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ABSTRACT. Markov Switching models have been successfully applied to many economic problems.

The most popular version of these models implies that the change in the state is driven by a Markov

Chain and that the state is an exogenous discrete unobserved variable. This hypothesis seems to be

too restrictive. Earlier literature has often been concerned with endogenous switching, hypothesizing

a correlation structure between the observed variable and the unobserved state variable. However, in

this case the classical likelihood-based methods provide biased estimators. In this paper we propose a

simple “estimation by simulation” procedure, based on indirect inference. Its great advantage is in the

treatment of the endogenous switching, which is about the same as for the exogenous switching case,

without involving any additional difficulty. A set of Monte Carlo experiments is presented to show the

interesting performances of the procedure.

1 INTRODUCTION

Markov Switching (MS hereafter) models have been successful in the econometric literature,

since they are able to consider different states in the analyzed variable, and to provide an in-

ference on the regime. The most popular version of these models (Hamilton, 1990) supposes

that the change in the state is driven by a Markov chain with constant transition probability

matrix and with an exogenous latent state variable controlling the regime change. In some

applications the hypothesis of exogenous switching seems too strong; for example, in the

analysis of business cycle, the state variable would represent recession and growth periods,

and would be naturally correlated with the observable dependent variable.

The motivation for which the state variable has been considered exogenous with respect

to the dependent variable is that the estimation method used for MS models, based on the

nonlinear filter of Hamilton (1990), provides biased estimation in the case of endogenous

switching. The researchers have dealt with this problem only recently. In particular, Kim

et al. (2003) propose a bias correction in the likelihood; their approach is very interesting,



because it is able to explicit the exact likelihood function, hypothesizing a particular Normal

model for the state variable; however when the model underlying the state variable is not

Normal, their approach provides only an approximation of the likelihood.

In this work, we propose to estimate the MS model with endogenous switching via indi-

rect estimation procedures (Gouriéroux et al. 1993, Gallant and Tauchen, 1996), that seem

robust under different model specifications for the state variable. Using “computational” care

in dealing with the discontinuous response implied by the switching regime, the implemen-

tation of indirect inference is quite straightforward. In particular, we show, via Monte Carlo

experiments, that the auxiliary model we propose provides good performance of indirect es-

timation both for exogenous and endogenous switching and both for the Normal and non

Normal cases.

In the next section we briefly describe the MS model we deal with; in section 3 the indirect

estimation method is introduced and in section 4 we show some simulation experiments to

evaluate this approach, comparing it with the procedures proposed by Kim et al. (2003) and

Hamilton (1990).

2 THE MODEL

For the sake of simplicity, let us consider the simple MS model:

yt = α0 +α1st + εt t = 1, ...,T (1)

εt ∼ N
(

0,σ2
st

)

where the intercept and the variance of the error terms depend upon the state variable st , which

can assume two values (name them 0 and 1), representing the regimes. The state variable is

not observable and its distribution is unknown; we suppose that st follows an ergodic Markov

chain, in which the probability of a particular realization of st depends only on the realization

of st−1. The transition probabilities are in the matrix P, where the generic element pi j =
Pr(st = j|st−1 = i), i, j = 0,1 represents the probability of being in state j at time t given that

the state at time t−1 was i. Of course, model (1) can be generalized, including autoregressive

terms or exogenous variables, depending or not on the variable st , and considering a generic

number k of regimes or more complex probability structures (for instance as in Otranto,

2005).

Hamilton (1990) estimates this model developing a non linear Kalman filter to integrate

the effect of the lagged states, simplifying the likelihood function. Such a model considers

the state variable st exogenous with respect to yt .

To introduce the MS model with endogenous switching we need to specify a certain

degree of correlation between st and yt ; as in Kim et al. (2003), we suppose a probit repre-

sentation of the state process:

st =

{

0 i f s∗t < 0

1 i f s∗t > 0

where:

s∗t = ϑ0 +ϑ1st−1 +ηt t = 1, ...,T (2)

ηt ∼ N (0,1)



From this representation, it follows that the transition probabilities are obtained as:

p00 = Φ(−ϑ0)

p11 = 1−Φ(−ϑ0 −ϑ1)

where Φ is the standard Normal cumulative distribution function. In addition, we suppose

that εt in (1) and ηt in (1) are correlated with correlation parameter ρ. Of course, to obtain

unbiased (consistent) estimators of the unknown parameters in (1), we have to take into ac-

count, in the likelihood specification, the expected value and the variance of εt conditional on

st and st−1. Kim et al. (2003) propose a bias correction, which provides the exact likelihood

in the case of Normal ηt , whereas it is only an approximation in the other cases. Its use in

other cases may lead to biased (inconsistent) estimators. In the next section we propose an

indirect inference methodology to obtain consistent estimators in more generale cases.

3 INDIRECT ESTIMATION

Among the many interesting simulation based estimation procedures proposed in the litera-

ture, Indirect Inference (Gouriéroux et al., 1993) and the Efficient Method of Moments (Gal-

lant and Tauchen, 1996) deserve a special attention from the computational point of view for

their simplicity of implementation.

The underlying idea of these methods is that the estimation of a model of interest yt =
f (yt−1,xt ,εt ,α), where xt are exogenous variables, α ∈ A is the vector of parameters of inter-

est, εt are the errors with known parametric distribution, yt are endogenous variables and yt−1

lagged endogenous variables, can be conducted using a misspecified model (called auxiliary)

yt = g(yt−1,xt ,νt ,β), where β ∈ B is a parameter vector, νt are errors.

The Indirect Inference of α proposed by Gouriéroux et al. (1993) is given by:

α̂ = argmin[β̂− β̃(α)]′Ω−1
1 [β̂− β̃(α)] (3)

where β̂ are the parameter estimates of the auxiliary model using the observed data yt gener-

ated by the model of interest, β̃(α) are the parameter estimates of the auxiliary model using

data ỹ(α), simulated from the model of interest conditional on xt , εt and α, and Ω1 is a posi-

tive definite matrix.

Gallant and Tauchen (1996) proposed a different version of (3), also called Efficient

Method of Moments (EMM hereafter), given by:

α̂ = argmin
∂L

∂β′
(ỹ(α); β̂)Ω−1

2

∂L

∂β
(ỹ(α); β̂) (4)

where ∂L
∂β(ỹ(α); β̂) is the score function of the auxiliary model on the simulated data ỹ(α)

evaluated in β̂, and Ω2 is a positive definite matrix.

Estimators (3) and (4) associated with the optimal choice of the weighting matrix Ω1 and

Ω2 have the same asymptotic efficiency and are both consistent and asymptotically Normal

under general conditions (Gouriéroux and Monfort, 1996).



The simplicity of the indirect estimation “costs” in finite sample a larger variance of the

estimated parameters. The same variance can be reduced considering the average of h (=100

in our experiments) estimates of the auxiliary model obtained on h independent simulated

data sets from the model of interest: β̃(α) = 1
h ∑h

j=1 β̃ j(α), since the expression of the vari-

ance includes a multiplying factor (1+ 1
h
). Gouriéroux et al. (1993) showed that, without ex-

ogenous variables, this variance reduction can be obtained with a single h∗T size simulated

series from the model of interest. The same result can be found for (4). Moreover, Gallant

and Tauchen (1999) proved that if the auxiliary model encompasses the true data generating

process, than the Quasi-Likelihood becomes a sufficient statistic and the EMM becomes fully

efficient, while if the auxiliary model is a close approximation to the data generating process,

the EMM efficiency can be expected to be close to the Maximum Likelihood estimator.

One of the remarkable features of indirect estimation methods is that they can work (and

sometimes they can work “well”) even with surprisingly simple auxiliary models, the only

requirement being the existence of a regular and well behaved binding function b(α) for

α ∈ A (see Gouriéroux et al., 1993): in practice, some well behaved relationship must exist

between parameters of the model of interest (α) and parameters (or score) of the auxiliary

model β̃(α).
For our problem we suggest to use as auxiliary model a Normal bivariate model very

similar to (1)-(1), avoiding the unobservable variables. The model is:

yt = α0 +α1ζt + εt

ζt = ϑ0 +ϑ1ζt−1 +ηt (5)

et ∼ N (0,Hst )

where et=[εt ,ηt ]
′ and

Hst =

[

σ2
0(1− ζt)+σ2

1ζt ρσ0(1− ζt)+σ1ζt

ρσ0(1− ζt)+σ1ζt 1

]

The variable ζt is obtained by the logistic function:

ζt =
exp [cyt ]

1+ exp [cyt ]

and substitutes the latent variables s∗t and st in (1)-(1). The constant c is chosen experimentally

(values around 5–10 have given good results in the experiments). Supposing st = 1 the “high”

regime and st = 0 the “low” regime, the logistic transformation pushes large values towards

1 (likely related to st = 1), and pushes towards 0 all small values of yt (likely related to

st = 0). It has, however, the advantage of being a continuous transformation (discontinuities

cause great, sometimes overwhelming, computational difficulties in indirect estimation, often

making minimization difficult or impossible; see Di Iorio and Calzolari, 2005).

What must be done to obtain an estimate of the auxiliary model parameters (β̂), is simply

to maximize the pseudo-likelihood of model (??):

T

∏
t=1

|2πHst |
−0.5

exp

{

−0.5

[

yt −α0 −α1ζt

ζt −ϑ0 −ϑ1ζt−1

]′

H
−1
st

[

yt −α0 −α1ζt

ζt −ϑ0 −ϑ1ζt−1

]}



Its score, which has a simple closed form expression, is then used in the EMM procedure,

as in equation (4).

Table 1. Simulation results: means and variances (in parentheses) of the estimates. Number of replica-

tions=1000; T=1000

Normal case

Par. α0 α1 ϑ0 ϑ1 σ2
0 σ2

1 ρ
True -2 4 -1.3 2.6 1 1 0

EMM -1.9951 3.9868 -1.2951 2.6039 0.9981 1.0109 -0.0018

(0.0049) (0.0127) (0.0086) (0.0216) (0.0096) (0.0097) (0.0097)

KPS -1.9966 4.0036 -1.3028 2.5811 1.0067 0.9848 -0.0040

(0.0027) (0.0056) (0.0068) (0.0142) (0.0069) (0.0056) (0.0073)

H -1.9950 3.9999 -1.3037 2.5828 1.0059 0.9844

(0.0023) (0.0043) (0.0067) (0.0140) (0.0068) (0.0056)

True -2 4 -1.3 2.6 1 1 0.9

EMM -1.9936 3.9872 -1.2932 2.5986 1.0050 1.0097 0.9061

(0.0028) (0.0057) (0.0058) (0.0150) (0.0049) (0.0059) (0.0014)

KPS -2.0008 3.9932 -1.2976 2.6007 0.9975 1.0113 0.9021

(0.0023) (0.0047) (0.0064) (0.0125) (0.0061) (0.0040) (0.0006)

H -2.3120 4.6173 -1.2980 2.5935 0.9023 0.9165

(0.0018) (0.0049) (0.0073) (0.0115) (0.0045) (0.0032)

True -2 4 -1.3 2.6 0.25 1 0.9

EMM -1.9974 3.9960 -1.3188 2.6570 0.2487 1.0000 0.9171

(0.0008) (0.0111) (0.0129) (0.0802) (0.0004) (0.0059) (0.0015)

KPS -2.0004 3.9928 -1.2976 2.6007 0.2494 1.0112 0.9021

(0.0006) (0.0030) (0.0064) (0.0125) (0.0004) (0.0040) (0.0006)

H -2.1561 4.4619 -1.2991 2.5955 0.2252 0.9146

(0.0005) (0.0030) (0.0072) (0.0113) (0.0003) (0.0031)

Mixed case

True -2 4 -1.3 2.6 1 1 0.9

EMM -1.9980 3.9997 -1.3092 2.6274 0.9705 0.9554 0.9048

(0.0024) (0.0053) (0.0164) (0.0652) (0.0192) (0.0116) (0.0090)

KPS -2.0675 4.1361 -1.5420 3.0768 0.9656 0.9752 0.7820

(0.0018) (0.0042) (0.0069) (0.0147) (0.0164) (0.0148) (0.0033)

H -2.2544 4.5102 -1.4772 2.9604 0.9277 0.9313

(0.0019) (0.0039) (0.0069) (0.0168) (0.0138) (0.0121)

True -2 4 -1.3 2.6 0.25 1 0.9

EMM -1.9967 4.0098 -1.3427 2.7119 0.2483 0.9316 0.9254

(0.0005) (0.0049) (0.0171) (0.1027) (0.0021) (0.0185) (0.0036)

KPS -2.0321 4.0915 -1.5384 3.0728 0.2347 0.9994 0.7925

(0.0004) (0.0022) (0.0069) (0.0151) (0.0006) (0.0220) (0.0021)

H -2.1264 4.3802 -1.4776 2.9616 0.2254 0.9507

(0.0005) (0.0023) (0.0069) (0.0169) (0.0005) (0.0191)



4 MONTE CARLO EXPERIMENT

In this work we follow the Gallant and Tauchen (1996) EMM approach that presents, in this

framework, some computational advantages. We propose some simulation experiments to

evaluate the performance of the indirect method in the estimation of a model (1)-(1). The

length of each simulated time series is T = 1000 and the number of Monte Carlo replications

is 1000.

We have performed several simulation experiments, considering the case of high corre-

lation and the case of no correlation, as well as the case of switching variance and fixed

variance. In Table 1 we compare the results obtained by the EMM procedure with the method

of Kim et al. (KPS) and the classical estimation via Hamilton (1990) non linear filter (H),

which is biased when ρ 6= 0. In addition, we consider two cases: the case named “Normal” in

which both εt and ηt are Normal, and the case named “Mixed”, in which ηt is generated as a

Student’s-t random variable with 4 degrees of freedom (successively standardized), and εt as

a weighted sum of ηt and a standard Normal variable, with weights calibrated to guarantee a

correlation equal to ρ and a variance of εt equal to σ2
st

. The values of ϑ0 and ϑ1 correspond

to p00=p11=0.9032, representing a situation of strong persistence in the same regime (typical

situation in many real cases, e.g. Hamilton, 1990).

From Table 1 we can note the performance of EMM. It shows a loss in efficiency with

respect to KPS in the Normal case, where KPS considers the true likelihood function; the

loss is particularly evident in the estimation of ρ. However, the EMM method is the only

robust with respect to the Mixed case, in which KPS and H perform poorly, in particular in

the estimation of ρ, ϑ0 and ϑ1.
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