 2008).

5

The distinguishing mark of modularity is then the forcing, as it were, of the

use of specialization by relying on rules that blind irrelevant information. In the case

of voluntary OSS production this is also the case. However, voluntary OSS entails

that, in addition to being able to spontaneously contribute to tasks that reflect one’s

specialization, a programmer is able to spontaneously contribute to tasks for which he

or she is non-specialized. Consider the following system-versus-individual metaphor

to more finely hone this observation. At the system level, individuals are specialized

in the sense of being programmers; but at the individual level, each programmer may

not always contribute according to his primary specialty.
6
 And it is because of the

existence of this imperfect matching that specialized effects turn out to be secondary

vis-à-vis divided ones voluntary OSS production. In many ways, the rest of this work

can be interpreted as an attempt to elaborate this point, that is, to begin to direct

attention to the division of labor properties of one type of modular organization.

2.2. Vertical and horizontal divisions of labor

A vertical division of labor takes place when an individual performs each of the tasks

of a process of production of a particular good. Consider, to illustrate, a carpenter who

needs to produce a piece of furniture. The carpenter’s tasks, to name a few, would

include selecting the appropriate wood, cutting and gluing the wood to design,

treating the wood and often even selling the furniture once completed. Figure 1

illustrates this vertical division of labor where different individuals (A, B, C, D, E)

perform every task (1, 2, 3, 4, 5) independently. Thus, under vertical division of labor

6 We may even make the metaphor slightly more precise. If we define, following Ames and Rosenberg

(1965), specialization as the reciprocal of skill, we have the ratio of the number of doers (individuals) per

activity (task). We can accordingly define a specialization index that lies between 0 (complete non-

specialization) and 1 (complete specialization). So, in terms of this index, in voluntary OSS production it

is not uncommon in any point in time to have several individuals whose specialization index is

significantly below 1 in at least one task performed while having an overall index of 1 in the primary

activity, namely, programming.

6

an individual boasts a wide repertoire of skills, implying a lack of full specialization.

That is to say that vertically divided individuals are not committed to performing

solely one task according to an opportunity cost-minimizing criterion, but rather

perform a multiplicity of related tasks according to both absolute and comparative

advantages.

Figure 1: Vertical division of labor

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5 ― Individual B working on

 the entire production sequence

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

 E1 E2 E3 E4 E5

Time

Source: Leijonhufvud (1986, p. 208).

But from Smith (1981[1776]) we also know that the division of labor is

constrained by the extent of the market. As the market for a particular product

expands, the tasks involved in its production process can develop into specialized

ones. When such a demand is reached, an individual is able to dedicate himself solely

to one task. The result: horizontal division of labor, a situation typical of the factory

system, and later at the root of the modern corporation (Leijonhufvud 1986). As

Georgescu-Roegen (1970, p. 8) phrases it, “the increased specialization of labor could

not have come about unless an increased demand had already induced most craft

shops to introduce the system line. There can be little doubt about it: the factory

system was born in an artisan’s workshop, not in a factory.”

Under a horizontal division of labor, market demand is sufficient to support an

individual’s commitment to merely one task of a production process. By implication,

such an individual is able to become more refined at that single task. But since there is

7

no free lunch, such specialization comes at the expense of a contracting repertoire of

skills. As Knight (1967, p. 21) vividly describes it, “it is especially significant that the

most important source of gain” – specialization – “also involves the most important

human cost,” viz., the narrowing of one’s “personality.” Contrary to the vertical, then,

the horizontal division of labor implies that individuals are specialized. Figure 2

illustrates a horizontal division of labor in terms of our previous notation. We readily

see how each individual performs only one task of the sequence (A performs just 1, B

performs just 2, etc.).
7

Figure 2: Horizontal division of labor

A1 B2 C3 D4 E5

 A1 B2 C3 D4 E5

 A1 B2 C3 D4 E5

 A1 B2 C3 D4 E5

 A1 B2 C3 D4 E5

 Etc. …

Time

Source: Leijonhufvud (1986, p. 209).

3. Voluntary OSS division of labor: A stylized model

Open source guru Raymond (2001) reminds us that in voluntary OSS production, as

elsewhere, innovation and discovery often are a direct, if unintentional, product of the

satisfaction of desires. At times, there may be a specific need that an individual

wishes to satisfy (e.g., adapting a software package to a new printer). In these cases,

the individual is “intrinsically motivated,” that is, he freely sorts himself into some

task that he desires to perform. Intrinsic motivation usually derives from work that is

considered interesting, and can be “crowded out” if an individual senses, for example,

7 Compare Houthakker (1956) for a more complete cost-benefit analysis of specialization.

8

that he is being monitored or supervised (Frey 1997). As Deci (1971, p. 105)

originally put it, if “external rewards are given for an intrinsically motivated activity,

the person perceives that the locus of control or the knowledge or feeling of personal

causation shifts to an external source, leading him to become ‘a pawn’ to the source of

external rewards. Similarly, … external rewards affect the person’s concept of why he

is working and his attitude toward the work.”

And yet, not all outside actions crowd out intrinsic motivation. When an

outside action is perceived to be a controlling one, such as in the case of a principal-

agent relationship where the principal takes over some of the agent’s actions, we are

most likely to see a drop in intrinsic motivation. When an outside action instead is

perceived as informative, such as in the case of positive reinforcement to the agent

from the principal, we are most likely to see no drop in intrinsic motivation or perhaps

even a rise in it (Frey 1997, p. 432). As illustrated below, in the case of voluntary

OSS production, where, with few exceptions, we may liken everyone to his own

principal, an important source of an outside action that is informative is learning from

the errors and contributions of others.

At the same time, however, the capacity to perform a self-selected task to

satisfy a specific need is also a function of the number of task(s) accessible to the

individual. When the tasks at an individual’s disposal are limited, the ability to satisfy

a need is hindered. Think about the quintessential firm where usually not everyone is

working on his or her preferred task in every point in time. In such types of

organization, the incentive to pursue the satisfaction of a particular need is often

abandoned. But when tasks are not limited the means of reaching satisfaction are

extended. When this is the case, the incentive to pursue the satisfaction of a particular

need increases. “The more extensive the agents’ participation possibilities are, the

9

higher is the work morale” (Frey 1997, p. 431). Voluntary OSS organization presents

a potentially unlimited set of production tasks that one can freely align to.

In voluntary OSS production individuals therefore have a high intrinsic

motivation because the tasks instrumental in satisfying their specific needs, such as

customizing a particular software program, are open to them. As a matter of fact, in

many cases they themselves create the task in order to solve a particular puzzle that is

bugging them. Indeed, this is Raymond’s (2001, p. 23, emphasis removed) first

important lesson about voluntary OSS programming, namely, that “[e]very good work

of software starts by scratching a developer’s personal itch.” As a result, there is a

strong incentive behind these voluntary contributions; and a strong incentive behind a

contribution means that there is greater scope for productive behavior. It is exactly

this pool of self-motivation, this congeries of “spontaneous incentives” emerging

from individual needs and desires, that voluntary OSS production attempts to seize.

Raymond (2001) actually expresses surprise after discovering that there are

tremendous productivity gains accruing through such software “development style”

and employs two useful ideal types to analyze it: the cathedral (centralized) and the

bazaar (decentralized).

Just like the employees in the quintessential firm, the cathedral mode of

production proposes that individuals be assigned to tasks on the basis of their

competence. In this way, it is suggested, knowledge can be directed to its most

productive use. Consequently, a cathedral approach gives rise to a centralized

development structure reminiscent of a horizontal division of labor. Proprietary

software echoes this form of economic organization: the development process is left

to a limited group of highly specialized programmers. However, Raymond (2001, p.

8) points to a significant shortcoming of this: in “a cathedral-builder view of

10

programming, bugs and development problems are tricky, insidious, deep phenomena.

It takes months of scrutiny by a dictated few to develop confidence that you’ve

winkled them all out.” This is why, to this day, proprietary software takes quite some

time to release.

Conversely, the bazaar assumes that a limited set of consciously organized

individuals will never completely possess all the necessary knowledge to always solve

software production problems. As Hayek (1945, p. 519) famously wrote, knowledge

“of the circumstances of which we must make use never exists in concentrated or

integrated form, but solely as dispersed bits of incomplete and frequently

contradictory knowledge which all separate individuals posses.” With each individual

only possessing limited and different knowledge, it would seem impossible to assign

tasks to a set of individuals in a manner that knowledge always would be put to its

most valued use. Besides knowledge being dispersed and idiosyncratic, there is

another reason as to why this is so: the growth of knowledge. Knowledge is about

dynamic organization, that is, about changing interrelations among qualitative

patterns of stimuli that belong to, and can change, a system. It is not about passive

quantitative patterns of stimuli that just serve a system without affecting it (e.g.,

Fransman 1994; Langlois and Garrouste 1997): “that which we call knowledge is

primarily a system of rules of action assisted and modified by rules indicating

equivalences or differences of various combinations of stimuli” (Hayek 1978, p. 41).

So how does one try to improve the allocation and use of knowledge at every point in

time when such knowledge is not identical, not fully endowed to everyone and not

constant? Advocates of voluntary OSS place their chips on decentralization. And

evidence shows this bet to pay off (Giuri et al. 2010).

11

A bazaar organizational form attempts to leave all input options open by

leaving the production process open. The production process is open in the sense that

individuals are not necessarily assigned to, and hence not necessarily restricted to,

tasks based on their implied specialization. Rather, the bazaar favors voluntary

collaboration, i.e., it promotes the spontaneous convergence of distributed knowledge.

Given a very large set of decision makers collaborating through the exchange of

knowledge, it is possible to identify and formulate a wider array of problems and to

find a larger set of alternative solutions. This is what Raymond (2001, p. 8) refers to

as “Linus’s Law”: “given enough eyeballs, all bugs are shallow,” or, simply put, what

one pair of eyes might miss, there are countless other pairs that can make up for it. In

sum, the freedom to access, copy and modify source code is a way for voluntary OSS

production to tap into a larger collective intelligence that enables to benefit from a

broader problem-solving ability.

But this begs the question of what kind of division of labor voluntary OSS

production engenders, namely, what are the division of labor dynamics typical of the

bazaar? As hinted, voluntary OSS development leaves all input options (i.e.,

production tasks) open, which in turn implies that programmers have the liberty to

self-select into any production task(s) they desire. In actual fact, this means that in

such a production setting individuals are not bound to tasks that correspond to their

primary specialization. The upshot is that in any point in time it is possible for any

number of individuals to be working on single or multiple tasks irrespective of

specialization.

Figure 3 is a stylized model that tries to capture the essence of such voluntary

OSS division of labor. It shows how task 1 is undertaken by a number of individuals,

for example individuals A, F and O, whom also can be seen contributing towards

12

production tasks 4 and 5. Similarly, task 3 is also undertaken by numerous individuals

of whom some (C, E and G) are contributing towards multiple tasks.

Figure 3: Voluntary OSS production

A1 A2

B1

C1 C3 ― Individual C working on multiple inputs

D1

 E3 E5

F1 F2 F4

 G2 G3

 H2

 I2

 J3

 K3 K5

 L3

 M3

 N4

O1 O4 O5

 P4

 Q2 Q4

 R5

S8

 s1, s2, s3, s4

 . . .

 . . .

 . . .

 … … … X9 ―

 Individual X having exclusive rights on task 9, e.g., package maintenance

 . . .

 . . .

 . . .

 … … …

 Etc.

 Parallel, overlapping inputs

At the same time, within a bazaar it is possible that certain production tasks be

exclusively reserved for and performed by selected individuals. This is especially

13

evident in the early stages of an open source project when the process of production is

not yet fully defined (Murdock 2003; Langlois and Garzarelli 2008). But as a project

evolves and matures there are some tasks that are still in the exclusive domain of a

few individuals. One example of this is the Project Leader, who is responsible for the

coordination of production. Another example is package maintainers and core groups

of programmers who usually have complete authority over their part of the project.

This kind of situation is illustrated by individual S in Figure 3 who only oversees a

specific set of components (represented by task 8) of the system by supervising the

highly specialized team composed of s1, s2, s3 and s4. In another sense, the box within

Figure 3 that encompasses s1, s2, s3 and s4 (under the guidance of S) depicts an

instance of the cathedral mode within voluntary production. That is, we have a

rudimentary depiction of conscious direction in a voluntary project.

Therefore, we have that certain programmers can be working solely on one

task (horizontal division of labor) while others can be working on multiple tasks

(similarly to the vertical division of labor
8
). But what are the implications of this? The

mixture of vertical and horizontal divisions of labor in voluntary OSS organization

implies that:

• any individual is able to self-select into a task that corresponds to his or

her primary expertise and is at the same time also able to self-select into

tasks that do not reflect the same match;

• any number of individuals possibly may be contributing to the same task at

any given point in time.

The first implication suggests that the voluntary nature of OSS production

yields a degree of imperfect matching of individual specialization to performed task.

8 “Similarly” yet not identically to the vertical division of labor, because work – input-output relations –

may be not necessarily linearly sequential, but rather roundabout.

14

The second implication highlights the possibility that, at any given moment, several

individuals may be working spontaneously on the same production task. Prima facie,

these two implications would lead us to classify voluntary OSS production as

inefficient under standard production accounts. However, this is not necessarily the

case once a more explicit focus is placed on the learning dynamics innate in voluntary

OSS production: more knowledge is created when individuals can more freely interact

with each other.

4. Mistake-ridden learning is not such a mistake

When a programmer is faced with some specific need, the voluntary nature of OSS

production allows programmers the ability to self-select into tasks that ultimately

service that need. But the correction of disequilibria in voluntary OSS production, as

hinted, does not necessarily hinge on perfect matching between task and volunteer. As

such, one might regard such imperfect sorting as having little or no productive value.

There is nothing erroneous with this argument if one reasons according to familiar

productivity measures, such as increases in productivity at lower unit costs. However,

what matters are also overall increases in productivity tied to the growth of

knowledge, namely, deriving from the learning curve (Garzarelli et al. 2008). The

crux of the matter is that just as specialized contributions can be a source of

productivity so too can non-specialized ones: as elaborated presently, voluntary OSS

production promotes an environment that facilitates learning from the mistakes of one

another.

In traditional division of labor accounts, such as the Smithian ones alluded to

earlier, productivity gains from specialization originate from a cognitive process of

individual learning-by-doing that is a “by-product” of production. For example, in

15

horizontal division of labor, repeating the same task and following the same routine

means that through increasing specialization an individual learns to simplify his task.

That is to say that productivity increases as a result of increased experience in

production (Atkinson and Stiglitz 1969). As such, specializing individuals develop the

knowledge to source innovative ways by which the production task may be altered so

as to produce more efficiently.

But in such cases there is negligible learning among persons involved in the

same production process: learning-by-doing is mostly individual rather than

organizational. In voluntary OSS production, we saw, it is possible for many

individuals to be working simultaneously on the same task at any given point in time.

In this case there is scope for individuals involved in the same task to collaborate, to

share their production failures and successes. As a result, learning-by-doing becomes

social in that the collaborative network extends the boundaries of learning-by-doing

beyond the individual level into the organizational one. Knowledge growth

materializes through planned and unplanned organizational interactions that transmit

and exchange knowledge. Organizational interaction helps an individual improve her

problem solving ability by exposing her to the unique ‘bits’ of knowledge held by

other individuals.
9
 While the ability to work independently leads to improvements in

one’s skills.

Consider the following example. Suppose a problem is identified and that the

problem corresponds to a programming task that neither programmer X nor Y are

specialized in. If X and Y are motivated by some personal need to solve the problem,

both programmers will choose to spontaneously contribute towards the task. Suppose

also that programmer X is first to provide his modification of the source code to the

9 Compare Marshall (1961, p. 271) on social learning: “if one man starts a new idea it is taken up by

others and combined with suggestions of their own; and thus it becomes the source of further new

ideas.”

16

community of developers. If X’s modifications are flawed, programmer Y will be able

to identify where X went wrong, and thus avoid replicating the same mistake. Taking

the new knowledge learnt from X’s mistakes, Y can find an alternative solution to the

problem, a solution that would have otherwise been unknown to Y had X’s

contribution not have been able to be effectively communicated. The mistake of one

individual serves to pollinate the ideas of another in a manner that bears fruit to new,

productive ideas. Each learning opportunity extends the innate knowledge of

participants to the production process. This in turn expands the arsenal of knowledge

that can be used to scrutinize any given problem at any given point in time. This

example is admittedly crude, nonetheless it helps us to more sharply focus the

dynamics of mistake-ridden learning found in voluntary OSS production. It is very

likely that numerous individuals provide spontaneous contributions and that numerous

other individuals identify and learn from different mistakes. With potentially

thousands of individuals spontaneously contributing at any given moment, the

potential ‘cross-pollination’ of ideas is vast.

The increase in learning experiences, in turn, favors an enhancement of

learning capabilities, that is, of that specific production knowledge that is revealed in

the reflexive process of adapting to changing circumstances.
10

 In essence, by learning

more, individuals learn how to learn better – they improve their learning skills. This

“learning to learn” (Stiglitz 1989) involves improvements, firstly, in the capability to

absorb information, and, secondly, in the capability to disseminate information,

acknowledging mistakes and retaining best practices. In keeping with this view, we

would expect heterogeneity in learning rates, that is, the open-ended sorting of

10 On the general theoretical notion of capabilities in the context of organizational analysis, see for example

Garzarelli (2008).

17

individual to task gives rise to slow and fast learners. And it is precisely this

heterogeneity in learning rates that can be a vital source of knowledge gains.

“Organizations store knowledge in their procedures, norms, rules and forms” –

their “code”. “They accumulate such knowledge over time, learning from their

members. At the same time, individuals in an organization are socialized to

organizational beliefs.” Thus, a mutual learning process exists whereby “the

organizational code affects the beliefs of individuals, even while it is being affected

by those beliefs” (March 1991, pp. 73 and 75). According to such perspective,

knowledge gains transpire as a result of factors that create “variability” between

organizational and individual beliefs. One way for achieving and sustaining this

variability is for an organization to maintain a heterogeneous population of slow and

fast learners. For “any average rate of learning from the code, it is better from the

point of view of equilibrium knowledge to have that average reflect a mix of fast and

slow learners rather than a homogeneous population” (March 1991, p. 77). This

equilibrium entails that both the organization and a fraction of fast learning

individuals are simultaneously able to learn from the “deviations” (i.e., the errors) of

slow learners.
11

 Consequently, being characterized by both specialized and non-

specialized inputs, we would expect voluntary OSS to benefit from a mixture in

learning rates in the same manner.
12

Moreover, March continues, like the heterogeneity in learning rates, diversity

among individuals’ knowledge levels improves aggregate knowledge. The “old-

timers” of an organization know more than the “new blood” of an organization.

However, what they know is “redundant” with knowledge that is already possessed

11 Equilibrium is established when all individuals and the organizational code share the same belief with

respect to each dimension of reality. Thus, equilibrium entails the convergence of beliefs and the end of

any variability.
12 See David and Rullani (2008) for an empirical study germane to this claim; we came across this

intriguing study only after the first draft of this paper was already completed.

18

and reflected by the organization. As a result, old timers are less likely to contribute

new knowledge. The new blood introduced into the organization may be less

knowledgeable than their existing counterparts, but their knowledge is less redundant

with the existing state of organizational knowledge. Therefore, the entry of new

individuals into an organization is more likely to contribute to new knowledge gains

as long as collaboration continues to expose mistakes. One would imagine this to be

particularly the case in voluntary OSS production where modularity renders the exit

and entry of old timers and new blood relatively free.

The knowledge production from the open interaction of different knowledge

stocks and flows moreover resonates with the main normative insight about

modularity, namely, its superior resiliency to change (e.g., Simon 1998[1962];

Frenken et al. 1999). The ability of a modular system to continue working even if not

all its parts are on the same page (pursuing an objective even if one module is

malfunctioning, simultaneously trying to solve different problems, working at

different rates, etc.) is what gives a modular system its edge.

Take software bugs, viz., those programming errors that could render the

functioning of a software system less reliable. In the case of proprietary software, we

saw, bug solving can seriously threaten the success of a project. This is so because

given the unitary nature of the cathedral mode of production, a bug may halt the

whole project for there may be a substantial lag between a bug’s solution and the

latter’s adoption within the project. But this is not the case, as we also saw, for the

bazaar. A bazaar can limp along even while several bugs are trying to be fixed. There

is no need for all bugs to be necessarily fixed in order for the system to continue

working, because, unlike the cathedral, information hiding allows the bazaar to work

with a lower number of required communications among all parts of the system. The

19

voluntary division of labor of the bazaar in fact generates a distributed intelligence

that is also, to some extent, parallel. That is to say that we have an organization where

there is an uncommon level of redundancy as well as of uniqueness of knowledge

content. It is the amalgamation of the redundancy and uniqueness – or, if you prefer,

of non-specialized and specialized labor – from modularity that aids the speed of

adaptation (e.g., bug fixing).
13

In general, however, it would be imprecise to assume that adaptation – the

creation and discovery of new knowledge – rests merely on a parallel and distributed

intelligence. Here (as elsewhere) new knowledge can also be generated in isolation by

mere thinking. “Any kind of experience – accidental impressions, observations, and

even ‘inner experience’ not induced by stimuli received from the environment – may

initiate cognitive processes leading to changes in a person’s knowledge. Thus, new

knowledge can be acquired without new information being received” (Machlup 1983,

p. 644, emphasis removed).

But in these cases too it is the modular nature of voluntary OSS organization

that plays a crucial role. Information hiding encourages individual abstract thinking: a

volunteer can maintain congruency with the common goal of the project by working

on a particular task that interests her, because she knows that while she is at work

there will not be external disturbances. Similarly to property rights in social systems,

in fact, information hiding defines sheltered domains where individuals can focus

their cognitive attention not having to worry about possible ‘violations’ of property.

The sheltering allows planning and acting notwithstanding the Hayekian knowledge

problem, assisting divided labor (Miller and Drexel 1988).

13 Organizational parallels with multi-level minds that are also modular have a long history in economics;

see, for example, Marshall (1994[1867-8]), which seems to have had a profound influence on his

subsequent theory of organization (Marshall, e.g., 1961, pp. 250-66).

20

However, with few exceptions mostly concerning novel knowledge

simultaneously affecting several existing modules and their interrelations where we

would see, for example, the coordination of the project leader, it is in the main the

visible design rules that filter the value of the novel knowledge from individual

thinking to the organization. Recall in fact that knowledge itself is a system of rules of

action for a system that can also change a system. Hence, analogously to the case of

organizationally-generated knowledge, it is the visible design rules – the already-

accepted organizational knowledge – that most often coordinate the new knowledge

that is individually generated. The visible design rules per se are a source of

redundancy in that they are the minimum common denominator ordering the

individual and organizational knowledge interactions, and that, additionally, allow

knowledge to be re-used and shared across the system. In short, visible design rules

cement a modular system while simultaneously being sufficiently plastic to allow

changes in the system itself in the face of evolutionary necessity.

Let us point out before wrapping up that we are not suggesting that OSS holds

a monopoly on voluntary production. One of the most obvious comparable

organizational modes is arguably the production of science.
14

 Scientific communities

have organized themselves in a similar voluntary fashion at least since the late

sixteenth century when inquiry replaced secrecy, social cooperation replaced

individual isolation, and spontaneous coordination replaced top-down planned design

and control (David, e.g., 2004). In addition, in most cases we decide what topics we

fancy working on, and the decisions made need not be particularly founded on a ‘best

fit’ for those topics as opposed to an interest in them. Similarly, we form research

teams spontaneously for different projects, and we participate in networks and belong

14 We are grateful to an anonymous referee who suggested that we make this parallel more explicit.

Compare also the earlier Garzarelli et al. (2008) and Langlois and Garzarelli (2008) that hint to the

production parallel with science as well as to others (e.g., voluntary production for hobbyist ends).

21

to ‘invisible colleges’ according to shared research topics and fields. To ensure the fit

of what we do within the broader literature, we must posses, and need to convey, a

sense of the broader structure of the scientific research program (note the word,

program) within which we are operating. In this regard, new PhDs (the new blood) are

often less clear about the broader architecture of their discipline than the more

experienced researchers (the old timers). And just as open source development

communities examine the robustness of submitted code, so too do peers of academia

when refereeing papers submitted to journals and conferences. In both organizational

modes, information is shared, suggestions for improvement made, learning

opportunities created among colleagues, and contributions are more about

spontaneously supplying effort to a big project rather than about making a product

according to some predefined blueprint.
15

5. Conclusion

This paper analyzes the modular organization of voluntary OSS production by

considering the relationship between the imperfect matching of a programmer’s

specialization to a performed task and productivity. It proposes that productivity gains

15

 Two observations can be made. First, from casual empiricism, one could argue that it is more common

for social scientists than for natural scientists to work in the bazaar mode. Second, voluntary production

may not be safe from opportunism either (Williamson, e.g., 1985). A referee has an incentive to hold

back on some things that she could see that she could develop in her own work, thereby allowing a paper

to get published without some extensions being noted or ‘bugs’ fixed. In proprietary software firms, it is

possible for an employee to make herself indispensable by limiting how much she documents what she

does in an opportunistic manner, so that if she were to be fired it would take substantial investment for

the organization to acquire the knowledge she had been using. We arguably get less potential for

opportunism in voluntary OSS projects, though it is easy to imagine that if an OSS volunteer also has a

‘day job’ in which he uses similar capabilities, he may wish to limit how much he shares with others

who are working on the same module and have day jobs with other companies who may be rivals. Note

here that opportunism does not derive from physical asset specificity or other financial commitments that

may be hard to liquidate or re-use elsewhere. Since exit in voluntary organization is easy, the wasted

resource would merely be time, though this time investment may be more than offset by the learning that

takes place while involved in the voluntary project. This second observation also brings to mind

Richardson’s (1960) concern with what he saw as the ‘problem’ of coordinating market entry decisions

when entry barriers are low. In voluntary production, having ‘too many’ programmers working on a

particular module or research project prima facie doesn’t seem a particularly big problem because of

ease of exit. Be that as it may, both observations require further scrutiny.

22

may also be realized through non-specialized inputs: imperfect matching is offset by a

parallel and overlapping division of labor that aids learning from each other’s

mistakes. As long as volunteers can freely exchange the knowledge that they come

across, generate, and interpret, organizational knowledge can only ever grow.

Voluntary production renders relatively easy for individuals to take up a set of

tasks out of a sheer need to do so; however, it renders equally relatively easy for them

to abandon a set of tasks in the pursuit another set. As a result, there may be a

situation in which volunteers do not bring to completion their initial tasks. Therefore,

voluntary production may not always be able to optimally capitalize on spontaneous

contributions; and such inconsistency of efforts may also mean that development

speed is not always as rapid as we would like to believe.

 References

Ames, Edward, and Nathan Rosenberg 1965. “The Progressive Division and

Specialization of Industries,” Journal of Development Studies 1(4): 363-

383(July).

Atkinson, Anthony B., and Joseph E. Stiglitz 1969. “A New View of Technological

Change,” Economic Journal 79(315): 573-578(September).

Baetjer, Howard Jr. 1998. Software as Capital. An Economic Perspective on Software

Engineering. Los Alamitos, CA: IEEE Computer Society.

Baldwin, Carliss Y. 2008. “Where Do Transactions Come From? Modularity,

Transactions, and the Boundaries of Firms,” Industrial and Corporate Change

17(1): 155-195.

Baldwin, Carliss Y., and Kim B. Clark 2000. Design Rules: The Power of Modularity.

Volume I. Cambridge: MIT Press.

David, Paul A. 2004. “Understanding the Emergence of ‘Open Science’ Institutions:

Functionalist Economics in Historical Context,” Industrial and Corporate

Change 13(4): 571-589.

David, Paul A., and Francesco Rullani 2008. “Dynamics of Innovation in an ‘Open

Source’ Collaboration Environment: Lurking, Laboring, and Launching FLOSS

Projects on SourceForge,” Industrial and Corporate Change 17(4): 647-710.

Deci, Edward L. 1971. “Effects of Externally Mediated Rewards on Intrinsic

Motivation,” Journal of Personal and Social Psychology 18(1): 105-115.

23

Dosi, Giovanni, and Marco Grazzi 2006. “Technologies as Problem-solving

Procedures and Technologies as Input-Output Relations: Some Perspectives on

the Theory of Production,” Industrial and Corporate Change 15(1): 173-202.

Feller, Joseph, and Brian Fitzgerald 2002. Understanding Open Source Software

Development. London: Addison-Wesley.

Fransman, Martin F. 1994. “Information, Knowledge Vision and Theories of the

Firm,” Industrial and Corporate Change 3(3): 713-757.

Frenken, Koen, Luigi Marengo, and Marco Valente 1999. “Interdependencies, Near-

decomposability and Adaptation,” in Thomas Brenner, ed., Computational

Techniques for Modeling Learning in Economics. Dordrecth: Kluwer: 145-165.

Frey, Bruno S. 1997. “On the Relationship between Intrinsic and Extrinsic Work

Motivation,” International Journal of Industrial Organization 15(4): 427-

439(July).

Garzarelli, Giampaolo 2008. “The Organizational Approach of Capability Theory,”

Review of Political Economy 20(3): 443-453(July).

Garzarelli, Giampaolo, Yasmina Reem Limam, and Bjørn Thomassen 2008. “Open

Source Software and Economic Growth: A Classical Division of Labor

Perspective,” Information Technology for Development 14(2): 116-135(Spring).

Georgescu-Roegen, Nicholas 1970. “The Economics of Production,” American

Economic Review 60(2): 1-9(May).

Giuri, Paola, Matteo Ploner, Francesco Rullani, and Salvatore Torrisi 2010. “Skills,

Division of Labor and Performance in Collective Inventions. Evidence from

Open Source Software,” International Journal of Industrial Organization 28(1):

54-68(January).

Hayek, Friedrich A. von 1937. “Economics and Knowledge,” Economica 4(13): 33-

54(February).

Hayek, Friedrich A. von 1945. “The Use of Knowledge in Society,” American

Economic Review 35(4): 519-530(September).

Hayek, Friedrich A. von 1978. New Studies in Philosophy, Politics, Economics and

the History of Ideas. London: Routledge & Kegan Paul.

Houthakker, Hendrik S. 1956. “Economics and Biology: Specialization and

Speciation,” Kyklos 9(2): 181-189.

Jensen, Michael C., and William H. Meckling 1992. “Specific and General

Knowledge, and Organizational Structure,” in W. Lars and H. Wijkander (eds.),

Contract Economics. Oxford: Basil Blackwell: 251-274.

Knight, Frank H. 1967. The Economic Organization (with an article Notes on Cost

and Utility). New York: Augustus M. Kelley Publishers (Reprints of Economic

Classics). First edition privately printed in 1933; first published 1951.

Kogut, Bruce, and Anca Metiu 2001. “Open Source Software Development and

Distributed Innovation,” Oxford Review of Economic Policy 17(2): 248-264.

Langlois, Richard N., and Pierre Garrouste 1997. “Cognition, Redundancy, and

Learning in Organizations,” Economics of Innovation and New Technology

4(4): 287-299.

Langlois, Richard N., and Giampaolo Garzarelli 2008. “Of Hackers and Hairdressers:

Modularity and the Organizational Economics of Open-source Collaboration,”

Industry and Innovation 15(2): 125-143(April).

24

Leijonhufvud, Axel 1986. “Capitalism and the Factory System,” in Richard N.

Langlois, ed., Economics as a Process: Essays in the New Institutional

Economics. New York: Cambridge University Press: 203-223.

Leijonhufvud, Axel 2007. “The Individual, the Market, and the Division of Labor in

Society,” Capitalism and Society 2(2): Article 3.

Machlup, Fritz 1983. “Semantic Quirks in the Theory of Information,” in F. Machlup

and U. Mansfield (eds.), The Study of Information: Interdisciplinary Messages,

New York, John Wiley: 641-671.

March, James G. 1991. “Exploration and Exploitation in Organizational Learning,”

Organization Science 2(1): 71-87(February).

Marshall, Alfred 1994[1867-8]. “Ye Machine,” reprinted, as edited by Tiziano

Raffaelli, in Research in the History of Economic Thought and Methodology,

Archival Supplement 4: 116-32.

Marshall, Alfred 1961. Principles of Economics (ninth [variorum] edition, with

annotations by C. W. Guillebaud), Volume I. London: Macmillan.

Miller, Mark S. and K. Eric Drexler 1988. “Markets and Computation: Agoric Open

Systems,” in Huberman, B. A. (ed.), The Ecology of Computation. Amsterdam:

North-Holland: 133-76. Online version (last accessed May 1, 2010):

http://e-drexler.com/d/09/00/AgoricsPapers/agoricpapers/aos/aos.0.html.

Mises, Ludwig von 1960. Epistemological Problems of Economics, Princeton, New

Jersey, Toronto, New York and London: D. Van Nostrand Company, Inc.

Translated by George Reisman. Originally published 1933.

Murdock, Ian 2003. “Debian: A Brief Retrospective,” (last accessed April 26, 2010)

http://www.linuxplanet.com/linuxplanet/editorials/4959/1/.

Osterloh, Margit, and Rota, Sandra G. 2004. “Open-source Software Development –

Just Another Case of Collective Invention?” Working Paper, University of

Zurich (March). Available at: http://ssrn.com/abstract=561744.

Parnas, David Lorge 1972. “On the Criteria to be Used in Decomposing Systems into

Modules,” Communications of the ACM 15(12): 1053-1058(December).

Raymond, Eric S. 2001. The Cathedral and the Bazaar. Musings on Linux and Open

Source by an Accidental Revolutionary (revised edition). Sebastopol, CA:

O’Reilly & Associates, Inc.

Richardson, G. B. 1960. Information and Investment. A Study in the Working of the

Competitive Economy. London: Oxford University Press.

Rosenberg, Nathan 1969. “The Direction of Technological Change: Inducement

Mechanisms and Focusing Devices,” Economic Development and Cultural

Change 18(1): 1-24(Part 1, October).

Simon, Herbert A. 1998. “The Architecture of Complexity: Hierarchic Systems,” in

Idem, The Sciences of the Artificial, 3rd edition, second printing. Cambridge,

Mass.: MIT Press: 183-216. Originally published in 1962, Proceedings of the

American Philosophical Society 106(6): 467-82(December).

Smith, Adam 1981. An Inquiry into the Nature and Causes of the Wealth of Nations

(two volumes). Indianapolis: Liberty Fund. First published 1776.

Stiglitz, Joseph E. 1987. “Learning to Learn, Localized Learning and Technological

Progress,” in Partha Dasgupta and Paul Stoneman, eds., Economic Policy and

Technological Performance. Cambridge: Cambridge University Press: 125-153.

25

Williamson, Oliver E. 1985. The Economic Institutions of Capitalism. New York: The

Free Press.

Winter, Sidney G. 2005. “Toward an Evolutionary Theory of Production,” in Kurt

Dopfer, ed., The Evolutionary Foundations of Economics. Cambridge:

Cambridge University Press: 223-254.

