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Chapter 0 Preface 

Unit 0.1 What is the difference between the textbook and this 
companion? 

I am going to call the book NCT, by the last initials of the authors. All references are to the 
sixth edition of NCT. 

On the good side, the book has a lot of intuitive explanations and plenty of exercises, which 
is especially handy for instructors. The coverage of statistical topics is wide, so that most 
instructors will not need to look for other sources. Statistics requires a lot of math. The 
authors have done their best to hide the mathematical complexities and make the book 
accessible to those who are content using formulas without having to derive them. 

This last advantage, looked at from a different angle, becomes a major drawback. If you have 
to remember just five formulas, after applying each once or twice perhaps you will memorize 
them. But how about 100 formulas? This is an approximate number of equations and verbal 
definitions (which eventually translate to equations) contained in the first six chapters of 
NCT. Some formulas are given more than once, in different forms and contexts. For example, 
different types of means are defined in Sections 3.1, 3.3, 5.3, 6.2 and 18.2, and it takes time 
and effort to relate them to one another. For your information, all types of means are special 
cases of just one, population mean. The origin of most equations is not explained. When most 
formulas fall out of the blue sky, after a while you get lost. When it is necessary to 
systematize testing procedures scattered over several sections or chapters, the situation 
becomes even more complex. Look at Figure 10.10 that describes the decision rule for 
choosing an appropriate testing procedure. If you are comfortable using it and all the relevant 
formulas without understanding the links between them, then you don’t need this companion. 

Now suppose that you are an ordinary human, who cannot mechanically memorize a bunch 
of formulas, like me or my students, who feel completely lost after the first six chapters if I 
follow the book’s approach. Suppose you want to see a harmonious, coherent picture instead 
of a jigsaw puzzle of unrelated facts. Then I am going to try to convince you that studying 
formulas with proofs and derivations is the best option. 

Unit 0.2 Why study math? 

Firstly, it’s not that much. You don’t need to dig all the math you’ve forgotten from high 
school. Just study what I give (which is directly related to the course), and then you’ll see that 
all properties of means make great sense and fit just two pages, with all the intuition, special 
cases and derivations. The same goes for variances, covariances, confidence intervals etc. 

Secondly, knowing the logic (the links between theoretical facts) significantly reduces the 
burden on your memory. For example, just being familiar with the general principle of 
linearity will allow you to deduce all properties of covariances and variances in the logical 
chain 

means → covariances  → variances 

from the properties of the first link (means). This is especially important in case of 
confidence intervals (and there are dozens of them) all of which are based on a few general 
ideas. My students love my handouts because instead of reading 30-40 pages in NCT they 
have to read just 9 pages (on average) for each chapter. 
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Thirdly, the knowledge cemented by logic stays in the memory much longer than 
mechanically memorized facts. Being able to derive equations you studied in the beginning of 
the semester will give you confidence when applying them during the final exam. 

Fourthly, because in our brain everything is linked it has a wonderful property that can be 
called an icebreaker principle: as you develop one particular capability, many other brain 
activities enjoy a positive spillover effect. The logic and imagination you develop while 
studying math will give a comparative advantage in all your current and future activities that 
require analytical abilities. This influence on your skills and aptitude will be even more 
important than the knowledge of statistics as a subject. 

Fifthly, the school approach to studying formulas through their application is not going to 
work with NCT. At high school you had to study a small number of different applications and 
had enough time to solve many exercises for each application type. In statistics, the number 
of different typical applications is so large that you will not have time to solve more than two 
exercises for each. 

Sixthly, some students avoid math remembering their dreadful experience struggling with it 
at high school. Their fear of math continues well into college years, and they think: If I failed 
to learn math at high school, how can I learn it in just one semester (or year) at a university? I 
have a soothing and encouraging answer for such students. Most likely, you fell victim to a 
wrong teaching methodology, and I would not rely on your grades at high school to judge 
your math abilities. Some of your misunderstandings and problems with math may have 
come from your early age (when you saw for the first time, say, fractions or algebra rules). At 
that time your cognitive abilities were underdeveloped. Now you are an adult and, if you are 
reading this, you are a completely normal person with adequate cognitive abilities. You can 
comprehend everything much faster than when you were at elementary school. It’s like with a 
human embryo, which in 9 months passes all the stages of evolution that took the humans 
ages to become who they are now. There are a couple of rules to follow though. Forget your 
fears, do not rely on that scanty information you are not sure about and look for common 

sense in everything you see. Relying on logic instead of memory is the best rule − this is why 
I prefer to teach people with work experience. Unlike fresh high-school graduates, they don’t 
take anything for granted and are sincere about their lack of math background. 

The seventh and the most important reason has been overlooked by all those who 
recommend to sidestep all formula derivation and concentrate on mastering formulas through 
their applications. See, some of us are endowed with good logic and imagination from birth. 
For such people, indeed, it is enough to see a formula and a model exercise for its application 
to be able to apply the formula on their own in a slightly different situation. But most of us 
mortals are not that bright. I’ve seen many people who understand well the statement of the 
exercise and know all the required theory and yet do not see the solution. In this case there is 
only one verdict: such individual’s logic and imagination are not good enough. Explaining 
the solution to him/her usually doesn’t help because that doesn’t improve their logic and 
imagination and in a similar situation they will be lost again. 

Logic and imagination are among the most advanced functions of our brain. Most people 
think that you either possess them or you don’t and it is not possible to develop them. I can 
tell you a big secret that this is wrong, at least in math. Study mathematical facts and theories 
WITH the pertaining logic, and with time your own logic will start working (this is how your 
humble servant has become a mathematician). More about how to do this will be said later. 
For now let me state the main recommendation. Some of the exercises in NCT are pretty 
tricky and their diversity is amazing. Don’t even hope to learn the solutions of a dozen model 
exercises and then be able to solve the rest of them. 
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Your sure bet is to develop your own logic and imagination and the best way to achieve this 
purpose is to study mathematical facts with proofs and derivations. 

OK, suppose I have convinced you that studying math is worthwhile and you are ready to 
give it a try. Then why not combine reading NCT with reading one of the extant 
mathematical texts? In what way is this manuscript different or better than the pile on the 
market? Well, this manuscript is not just another math text. It’s the teaching philosophy that 
makes the difference. I talk about the learning strategy almost as much as about the subject 
itself. The exposition and study units are designed to develop your self-learning skills. There 
are comments on psychological aspects of the study process for students, teachers and even 
(present or future) parents. 

Unit 0.3 Exposition 

This manual is by no means a replacement for NCT. If I leave out some material, it means 
that it is well explained in NCT or it is not essential. 

The order of definitions and statements in NCT does not reflect their logical sequence. 
Sometimes logically interrelated facts are scattered over different sections or even chapters in 
NCT. I do the opposite: the material is organized in study units, which combine logically 
linked information. This made necessary to give some material earlier or later than in NCT. 
Therefore placement of a study unit in a certain chapter is approximate. The heading of a unit 
contains the list of terms defined in it. Those headings and the index of terms allow you to 
establish the correspondence between NCT and this manual. I want my students to be able to 
answer questions of certain difficulty. Those questions determine the sizes of study units. 

Unit 0.4 Formatting conventions 

The level of difficulty of a unit is indicated by a line on the left side. 

The dashed line on the left means something you are supposed to know from high school or 
math prerequisites. 

There is no line on the left if the level roughly corresponds to NCT.  

A single continuous line on the left means a higher level, which is desirable to study because 
it highlights important ideas. Sometimes it is included just to feed information-hungry 
students. 

The text to type in Excel is shown in Courier font. 

Italic indicates a new term even though the word “definition” may not be there. 

The most important methodological recommendations are framed like this. 

Unit 0.5 Best ways to study 

First best way. Study a theoretical problem, the existing approaches to its solution, try to 
improve or generalize upon them and write a publishable article. This way is not accessible to 
most students. 

Second best way. As you study, write your own book or manual, in your own words and the 
way you understand it. For example, Joon Kang uploads to scribd.com his supplements to 
NCT with his own vision of the subject. This way is as rewarding as it is time-consuming 
(but quite accessible to some students). When I was 32, I wrote a book with my major 
professor M. Otelbaev. In one year I learned more than in the previous three years. 
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Third best way. After reading some material, close the book and write down the main points 
explaining the accompanying logic. The luckiest of you may have a classmate to retell the 
material to (I am a stickler of team-based learning). This way is quite feasible for most 
students. I call it active recalling, as opposed to passive repetition, when after reading the 
material you just skim it to see what you remember and what you don’t. This way may be 
time-consuming initially but after a while you’ll get used and your speed will increase. Many 
things you did not understand before will become simple. Try to work in the evenings when 
you are so tired that your memory refuses to function but your logic still works. 

In the end the 1980’s I had to give an intensive course in functional analysis. I gave 10 hours 
of lectures a week, 6 hours in a row in one day and 4 hours in another. As this all was high 
level stuff, the course was very useful for me (and a disaster for students). 

Secret to success. Actively recall the material, in increasingly large chunks (not necessarily 
limited to my study units) and at an increasingly high speed. 

If you don’t do this, I don’t guarantee anything. In my classes, I make sure that students 
actively repeat the material by arranging competitions among student teams. 

Explanation. Nobody knows exactly what creative imagination means, in terms of neural 
activity. Let’s talk about internal vision by which I mean the ability to see a large and 
complex picture at once. Internal vision can be compared to a ray of a flashlight. If the ray of 
your flashlight is narrow and the picture is big, you can see only a part of it. The wider the 
ray, the more of the picture you see. When you see the whole picture, you can solve the 
problem. 

Active recalling of increasingly large amounts of material forces the brain to adjust and 
gradually increase internal vision. 

Increasing the speed of recalling (or writing) is important for two reasons. In addition to 
widening internal vision, it also strengthens the degree of excitation of neurons. Your 
thoughts become clearer and the speed of formation of new synapses (intra-neuron links) 
increases. The second reason is that high recalling speed reduces the degree of verbalization 
of the thinking process. 

In most cases, in math too much bla-bla-bla is harmful! 

 

Send me feedback through LinkedIn. 

Kairat Mynbaev 

June 4, 2010 
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Chapter 1 How to Study Statistics? 

Most of the material of the first two chapters of NCT can be safely skipped, not only because 
it is unimportant but primarily because our brain tries to systematize the incoming 
information, and there is very little systematic content in the first two chapters. Also, some 
issues from Chapters 1-2 are better taken up in subsequent chapters, when you are ready for 
their solution. I use this space to discuss some issues deeper than in the book and at the level 
you will need later. High-school material or the stuff you are supposed to remember from 
math prerequisites is reviewed. Solve the relevant exercises in the book only when you find 
my explanations insufficient. 

Unit 1.1 The structure of mathematics (definitions, axioms, 
postulates, statements) 

Math consists of definitions, axioms and statements. Definitions are simply names of objects. 
They don’t require proofs. Axioms (also called postulates) are statements that we believe in; 
they don’t require proofs and are in the very basement of a theory. Statements have to be 
proved. Depending on the situation and the tastes of the researcher, they may have different 
other names: theorem, lemma, proposition, criterion etc. Statements are a way to economize 
on space and thinking efforts. They summarize sometimes very long arguments and serve as 
building bricks in subsequent constructions. 

In math texts definitions take up at most 5 to 10% of space. A common error of students of 
quantitative subjects is to jump to statements without thinking enough about definitions1. 
Definitions not only give names to objects but they also give direction to the theory and 
reflect the researcher’s point of view. Often understanding definitions well allows you to 
guess or even prove some results. 

Unit 1.2 Studying a definition (natural, even, odd, integer and real 
numbers; sets) 

A definition starts with a preamble which sets a background and allows you to see the 
existence of objects with distinct properties. Most of the time the preamble is not even 
mentioned but there are cases when it contains a complex logical argument. After you 

understand the preamble understanding the definition proper − that is giving the name − 
becomes easy. Studying a definition is concluded by considering possible equivalent 
definitions and deriving immediate consequences. 

Example 1.1 (1) Preamble. Let us consider natural numbers (these are numbers 1, 2, 3, … 
that naturally arise when counting things). We can notice that some of them are divisible by 2 
(for example, 4/2 = 2 is an integral number) and others are not (e.g., 3/2 is a fractional 
number). 

(2) Definition proper. The natural numbers that are divisible by 2 (2, 4, 6, …) are called 
even. The natural numbers that are not divisible by 2 (1, 3, 5, …) are called odd. 

                                                 

 

 
1
 When I was young I also committed this error. 



12 

 

(3) Immediate consequences. (i) Any natural number is either even or odd. (ii) If a natural 
number is even and divisible by 3 at the same time, then it is divisible by 6. 

Some basic objects cannot be defined or their precise definitions are too complex for this 
course. In such cases it is better to give equivalent (descriptive) names or simply list the 
objects we name (as it has been done in case of natural numbers). 

Example 1.2 The following names are used interchangeably: set = collection = family = 
array. 

Example 1.3 Natural numbers are members of the set {1, 2, 3, ...}N = . Integer numbers are 

members of the set {0, 1, 2, ...}Z = ± ± . In some applications (see Unit 5.12 and Unit 5.15) 

we shall need nonnegative integer numbers listed in {0, 1, 2, ...}Z
+
= . 

Example 1.4 The next type of numbers we need, real numbers, cannot be put in a list. As a 
convenient working definition, we call real numbers those numbers that can be written in a 

decimal form. For example, the famous number π, is, by definition, the ratio of the length of a 

circumference to its diameter. Its decimal form, is, up to approximation, π = 3.1415926… 
Integer numbers fall into this category: for example, 1 = 1.000… The set of all real numbers 

is denoted R . 

Unit 1.3 Ways to think about things (commutativity rules, 
quadratic equation, real line, coordinate plane, Venn diagrams) 

(i) When you study a definition, don’t think about a single representative of a class of objects; 
try to think about the whole class. Thinking in terms of sets will systematize your knowledge. 

(ii) In algebra, when we denote numbers by letters, we mean that whatever rules we write 
with letters are of universal character and apply to all numbers in a given set. For example, 
the commutativity rules for summation and multiplication a b b a+ = + , ab ba=  hold for all 

real numbers and not just for those specific ones you may plug in. Simple algebra rules, like 
the ones we have just seen, are easy to formulate verbally. Verbal formulation and derivation 
of complex algebra rules is a nightmare. For example, try to verbalize the rule for finding the 

roots of the quadratic equation 2
0ax bx c+ + = . This is what people did before 1637, when 

René Descartes introduced modern algebraic notation. This is what people still do in the 
beginning and intermediate micro- and macroeconomic courses. Excuse me, but this is a 
stone age! This tradition persists for the only reason that the teaching methodology at 
secondary and high school fails. With the right methodology, every normal person can learn 
algebra2. 

(iii) Believe me, even with zero math background you can quickly learn algebra if you follow 
a few simple rules: 

(a) Pay attention to small details, like the usage of upper- and lower-case letters, the 
difference between parentheses (), brackets [] and braces {}, punctuation and 

arithmetic signs (+, −, ×, /). 

                                                 

 

 
2
 I studied early education issues, experimented with my children and know what I am talking about. 
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(b) Try to find a tangible (or intuitive) interpretation for each element in a 
mathematical construction. Usually, geometry clarifies many things. For example, a 
real number can be uniquely identified with a point on a straight line (called a real 
line in this case); a pair of real numbers can be uniquely identified with a point on a 
coordinate plane; Venn diagrams help when working with sets. 

(c) Similarly, explain for yourself each step in a long algebraic transformation. Don’t 
trust the book or the professor. 

Your knowledge of and interest in the subject will directly depend on the percentage of the 
material you can explain. 

(d) Initially it helps to translate formulas to verbal statements and back. Verbalization 
can also help in case of long, complex definitions and statements (we’ll return to this 

when discussing p -values, see Unit 10.4). With time you’ll be able to do without 

verbalization, and in complex situations the best thing to do is shut up and 
concentrate3. 

(e) In such a theoretical subject as statistics it is not possible to provide real-life 
motivating examples for absolutely all parts of the theory. In fact, many theoretical 
problems are prompted by the internal logic of the theory; even more often the 
solutions to the problems are based on mathematical intuition. We are not computers; 
we need some level of interest in the subject and some level of satisfaction from our 
efforts to continue our studies. It may be relieving to learn that 

We tend to like what we understand. 

Try to keep your level of understanding high (say, at 80 to 90%) and the interest in the 
subject will ensue. 

(f) If your ambition is to get a high mark in statistics, follow what I call a 110% rule. 
We inevitably forget a part of what we’ve studied. 

To know all 100% of the material, you have to study 110%. 

                                                 

 

 
3
 When I brought my son to the USA and put him to the 7

th
 grade, he did not speak English. The math teacher 

would explain to the students the solution for half an hour, they would diligently write down his explanations 

and my son would sit doing nothing. The teacher would ask why he wasn’t writing anything and my son would 

show a one-line solution to the problem. 
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Chapter 2 Describing Data: Graphical 

Unit 2.1 Classification of variables (definitions: intuitive, formal, 
working, simplified, descriptive, complementary; variables: 
numerical, categorical, discrete, continuous) 

An important part of working with definitions consists in comparing related definitions. This 
is the right time to discuss the choice from among different definitions of the same object. An 
intuitive definition gives you the main idea and often helps you come up with the formal 
definition, which is mostly a formula4. Formal definitions may have different forms. The one 
which is easier to apply is called a working definition. Some complex definitions may be 
difficult to understand on the first push. In this case it is better to start with simplified 
definitions. They usually are also shorter. We also distinguish between descriptive definitions 
(when properties of an object are described) and complementary definitions (instead of saying 
what an object is we can say what it is not). 

In the next diagram you see a summary of Section 2.1 from NCT on classification of 
variables. Those definitions that are not essential for the subsequent chapters are skipped. For 
the remaining I give short, working and simplified definitions. 

 

NCT usually give several motivating examples. I recommend remembering and thinking 
about just one motivating example for each definition (or statement, or method). 

Problem with categorical variables. Categorical variables have been defined as 
complementary to numerical ones. Most statistical measures use arithmetic operations. 
Therefore they are not applicable to categorical variables. The workaround is to associate 
numerical variables with categorical variables. For example, instead of working with 
responses “Yes” and “No” we can work with the variable that takes two values: 1 for “Yes” 
and 0 for “No”. 

                                                 

 

 
4
 The mathematician Kronecker is reported to have said," God created the natural numbers; all the rest is the 

work of man." Read more: Natural Numbers: http://science.jrank.org/pages/4570/Natural-

Numbers.html#ixzz0lznifXd9. 

Variables

Numerical (the ones which take 
numerical values)

Discrete (simplification: 
the ones that take a finite 

number of values)

Continuous (which take all 
values in some interval of a 

real line)

Categorical (whose values are 
not numerical)
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Unit 2.2 Frequencies and distributions (Bernoulli variable, 
binomial variable, sample size, random or stochastic variable, 
absolute and relative frequencies, frequency distributions) 

One of the implicit purposes of Chapter 2 is to show you that real-life data are huge and 
impossible to grasp without certain graphical tools or summary measures. I think at this point 
it is important for you to get an idea of how the data arrive and how they are transformed for 
the purposes of statistical data processing. Using an Excel spreadsheet will give you the 
feeling of the data generation process in real time5. 

Exercise 2.1 We are going to simulate a numerical two-valued variable (in Unit 7.3 it will be 
identified as the Bernoulli variable). In cell A1 type the name Bernoulli. In cell A2 enter 
the formula 

=IF(RAND()>1/4,0,1) 

exactly as it is (no blanks) 6. You can use lower-case letters but Excel will convert them to 
upper-case. In Tools/Options/Calculations select “Manual” and click OK. Now press F9 
several times to see some realized values of the Bernoulli variable. 

Exercise 2.2 This example models a variable with 4 integer values (we’ll see in Unit 7.3 that 
it’s a binomial variable). Copy the formula you entered in A2 to cells A3, A4 (you can select 
cell A2, pick with a mouse a small square in the lower right corner of the cell and pull it 
down for the selection to include cells A3, A4; the formula will be copied). In cell B1 type 
Binomial and in cell B2 enter the formula 

=SUM(A2:A4) 

By pressing F9 you can observe the realized values of the binomial variable. Many students 
consider it quite a headache. It will be, if you jump to the conclusions. 

Exercise 2.3 This is the main exercise. We are going to collect a sample of observations on 

the binomial variable. By definition, the sample size, n , is the number of observations. 

(a) Choose n , press F9 n  times and write down the values observed in cell B2: 

 
1 2

..., ..., ..., ...

n
b b b= = =  (2.1) 

Don’t be lazy and use at least 30n = . 

(b) After having pressed F9 n  times do you think you can predict what will show up next 
time? Intuitive definition of a random variable: a variable is called random (or stochastic) if 
its values cannot be predicted. 

(c) Alternatively, do you think you can tell what is NOT likely to show up next time? The 
answer I am pushing for is that any number except 0, 1, 2, 3 is not likely to appear. 

                                                 

 

 
5
 I am using Office 2003; all simulations are done in the same file; for new examples I use the cells to the right 

of the filled ones. 

6
 The explanation of all Excel functions we use can be found in Excel Help. The mathematical side of what we 

do will be explained in Unit 7.3. 
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(d) Denote 
i
x  distinct values in your sample. Most probably, they are 

1 2 3 3
0, 1, 2, 3x x x x= = = = . Count the number of times 

i
x  appears in your sample and denote 

it 
i
n , 1, 2,3,4.i =  These numbers are called absolute frequencies. Do you think their total is 

n : 

 
1 2 3 4

?n n n n n+ + + =  (2.2) 

(e) The numbers /
i i
r n n= , 1,2,3, 4,i =  are called relative frequencies.

1
r , for example, shows 

the percentage of times the value 
1
x  appears in your sample. Do you think the relative 

frequencies sum to 1: 

 
1 2 3 4

1?r r r r+ + + =  (2.3) 

You can get this equation from (2.2) by dividing both sides by n . 

(f) Summarize your findings in a table: 

Table 2.1 Table of absolute and relative frequencies (discrete variable) 

Values of the variable Absolute frequencies Relative frequencies 

1
0x =  

1
...n =  

1
...r =  

2
1x =  

2
...n =  

2
...r =  

3
2x =  

3
...n =  

3
...r =  

4
0x =  

4
...n =  

4
...r =  

 Total = n  Total = 1 

Conclusions. Suppose somebody else works with a different sample size. Your and that 
person’s absolute frequencies will not be comparable because their totals are different. On the 
other hand, comparing relative frequencies will make sense because they sum to 1. Relative 
frequencies are better also because they are percentages. The columns of frequencies show 
how totals are distributed over the values of the variable. Therefore they are called absolute 
and relative frequency distributions, respectively. For convenience reasons, most of the time 
the last column of Table 2.1 is used and the adjective “relative” is omitted. Once you 
understand this basic situation, it is easy to understand possible variations, which we consider 
next. 

Categorical variables. For example, suppose that at a given university there are four 
instructor ranks: lecturer, assistant professor, associate professor and full professor. Then 
instead of Table 2.1 we have 

Table 2.2 Table of absolute and relative frequencies (categorical variable) 

Values of the variable Absolute frequencies Relative frequencies 

Lecturer 
1

...n =  
1

...r =  

Assistant professor 
2

...n =  
2

...r =  

Associate professor 
3

...n =  
3

...r =  

Full professor 
4

...n =  
4

...r =  

 Total = n  Total = 1 

Exercise 2.4 Here we model a continuous variable. See Unit 7.3 for the theory. 

(a) To model summer temperatures in my city, type in cell C1 Temperature and in cell C2 
the formula 
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=NORMINV(RAND(),25,8) 

The resulting numbers are real and may have many nonzero digits. Usually nobody reports 
temperatures with high precision. In Format/Cells/Number select “Number” as the category 
and 1 decimal place in “Decimal places” and click OK. 

(b) Select the sample size and write down the observed values in form (2.1). Since the 
elements in the sample are real numbers, none may be repeated and in that case all absolute 
frequencies are equal to 1. What is worse, if you obtain another sample, it may have very few 
common elements with the first one. To achieve stability over samples and reduce the table 
size, in such cases the observations are joined in ranges (groups, clusters). In case of 
temperatures you can use intervals of length 1: 

 
min max

10 11, ..., 39 40t t t t= ≤ < ≤ < =  (2.4) 

 (the values
min max
,t t  will in fact depend on the sample and may be different from the ones you 

see here). In this approach the values in the first column will be intervals (2.4). 

(c) For each observation, you calculate the number of observations falling into that interval to 
find the absolute frequency. Since observed values are replaced by the intervals they fall into, 
under this approach a part of the information contained in the sample is lost. However, if the 
lengths of the intervals are decreased, the loss decreases and the resulting frequencies 

represent the variables very well. Denoting k  the number of intervals, we obtain a table of 
type: 

Table 2.3 Table of absolute and relative frequencies (continuous variable) 

Values of the variable Absolute frequencies Relative frequencies 

10 11t≤ <  
1

...n =  
1

...r =  

… … … 

39 40t≤ <  
...

k
n =  ...

k
r =  

 Total = n  Total = 1 

Unit 2.3 Visualizing statistical data (coordinate plane; argument, 
values, domain and range of a function; independent and 
dependent variables; histogram, Pareto diagram, time series, 
time series plot, stem-and-leaf display, scatterplot) 

Some graph types used by statisticians are readily available in Excel. Others require some 
data manipulation to produce results equivalent to those available in Minitab. Alternatively, 
you can buy SPC XL, a statistical add-in for Excel. But I think discussing definitions of main 
graph types is more important than seeing them. 

In the coordinate plane, we have two axes. x-values are put on the horizontal axis. y-values 

are put on the vertical axis. A point with coordinates ( , )x y  is located at the intersection of 

two straight lines: one of them is drawn vertically through point ( ,0)x  (which is on the x-

axis); the other is drawn horizontally through point (0, )y  (which is on the y-axis). 

A graph is the best tool to visualize a functional relationship. The rough-and-tough approach 

to graphing a function ( )y f x=  is to (a) select several values of the argument
1
, ...,

n
x x , (b) 

calculate the corresponding values of the function 
1 1

( ), ..., ( )
n n

y f x y f x= = , (c) put the 
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points 
1 1

( , ), ..., ( , )
n n

x y x y  on the coordinate plane and (d) draw a smooth line through these 

points. If you have never done this, do it at least once, say, for 2
2 1y x= + . 

Keep in mind the terminology introduced here: x  is the argument, ( )f x  is the value. The set 

of all arguments of the given function is called its domain. The set of all values is called its 
range. As the argument runs over the domain, the value runs over the range. 

When working with functions, it’s better to use words that emphasize motion. The notion of a 
function is one of the channels through which motion is introduced in mathematics. 

The argument is also called an independent variable, while the value − a dependent variable. 
It is customary to plot the dependent variable on the y-axis and the independent one on the x-
axis, the most notable exceptions being the plots of demand and supply in economics. 

In order to be at sea with statistical graphs, you have to be clear about what is the argument 
and what is the value in each case. The short way to express this is: plot this … (values) 
against that … (arguments). 

2.3.1 Histogram short definition: plot frequencies against values. 

Explanations. (i) In case of numerical values, put them on the x-axis. Atop each of them 
show the corresponding frequency with a vertical bar whose height is equal to the frequency. 
The width of the bar doesn’t matter, as long as the bars have the same widths and don’t 
overlap. You can use either absolute or relative frequencies. I prefer relative frequencies and 
from now on talk only about them. 

(ii) When values are intervals, we know from Exercise 2.4 that intervals of type (2.4) are 
adjacent. Bars showing frequencies are plotted against centers of the intervals. Regarding the 
heights and widths of the bars there are two possibilities: 

(iia) The heights express frequencies. The widths don’t matter as long as the bars 
don’t overlap. 

(iib) The areas of the bars are equal to frequencies. In this case the widths are equal to 
the lengths of the intervals on the x axis (the bars stand shoulder to shoulder) and the 
heights are calculated from the usual area rule 

area = height × width. 

The second possibility is used when, as in our case, the sample is obtained from a continuous 
variable. As we’ll see in Unit 6.2, for a continuous variable there is an equivalent of relative 
frequencies, and that equivalent hinges upon area rather than height. 

(iii) Suppose the values are categories other than ranges of numerical values, like instructor 
ranks. You put them on the x-axis at arbitrary points and plot the bars as in case (i). 

2.3.2 Pareto diagram: same as a histogram, except that the observations 
are put in the order of decreasing frequencies. 

Example 2.1 In this case it is important to remember the motivation. Suppose there are too 
many traffic jams in the city and the mayor is determined to eliminate them. Among the 
reasons of traffic jams there are: lack of parking space in the center of the city, car accidents, 
absence of car junctions in critical areas, rush hours etc. It makes sense to start dealing with 
problems that have the highest impact on traffic jams frequency. Such problems (categories) 
on the histogram should be put first. 
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2.3.3 Time series plot: plot values against time. 

Exercise 2.5 A time series is a sequence of observations on a variable along time. For 

example, a sequence of daily observations on Microsoft stock can be written as 
1
,...,

n
s s . The 

observations are plotted in their raw form, without calculating any frequencies. We model 
them in Excel as follows. In D1 type Stock and in D2 enter the formula 

=NORMINV(RAND(),25,8) 

Copy it to cells D3-D21 (which corresponds to 20n = ). Select column D and in the Chart 
Wizard select “Line” for the plot type. When you press F9, you see various realizations of the 
time series. Time series plots are good to see if there are any tendencies or trends in a series 
and how volatile it is. Financial time series are among the most volatile. 

2.3.4 Stem-and-leaf display 

Firstly, this is not a graphical display. It is a tabular representation of the data where the 
observations are grouped according to their leading digits and the final digits (remainders) are 
used to show frequencies in each group. Secondly, going from the usual decimal 
representation to the stem-and-leaf display and back is drudgery. Given its very limited use in 
statistical data processing and availability of computers, having students do it by hand is a 
stone age. The only reason I give the next exercise is that in NCT it is not explained how you 
go from the stem-and-leaf display back to the decimal representation. 

Example 2.2 Let’s say we have a sample of lengths of 10 fish: 

1 2 3 4 5

6 7 8 9 10

9.8, 10.1, 14.5, 10.5, 13.2,

11.1, 9.2, 11.7, 15.0, 10.2.

x x x x x

x x x x x

= = = = =

= = = = =

 

We take the integer part (the number before the decimal point) as the stem (leading digits) 
and the digit after the decimal point as the leaf  (final digits). The lengths 

2 4 10
10.1, 10.5, 10.2x x x= = =  fall into one group. The stems are shown in the second 

column and the leaves in the third column. The first column contains cumulative frequencies. 
To obtain them, you start counting the absolute frequencies from the upper and lower ends 
until the cumulative frequencies are about the same (in the middle). The cumulative 
frequency in the first row is the absolute frequency in that row; the cumulative frequency in 
the second row is the sum of absolute frequencies in that row and the preceding row. You go 
like that and stop at row 4 because if you count similarly the cumulative frequencies starting 
from the bottom, in row 5 you will have 8. 

Table 2.4 Stem-and-leaf display 

Cumulative frequencies Stem Leaf 

2 9 2, 8 
5 10 1, 5, 6 
7 11 1, 7 
7 12  
8 13 2 
6 14 5 
1 15 0 

 Total = n  Total = 1 

Note four features of this display. 

(i) The stems are ordered, unlike the original data. 
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(ii) The number of leaves readily shows absolute frequencies in each group. 

(iii) You can restore the original values from this display if you know how much one unit in 

the stem is worth. In our example it is worth 1w=  so, for example, the first line gives two 
values 

9 2 0.1 9 0.2 9.2, 9 8 0.1 9 0.2 9.8.w w w w⋅ + ⋅ ⋅ = + = ⋅ + ⋅ ⋅ = + =  

(iv) If we considered young fish, instead of 9.2 and 9.8 we could have 0.92 and 0.98 and each 

unit in the stem would have been worth 0.1w= . The above calculation would have given the 
right values. 

2.3.5 Scatterplot: plot values of one variable against values of another. 

Be alert when you see a discussion of pairs of variables. Most students find this topic 
difficult. 

Exercise 2.6 We want to see a rough dependence between the weight and height of an adult. 

For a sample of n  adults we write down their weights 
1
, ...,

n
w w  and heights 

1
, ...,

n
h h . The 

first thing to note is that these observations should be written in pairs because it doesn’t make 
sense to correlate one person’s weight with another person’s height. The second thing is that, 
logically, it is the height that determines the weight and not the other way around. Therefore 
the right way to write the observations is 

 1 1
( , ), ..., ( , ).

n n
h w h w

 (2.5) 

A scatterplot just shows these points on the coordinate plane. Now we proceed with 
simulating them. 

(i) In cell E1 type Heights and in cell E2 put the formula 

=NORMINV(RAND(),170,30) 
(heights are measured in centimeters and weights in kilos). In cell F1 type Weights and 
in cell F2 put the formula 

=E2-100+NORMINV(RAND(),0,20) 

Select cells E2, F2 and by pulling down the small square in the lower right corner of cell F2 
copy the contents of E2, F2 to sufficiently many cells, including E21, F21 (for future 
exercises). 

(ii) Select columns E, F and use the plot type X,Y (Scatter) without lines connecting the 
points to see the scatterplot. To make it nicer, in Step 3 of the Chart Wizard on the tab 
“Titles” type Heights for Value (X) axis and Weights for Value (Y) axis; on the tab 
“Legend” uncheck “Show legend”. 

(iii) You can see on the plot that there is, on average, a positive relationship between weight 
and height, as expected. If you press F9, the sample and plot will change. 

Unit 2.4 Questions for repetition 

1. Describe verbally how you get Table 2.1. 

2. Give short definitions of a histogram, Pareto diagram, time series plot, stem-and-leaf 
display, scatterplot and indicate when they are appropriate. 
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Chapter 3 Describing Data: Numerical 

Unit 3.1 Three representations of data: raw, ordered and 
frequency representation 

In this chapter we consider numerical characteristics of data sets. As you think about the 
definitions given here, keep in mind three possible representations of observations on a real 
random variable: 

(i) Raw representation. You write down the data in the order you observe them: 

 
1
, ...,

n
x x  (3.1) 

(ii) Ordered representation. You put the observations on the real line and renumber them in 
an ascending order: 

 
1

...
n

y y≤ ≤  (3.2) 

These are the same points as in (3.1), just the order is different, so the number of points is the 
same. 

(iii) Frequency representation. This is a table similar to Table 2.1. That is, you see how 

many distinct values there are among the observed points and denote them 
1

...
m

z z≤ ≤  

(obviously, m  does not exceed n ). For each 
i
z  you find its absolute frequency 

i
n  and 

relative frequency 
i
r . The result will be 

Table 3.1 Absolute and relative frequencies distribution 

Values of the variable Absolute frequencies Relative frequencies 

1
z  

1
n  

1
r  

… … … 

m
z  

m
n  

m
r  

 Total = n  Total = 1 

Our plan is to detail Figure 3.1 (below). 

Unit 3.2 Measures of central tendency (sample mean, mean or 
average, median, mode; bimodal and trimodal distributions; 
outliers) 

Mean. The sample mean (or simply mean or average) is the usual arithmetic mean 

 1
...

n
x x

x

n

+ +

=  (3.3) 

Does it change if instead of the raw representation one uses the ordered representation? 
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Figure 3.1 Numerical characteristics of samples 

Median. Intuitive definition. The median is such a point that half of the observations lie to 
the left of it and another half to the right. It is useful to consider two samples (note that using 
the ordered representation is better). 

Sample 1: 
1 2 3

0, 1, 5y y y= = = . Sample 2: 
1 2 3 4

0, 1, 3, 5y y y y= = = = . 

In Sample 1, where n  is odd, only 1m=  satisfies the intuitive definition of the median. In 

Sample 2, where n is even, any point between 1 and 3 can serve as a median. To achieve 

uniqueness, it is customary to take 2, the middle of the interval (1,3) , as the median. 

Before generalizing upon these examples, we have to think about a general form of writing 
even and odd numbers. You can verify that 

(a) any number in the sequence 2, 4, 6, … can be written in the form 2k  where k  runs over 
naturals 

and that 

(b) any number in the sequence 1, 3, 5, … can be written in the form 2 1k +  where k  runs 
over nonnegative integers. 

Formal (and working) definition of the median. 

Step 1. Arrange the observations in an ascending order. 

Step 2. (a) If the number of observations is even, 2n k= , then the observations 
k
y  and 

1k
y
+
 

will be the equivalents of the observations 
2
y  and 

3
y  in Sample 2 and 

median = 
1

1
( )

2
k k
y y

+
+ . 

(b) If the number of observations is odd, 2 1n k= + , then the observation 
1k

y
+
 will be the 

equivalent of the middle observation 
2
y  in Sample 1 and 

median = 
1k

y
+
. 

Diagram:

Numerical characteristics of 
samples

Measures of central 
tendency

Mean Median Mode

Measures of 
variability (of 

spread)

Range and IQR Variance and 
standard deviation



23 

 

Mode. The mode is the most frequent observation. Obviously, in this case the frequency 
representation must be used. Note that it is possible for a frequency distribution to have more 
than one most frequent observation. In that case all of them will be modes. In the literature 
you can see names like bimodal, trimodal distributions. 

Which of the measures of central tendency to use depends on the context and data. 

Table 3.2 Exemplary comparison of measures of central tendency 

Measure Pros Cons 

Sample mean Has the best theoretical properties 
(to be discussed in Unit 5.2 
through Unit 5.5). 

Can be applied only to 
numerical variables. 

Median Not sensitive to outliers. Good for 
income measurement. 

Is not sensitive to where the 
bulk of the points lies. 

Mode Can be used for categorical 
variables. Good when only most 
frequent observation matters. 

Insensitive to all but the 
most frequent observation. 

Don’t try to memorize this table. Think about the examples in NCT. Try to feel the 
definitions. Don’t think about observations as something frozen. Try to move them around. 
For example, you can fix the median, and move the points to the left of it back and forth. As 
you do that, do the sample mean and mode change? Or you can think about dependence on 
outliers, which, by definition, are points which lie far away from the bulk of the observations. 
If you move them further away, which of the measures of central tendency may change and 
which do not? 

Unit 3.3 Shape of the distribution (symmetry; positive and 
negative skewness; tails) 

The definitions of symmetry and skewness must be given in terms of the histogram. 

The distribution is called symmetric if the histogram is symmetric about the mean (that is, 
observations equidistant from the mean to the left and right must have equal frequencies), see 
Figure 10.21 in NCT. Empirical distributions rarely are exactly symmetric, and judgments 
about approximate symmetry are subjective. 

We don’t need the mathematical definition of skewness. The approximate definition of 
positive skewness given in NCT (that the mean should be greater than the median) is too 
often at variance with the precise definition. As a rule of thumb, it is better to talk about tails. 
We say that a distribution is positively skewed if the right tail is heavier than the left (think 
about the bars of the histogram as made of a heavy substance). 

Unit 3.4 Measures of variability (range, quartiles, deciles, 
percentiles; interquartile range or IQR; five-number summary, 
sample variance, deviations from the mean, sample standard 
deviation) 

Range. The smallest observation, denoted min
i
x , in terms of the ordered representation is, 

obviously, the leftmost point 
1
y . Similarly, the largest observation max

i
x  is the rightmost 

point 
n
y . Thus, 

1
min , max

i i n
x y x y= = . 
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(i) Sometimes people call by the range the difference 
1

Range
n
y y= − . 

(ii) It also makes sense to use this name for the segment 
1

Range [ , ]
n

y y= . This is the smallest 

segment containing the sample. 

Definition of quartiles, deciles, percentiles. The idea behind them is the same as with the 
median: certain intervals should contain certain fractions of the total number of observations. 
For example, in case of quartiles we want the picture in Figure 3.2 where each of the 

intervals 
0 1 1 2 2 3 3 4

( , ), ( , ), ( , ), ( , )Q Q Q Q Q Q Q Q  contains 25% of all observation. 

 
Figure 3.2 Five number summary 

This leads to the following definition: 

1
Q = observation numbered 0.25( 1)n +  

3
Q = observation numbered 0.75( 1)n + . 

Actually, one has to take integer parts of the numbers 0.25( 1)n + , 0.75( 1)n +  to apply this 

definition. Similarly, 

kth decile is the observation numbered ( 1)
10

k
n+  

kth percentile is the observation numbered ( 1)
100

k
n + . 

In the literature you can see other definitions and none of them is perfect because all are 
approximate. Think about it: if you have just 20 observations, how can you divide them in 
100 equal parts? 

Definition of IQR. As explained in NCT, the range depends on outliers. When this is a 
problem, the spread of the middle 50% of the data may be preferable. This gives us the 
definition of the interquartile range, or IQR: 

3 1
IQR Q Q= − . 

A five-number summary is the set of numbers in Figure 3.2: 

0 1 2 3 4
min max .

i i
x Q Q Q median Q Q x= < < = < < =  

Variance. The sample variance is defined by 

 2 2 2

1

1
( ) ... ( ) .

1
x n
s x x x x

n

 = − + + − −
 (3.4) 

A few names will help you understand this construction. 
1
,...,

n
x x are the observed points. The 

differences 
i
x x−  are called deviations (from the mean). 2

( )
i
x x− are squared deviations. 

Their average would be 

Q
0
= y

1
Q

1
Q

2
= median Q

3
Q

4
= y

n
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2 2

1

1
( ) ... ( ) .

n
x x x x

n

 − + + −   

In the definition of 2

x
s  there is division by 1n−  instead of n  for reasons to be explained in 

Unit 7.2.  

Exercise 3.1 If you can’t tell directly from the definition how to calculate 2

x
s , I insist that you 

do everything on the computer. 

(i) If you are using the same Excel file as before, in cells D2-D21 you should have simulated 
observations on stock price. In cell G1 type Mean and in G2 enter the formula 

=SUM($D$2:$D$21)/20 

This is the average of the values 
1 20
,...,s s ; the dollar signs will prevent the addresses from 

changing when you copy the formula to other cells. 

(ii) Copy the formula to G2-G21. We want the same constant in G2-G21 to produce a 
horizontal line of the graph. 

(iii) Select columns D, G and the line plot in the Chart Wizard. The time series plot is good to 
see the variability in the series. The sample mean is shown by a horizontal line. Some 
observations are above and others are below the mean, therefore some deviations from the 
mean are positive and others are negative. 

(iv) In H1 type Deviations, in H2 type =D2-G2 and copy this to H3-H21. In I1 type 
Squared deviations, in I2 enter =H2^2 and copy this to I3-I21. You can notice that 
deviations have alternating signs and squared deviations are nonnegative. 

(v) In H22 type =SUM(H2:H21)/20 and in I22 enter the formula =SUM(I2:I21)/19. 
The value in H22, the average of deviations, will be close to zero showing that the mean 

deviation is not a good measure of variability. The value in I22 is 2

x
s . 

Standard deviation. The quantity 2

x x
s s=  is called a sample standard deviation.  

Lessons to be learned. Both sample variance and sample standard deviation are used to 
measure variability (or volatility, or spread). Both are based on deep mathematical ideas and 
for now you have to accept them as they are. Unlike the range or IQR, both depend on all 
observations in the sample. 

Once I took a course in Financial Management in a Business Department. Several equations 
from Corporate Finance were used without explanations of the underlying theories. The 
whole course was about using formulas on the calculator. The Business students were happy 
and I was horrified. Read again the above procedure and make sure you see the forest behind 
the trees. You should be able to reproduce the definitions and, if necessary, use the calculator 
instead of Excel. 

Exercise 3.2 (a) What happens to 2

x
s  if all observations are increased by 5? Try to give two 

different explanations. 

(b) Can the sample variance be negative? 

(c) If the sample variance is zero, what can you say about the variable? 

Unit 3.5 Measures of relationships between variables (sample 
covariance, sample correlation coefficient; positively 
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correlated, negatively correlated and uncorrelated variables; 
perfect correlation) 

This is another complex topic which will be fully explained in Chapter 5. 

A sample covariance is defined by 

 [ ]1 1

1
( )( ) ... ( )( )

1
xy n n
s x x y y x x y y

n
= − − + + − −

−

 (3.5) 

where ( , )
i i
x y  are observations on a pair of variables. It is an auxiliary algebraic device that 

doesn’t have much geometric or statistical meaning by itself. To remember the definition, 

compare it to 2

x
s  and note that 2

xx x
s s= . After Exercise 3.1 you should know how to calculate 

xy
s . 

A sample correlation coefficient is defined by 

xy

xy

x y

s

r

s s

=  

where
xy
s  is the sample covariance and ,

x y
s s  are sample standard deviations. 

These definitions are rooted in the Euclidean geometry. In particular, in Chapter 5 we shall 
see that 

xy
r = cosine of the angle between two vectors associated with sample data. 

For those who know properties of cosine this explains why the range of 
xy
r  is the segment 

[ 1,1]− . We say that the variables ,x y  are positively correlated if 0
xy
r >  and negatively 

correlated if 0
xy
r < . In case 0

xy
r =  the variables are called uncorrelated. In the extreme 

cases 1
xy
r = ±  we talk about perfect correlation. We use Excel to see what these names mean 

in terms of a scatterplot. 

Exercise 3.3 (a) From Exercise 3.1 it should be clear that calculating the sample correlation 
coefficient is a long story, even in Excel. We are going to take a shortcut using a built-in 
function CORREL. In Exercise 2.6 we have plotted the scatterplot of the pair (Height, 
Weight). To find the correlation coefficient for the same pair, in cell J1 type Positive 
correlation and in cell J2 the formula 

=CORREL(E2:E21,F2:F21) 

(b) To generate a variable that is negatively correlated with Height, in K1 type Negative, 
in K2 put the formula =-E2+NORMINV(RAND(),0,20) and copy it to K3-K21. In L1 
type Negative correlation and in L2 put the formula 
=CORREL(E2:E21,K2:K21). You know how to plot the scatterplot. 

(c) For the table below you might want to arrange cases of perfect positive and negative 
correlations. Just use formulas like =2*E2 and =-E2. Simulation of uncorrelated variables 
can be done using Exercise 12.3(2). 

Table 3.3 Summary of results on sample correlation coefficient 

Values of 
xy
r  Statistical interpretation Scatterplot 
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1
xy
r =

 
There is an exact linear 
relationship between 

,

i i
y x  in the form 

i i
y a bx= +  with a 

positive b . 

 
0 1

xy
r< <

 
There is an approximate 
linear relationship 

between ,

i i
y x  in the 

form 
i i
y a bx≈ +  with a 

positive b . 

 
0

xy
r =

 
There is no definite 
pattern in the 
dependence. 

 
1 0

xy
r− < <

 
There is an approximate 
linear relationship 

between ,

i i
y x  in the 

form 
i i
y a bx≈ +  with a 

negative b . 

 
1

xy
r = −

 
There is an exact linear 
relationship between 

,

i i
y x  in the form 

i i
y a bx= +  with a 

negative b . 

 

Exercise 3.4 Form some pairs of variables: inflation, unemployment, aggregate income, 
investment, government expenditures, per capita income and birth rate. For each pair you 
form indicate the expected sign of the correlation coefficient. 

Least-squares regression is one of important topics of this chapter. I am not discussing it 
because with the knowledge we have I cannot say about it more than the book, and what we 
have done should be enough for you to understand what the book says. End-of-chapter 
exercises 3.46-3.56 is the minimum you should be able to solve. The full theory is given in 
Chapter 12. 

Unit 3.6 Questions for repetition 

1. Give in one block all definitions related to the five-number summary 
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2. An expression for the sample variance equivalent  to (3.4) is 

( )
2

2 21 1
.

1 ( 1)
X i i
s x x

n n n

= −

− −

∑ ∑  Which one is easier to apply on a hand calculator? 

3. Solve Exercise 3.45 from NCT. 
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Chapter 4 Probability 

The way uncertainty is modeled in the theory of probabilities is complex: from sets to 
probabilities to random variables and their characteristics. 

Unit 4.1 Set operations (set, element, union, intersection, 
difference, subset, complement, symmetric difference; disjoint 
or nonoverlapping sets, empty set) 

Recall that the notion of a set is not defined. We just use equivalent names (collection, 
family, or array) and hope that, with practice, the right intuition will develop. 

In the examples in the next table S  denotes the set of all students of a particular university, 

A  denotes the set of students taking an anthropology class and B  is the set of students taking 

a biology class. We write x A∈  to mean that x  is an element of A  ( x belongs to A ). x A∉

means that x  is not an element of A . 

Table 4.1 Set operations: definitions, visualization and logic 

Definition Visualization on 
Venn diagram 

Logical interpretation and/or comments 

The union A B∪  is the set 
of elements which belong to 

A , to B  or both. 

Figure 4.2 in 
NCT 

Logically, the union corresponds to 

nonexclusive “or”7. A B∪ means all 
students who study anthropology or 
biology (or both). 

The intersection A B∩  is 
the set of elements common 

to A and B . 

Figure 4.1(a) in 
NCT 

Logically, the intersection corresponds 

“and”. A B∩ is the set of students who 
study both anthropology and biology. 

The difference \A B  is the 

set of elements of A  which 

do not belong to B .   

\A B is the set of students who study 
anthropology but not biology. Don’t use 
“–“ (minus) or “|” (pipe) instead of the 
backslash “\”. 

We say that A  is a subset 

of S  and write A S⊂  if all 

elements of A  belong to .S  

 In applications S  will be fixed, while its 
subsets will be changing. 

A complement A  is defined 

as the difference \A S A=  

and includes elements of S

outside A . 

Figure 4.3 in 
NCT. 

A is the set of students who do not study 
anthropology. 

The set 

( \ ) ( \ )A B A B B A= ∪△  is 

called a symmetric 

difference of A and B . 
 

(lightly shaded 

The symmetric difference logically 

corresponds to “either or”. A B△ is the set 

of students who study A  or B  but not 
both. 

                                                 

 

 
7
 In English “or” is nonexclusive whereas “either or” is exclusive. In some other languages there is only one 

“or” and one has to specify whether it is exclusive or nonexclusive. 

BA 

BA 

A S 
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area) 

For convenience, people introduce the empty set ∅  (the set without elements). A andB  are 

called disjoint (or nonoverlapping) if A B∩ =∅ (they have no common elements). 

Unit 4.2 Set identities (distributive law, de Morgan laws, equality 
of sets) 

To solve some exercises in NCT you need to use certain set relations. All of them can be 
established using Venn diagrams. There is no need to remember them but try to understand 
the logic which will help you pick the right relation for the exercise at hand. 

Result 1. A set B  can be obtained as a union of two disjoint sets, ( ) ( )B A B A B= ∩ ∪ ∩ , 

where A B∩  is the common part of A  and B  and A B∩  is the common part of A  and B . 

Try to express verbally the other results. 

Result 2. ( )A B A A B∪ = ∪ ∩ . 

Result 3. Distributive law: ( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩ . 

Result 4. De Morgan’s laws: ,A B A B A B A B∪ = ∩ ∩ = ∪  (you pass to complements by 

interchanging unions and intersections). 

These equations can be established using Venn diagrams but there is a more powerful method 

which works when using the Venn diagrams would be infeasible. We say that two sets, U

and V , are equal, U V= , when  and U V V U⊂ ⊂  (that is each element of U  belongs to V  

and vice versa). To prove the first de Morgan law, denote U A B= ∪ , V A B= ∩ . 

Suppose x U∈ . By definition, \ ( )x S A B∈ ∪  which means two things: x S∈ , x A B∉ ∪ . 

Hence, ,x A x B∈ ∈  and x A B∈ ∩ . Since the implication x U x V∈ ⇒ ∈  is true for any 

element of U , we have proved that U V⊂ . The proof of V U⊂  is left as an exercise. 

Unit 4.3 Correspondence between set terminology and 
probabilistic terminology (random experiment; impossible, 
collectively exhaustive and mutually exclusive events; sample 
space; basic outcomes or elementary events; occurrence of an 
event, disjoint coverings) 

Definition of a random experiment: A random experiment is a process leading to two or 
more possible outcomes, with uncertainty as to which outcome will occur. 

The example of rolling a die is sufficient to illustrate this intuitive definition. 

If you stay at the intuitive level, you will never really understand the true meaning of most 
mathematical constructions. 

The next table helps you establish ways to think about outcomes. When more than one term 
exists to express the same thing, try to use the more geometric term. 

Table 4.2 Set terminology and probabilistic terminology 

 Set terminology Probabilistic terminology 

1 Set Outcome or event, such as getting 1 on a die. 
Getting an even number is another example. 
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2 Empty set Impossible event 

3 Disjoint sets Mutually exclusive events 

4 S  (universal set which contains 
all other sets of interest) 

The widest possible event, called a sample 

space S . In case of the die, {1,2,3,4,5,6}S =  

5 Sets 
1
,...,

n
A A S⊂  form a 

covering if 
1

...
n

S A A= ∪ ∪ . 

Events 
1
,...,

n
A A S⊂  such that 

1
...

n
S A A= ∪ ∪  

are called collectively exhaustive. 

6 Elements of S . Basic outcomes, or elementary events, are the 
simplest possible events. 

Comments. (1) In case of the die the basic outcomes are the sets {1},{2},{3},{4},{5},{6} . All 

other events can be obtained from these 6. For example, the event E  that an even number 
turns up equals {2,4,6}E = . Of course, these numbers cannot turn up at the same time (this is 

expressed as {2} {4} {6}∩ ∩ =∅ ). We say that E occurs when one of the numbers 2, 4, 6 

turns up. 

(2) We distinguish a number 2 from a set {2} . Arithmetic operations apply to numbers, while 

for sets we use set operations. 

In some problems we need disjoint coverings. For motivation, think about a jigsaw puzzle. Its 
pieces possess two properties: any two pieces are disjoint and together the pieces cover 
(comprise) the whole image. Departing from this geometric example, we say that events 

1
,...,

n
A A S⊂  are mutually exclusive and collectively exhaustive if 

(a) any pair ,

i j
A A  is disjoint and 

(b) 
1

...
n

S A A= ∪ ∪ . 

Unit 4.4 Probability (inductive and deductive arguments; 
induction, probability, nonnegativity, additivity, completeness 
axiom, complement rule, assembly formula, impossible and 
sure events) 

Before proceeding with the formal definitions, try to answer the following questions (in 
parentheses I give the answers I usually hear from my students). 

Exercise 4.1 (a) Intuitively, what do you think is the probability of getting a head when 
tossing a coin? (Some say 0.5, others say 50%. There are also answers like: on average, 50 
times out of 100). 

(b) When rolling a die, what do you think is the probability of getting 1? (Most say 1/6). 

(c) Recall Table 2.1. Suppose you obtain a large sample and calculate that the variable takes 
values listed in the first column with relative frequencies listed in the third column. For the 
purposes of predicting the values in future samples would you accept the relative frequencies 
as the probabilities of the respective values? (Most say “Yes”). 

The answers to parts (a) and (b) suggest that the coin and die are described by the following 
tables: 

Table 4.3 Probability tables for C (Coin) and D (Die) 

Values of C Probabilities  Values of D Probabilities 

H 1/2  {1} 1/6 

T 1/2  {2} 1/6 
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   {3} 1/6 

   {4} 1/6 

   {5} 1/6 

   {6} 1/6 

Denoting ( )P A  the probability of event A , from Table 4.3 we can surmise that 

({2,4,6}) ({2}) ({4}) ({6}) 3 / 6 1 / 2.P P P P= + + = =  

This makes sense because {1,2,3,4,5,6} {1,3,5} {2,4,6}= + . Generalizing upon Table 2.1 and 

Table 4.3, in case of a variable with n  values the following should be true: 

Table 4.4 Probability table in case of a variable with n values 

Values of the variable Probabilities 

1
x  

1 1
( )p P X x= =  

… … 

n
x  ( )

n n
p P X x= =  

Here the sample space is 
1

{ ,..., }
n

S x x= . Since the numbers 
i

p  mean percentages, they 

should satisfy the conditions 

 (i) 0 1
i
p< <

 
for all i  and 

 (ii) 
1

... 1
n

p p+ + =  (completeness axiom). 

The completeness axiom means that we have listed in the table all possible basic outcomes. If 
that axiom were not satisfied, we would have a smaller sample space. 

Until this point I have been using what is called an inductive argument: by analyzing a simple 
situation and using an element of guessing, try to come up with definition that could be a base 
of a theory. When a definition is difficult to understand, try to pinpoint the underlying 
inductive argument. In the times of Karl Gauss it was common to show inductive arguments. 
These days they are mostly omitted, partly to save on paper and time. By skipping inductive 
arguments, you are not saving your time. You are complicating your task. 

Before turning to a deductive argument, in which everything is deduced logically from a few 
basic definitions and postulates, a brush up on functions is necessary. Whenever you talk 

about a function ( )f x , you have to realize what type of objects you can substitute as 

arguments and what type of objects you can get as values. Right now we need to discuss 
dependence of area on a surface and of volume on a body. In both cases the arguments are 
sets and the values are numbers. Most importantly, the functions are additive. For instance, if 

we denote 
i
x  pieces of a jigsaw puzzle, then 

1 1
( ... ) ( ) ... ( )

n n
area x x area x area x∪ ∪ = + + . 

Similarly, if 
i
r  denotes a room in a building, then 

1 1
( ... ) ( ) ... ( )

n n
volume r r volume r volume r∪ ∪ = + + . 

Note the importance, for these equations to hold, of the facts that the pieces 
1
,...,

n
x x  do not 

overlap and the rooms 
1
,...,

n
r r  are disjoint. Put it simply, if A B∩ =∅, as in the diagram 
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then ( ) ( ) ( )area A B area A area B∪ = + . If, on the other hand, A B∩ ≠∅ , as in the more 

general case 

 

then ( ) ( ) ( ) ( )area A B area A area B area A B∪ = + − ∩  because in the sum ( ) ( )area A area B+  

the area of A B∩  is counted twice. 

Definition. Let S  be a sample space. By probability on S  we mean a numerical function 

( )P A  of events A S⊂  such that 

(a) if ,A B  are mutually exclusive, then ( ) ( ) ( )P A B P A P B∪ = +  (additivity), 

(b) for any A , ( )P A  is nonnegative, and 

(c) ( ) 1P S =  (completeness axiom). 

Any definition as complex as this needs some chewing and digesting. This includes going 
back, to the motivating examples, going forward, to the consequences, and going sideways, to 
look at variations or cases when it is not satisfied. 

Going back. To put the example from Table 4.4 into the general framework, for any event 

A S⊂ define 

( ) ({ })
i

i

x A

P A P x

∈

=∑  (read like this: sum of probabilities of those 

i
x which belong to A ). 

For example, 
1 2 3 1 2 3

({ , , }) ({ }) ({ }) ({ })P x x x P x P x P x= + + . Later on we are going to use more 

summation signs, and you will get used to them. Always write out the sums completely if you 

don’t understand summation signs. As an exercise, try to show that the  ( )P A  defined here is 

additive, nonnegative and satisfies the completeness axiom. 

Going forward. (1) One way to understand a property is to generalize it. In the case under 

consideration, additivity is generalized to the case of n  events. If 
1
,...,

n
A A  are disjoint, then 

from item (a) in the definition of probability we have 

1 1 1 1 1

1 2 1 1

( ... ) (( ... ) ) ( ... ) ( )

( ... ) ( ) ( ) ( ) ... ( ).

n n n n n

n n n n

P A A P A A A P A A P A

P A A P A P A P A P A

− −

− −

∪ ∪ = ∪ ∪ ∪ = ∪ ∪ +

= ∪ ∪ + + = + +

 

This type of derivation of a general statement from its special case is called induction. 

(2) The complement rule. Representing S as S A A= ∪ , from items (a) and (c) we deduce 

 ( ) ( ) ( ) 1P A P A P S+ = =  (4.1) 

which implies the complement rule: 

( ) 1 ( )P A P A= − . 

B A

B A
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(3) From (b) we know that ( ) 0P A ≥ . In addition, since in (4.1) ( ) 0P A ≥ , we have ( ) 1P A ≤ . 

(4) Assembly formula. Fix some event B . If 
1
,...,

n
A A  are disjoint, then pieces 

1
,...,

n
B A B A∩ ∩  are also disjoint. Further, if 

1
,...,

n
A A  are collectively exhaustive, then those 

pieces comprise B . Therefore by additivity 

 
1

( ) ( ) ... ( )
n

P B P B A P B A= ∩ + + ∩ . (4.2) 

Going sideways. While area and volume are additive and nonnegative, they generally do not 
satisfy condition (c). 

When a definition is long, after chewing and digesting it you should formulate its short-and-
easy-to-remember version. 

Short definition. A probability is a nonnegative additive function defined on some sample 

space S and such that ( ) 1P S = . 

An impossible event can be defined by ( ) 0P A = . When ( ) 1P A = , we say that A  is a sure 

event. In the discrete case we are considering the only impossible event is A=∅  and the 
only sure event is the sample space. 

In many practical applications it is not necessary or possible to check that all requirements of 
probabilistic definitions are satisfied. 

Exercise 4.2 (a) What is the probability that tomorrow the sun will rise? 

(b) What is the probability of you being at home and at the university at the same time? 

(c) Probability of which event is higher: that tomorrow’s temperature at noon will not exceed 
19°C or that it will not exceed 25°C? 

Unit 4.5 Ways to find probabilities for a given experiment 
(equally likely events, classical probability, addition rule) 

4.5.1 Equally likely outcomes (theoretical approach) 

(1) In case of a fair coin, the head and tail are equally likely, so ( ) ( )P H P T= . Since these 

events are mutually exclusive and collectively exhaustive, by additivity and completeness 

axiom ( ) ( ) 1P H P H+ = . It follows that ( ) ( ) 1/ 2P H P T= = . We have rigorously proved the 

first Table 4.3. 

(2) In case of a fair die the events {1},...,{6}  are equally likely, so they all have the same 

probability p . By additivity and completeness axiom 6 1p = , so 1/ 6p = . We have derived 

the second Table 4.3. 

(3) More generally, suppose that there are N  basic outcomes and suppose the basic 

outcomes are equally likely. Then, as above, the probability of one basic outcome is 1/ N . 

Now consider some condition that separates an event A S⊂  (in case of a die the condition 

could be that the outcome is even). Denote 
A
N  the number of basic outcomes satisfying the 

condition. Then by additivity 

 times

1 1
( ) ...

A

A

N

N
P A

N N N
= + + =

�����

. 



35 

 

This formula is called classical probability in the book. Many students remember the formula 
but don’t think about the conditions under which it is true. Reread the above derivation and 
state the result in the form: if … then… 

(4) Frequentist approach. After observing relative frequencies in an experiment, one can 
take those frequencies as probabilities. The larger the sample size, the better will be the 
approximation to the truth. This is a general statistical fact. Statistics is mostly about large 
sample properties. 

Exercise 4.3 We are going to simulate a large number of tossings of a fair coin. To work with 
numbers instead of heads and tails, we introduce a numerical variable 

1 if head

0 if tail
C


= 


 

In a large number of trials n  we calculate the proportion of heads. As n  increases, 
n
p  

should approach ½. 

Step 1. In cell A1 put the formula 

=IF(RAND()>1/2,0,1) 

Copy it to cells A2-A100. These will be observations on the coin. 

Step 2. In B1 type 

=SUM($A$1:A1)/ROW(A1) 

and copy this formula to B2-B100. The result in, say, B100 will be 

=SUM($A$1:A100)/ROW(A100) 

This is the sum of the contents of the cells A1 through A100 divided by the number of these 

cells. Thus, in cells B1-B100 we have averages of the first n  observations, 1,...,100n = . 

Step 3. Select column B and see on the line plot the behavior of averages. They approach ½. 
To see the picture better, on the plot right-click the vertical axis and select “Format Axis”. On 
the Scale tab check Minimum and enter 0 for the value, uncheck Maximum and enter 1 for 
the value and check Major Unit and enter 0.1 for the value. Click OK. By pressing F9 you 

will change realizations of the means for sample sizes 100n ≤ . Sometimes the speed of 
convergence of averages to ½ is not very good. This is a general probabilistic fact (see Unit 
8.2 for the theory). 

(5) Expert opinions. When the theoretical and frequentist approaches are not applicable, one 
can use subjective probabilities assigned by experts. For example, performance of economic 
projects depends on overall macroeconomic conditions. In project evaluation the resulting 
statements sound like this: with probability 0.6 the economy will be on the rise, and then the 
profitability of the project will be this much and so on. 

Exercise 4.4 Generalize the addition rule ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩  to the case of 

three events ( ) ...P A B C∪ ∪ =  

Unit 4.6 Combinatorics (factorial, orderings, combinations) 

Definition. For a natural number n denote ! ( 1)...2 1n n n= ⋅ − ⋅ . This number is called n

factorial. 

What do you think grows faster (as n  increases): , ! or 
n n

e n n ? 
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Combinatorics is a wide area but we need only two results, one about orderings and the other 
about combinations. In order not to confuse them, remember just two motivating examples. 

Example 4.1 There are three contestants in a competition, denoted 
1 2 3
, ,A A A , and three 

prizes of different values (the possibility of ties is excluded). How many prize distributions 
are possible? 

Solution. Let “>” stand for “better”. The ordering 
1 2 3
A A A> >  is not the same as, say, 

2 1 3
A A A> >  because the prizes are different. The number of prize distributions equals the 

number of orderings and can be found as follows. Any of the three contestants can get the 
first prize, which gives us 3 possibilities. After the first prize is awarded, any of the 
remaining two contestants can get the second prize, which gives us 2 possibilities. After the 
second prize is awarded, there is only one possibility for the third prize. Any of these 
possibilities (3, 2 and 1) can be combined with any other, so the total number of possibilities 

is 3⋅2⋅1 = 3! To see why the possibilities must be multiplied, you can use a tree (see NCT). 

Exercise 4.5 To internalize the above argument, consider the case of n  contestants and n  

prizes. The number of orderings is the number of ways n  elements can be ordered and it 

equals !n . 

Example 4.2 There are three new professors on campus and the IT department has 5 new 
identical computers, 3 of which will be distributed among the new professors. In how many 
different ways this is possible to do? 

Solution. Denote 
1 2 3
, ,A A A  the professors and 

1 2 5
, ,...,C C C  the computers. Since the 

computers are identical, the computer assignment  

1 1

2 2

3 3

C A

C A

C A

→

→

→

 

is as good as, say, 

1 1

3 2

5 3

C A

C A

C A

→

→

→

. 

 To make use of Example 4.1 let us introduce two fictitious persons 
1 2
,F F . As we know, 

1 2 3 1 2
, , , ,A A A F F  can be assigned computers in 5! different ways, if the order matters. Now we 

take into account that real persons can be ordered in 3! ways. Fictitious persons can be 
ordered in 2! ways. Five people can be ordered in 3!2! ways. Thus, the number of computer 

assignments to real persons when the order doesn’t matter is 
5!

3!2!
 

Definition. The number of different choices of x  objects out of n  identical objects is called 

the number of combinations of x  elements out of n  and denoted n

x
C  (here 0 x n≤ ≤ ). 

Exercise 4.6 Generalize the above argument to show that 
!

!( )!

n

x

n
C

x n x
=

−

 

Comments. (1) When the order matters, use orderings and when it does not, apply 
combinations. 
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(2) In case of combinations I find it more practical to read n

x
C  as “the number of choices of x  

elements out of n ”. 

(3) For the choices formula to work in the extreme cases 0,x x n= =  we put formally 0! = 1. 

Exercise 4.7 Write out sequences 1 1 2 2 2 3 3 3 3

0 1 0 1 2 0 1 2 3
{ , }, { , , }, { , , , }C C C C C C C C C . Note that they first 

grow and then decline, the first and last elements being 1. 

Unit 4.7 All about joint events (joint events, joint and marginal 
probabilities, cross-table, contingency table) 

These notions are interrelated but in NCT they are given in different places and without 
discussing the relationships between them. The discussion will be long, and if you are stuck 
with something, read everything from the start. 

Example 4.3 In Kazakhstan the profits of wheat producers critically depend on weather 
conditions during summer (a lot of rain results in an abundant crop; there is always a lot of 
sun) and the weather during the harvesting time (just three rainy days in September are 

enough for the quality of wheat to plunge). Let us denote by S  the event that the weather is 

good in summer and by H  the event that it is good during the harvesting time. The farmers 
are happy when ( )P S H∩  is high. 

Definition. The event A B∩  is called a joint event and its probability ( )P A B∩  is called a 

joint probability. 

Comments. (1) Following the recommendation made earlier, remember that A  and B  may 

vary and ( )P A B∩  is a function of two sets. 

(2) In the wheat example we have four possible states of nature (the basic events) H S∩ , 

H S∩ , H S∩ , H S∩ and, correspondingly, four probabilities ( )P H S∩ , ( )P H S∩ , 

( )P H S∩ , ( )P H S∩ . By the completeness axiom, these probabilities sum to 1. As usual, 

this information can be displayed in a table. 

Table 4.5 1-D table of joint events and probabilities 

Events Probabilities 

H S∩  ( )P H S∩  

H S∩  ( )P H S∩  

H S∩  ( )P H S∩  

H S∩  ( )P H S∩  

 Total = 1 

Note that by the complement rule ( ) ( ) 1, ( ) ( ) 1.P S P S P H P H+ = + =  Therefore we have two 

more tables 

Table 4.6 Separate probability tables 

Events Probabilities  Events Probabilities 

S  ( )P S   H  ( )P H  

S  ( )P S   H  ( )P H  

 1   1 



38 

 

It is convenient to call the numbers ( )P S  and ( )P S  own probabilities of the pair { S , S } 

and the numbers ( )P H  and ( )P H  own probabilities of the pair {H ,H }. 

(3) It is better to replace a 1-D table Table 4.5 by a 2-D table, in order to see better its link to 
Table 4.6. 

Table 4.7 Joint probability table 

 H  H  Right margin 

S  ( )P S H∩  ( )P S H∩  ( )P S  

S  ( )P S H∩  ( )P S H∩  ( )P S  

Lower margin ( )P H  ( )P H  1 

In a 2-D table it is easier to form pairs of individual events S , S , H  and H . The 
probabilities from Table 4.5 have migrated to the central part of Table 4.7 (circumscribed 
with a double line). By the assembly formula 

( ) ( ) ( ), ( ) ( ) ( )P S H P S H P S P S H P S H P S∩ + ∩ = ∩ + ∩ = . 

Thus, row sums of the probabilities in the central part of Table 4.7 are equal to own 

probabilities of the pair { S , S } (displayed in the right margin). Similarly, column sums of 

the probabilities in the central part of Table 4.7 are equal to own probabilities of the pair { H

,H } (displayed in the lower margin). The customary name for own probabilities, marginal 
probabilities, reflects their placement in the table but not their role. 

(4) The unity in the lower right corner of Table 4.7 is 

 (a) the sum of joint probabilities in the central part, 

 (b) the sum of own probabilities in the right margin and 

 (c) the sum of own probabilities in the lower margin. 

(5) A cross-table (also called a contingency table) is similar to the joint probabilities table, 
except that instead of probabilities absolute frequencies are used. 

Exercise 4.8 (a) List and prove 7 identities which hold for a joint probabilities table. 

(b) Draw a joint probabilities table for the case when in the first column there are events 
1
A , 

…, 
n

A  and in the first row there are events 
1

B , …, 
m

B  (n  is not necessarily equal to m ). 

Summation signs. Because of importance of the last exercise, we’ll do it together. This is the 
place to learn the techniques of working with summation signs. The sum  

 
1

...
n

a a+ +  (4.3) 

(in which the three points mean “and so on”) is written as 

 
1

n

i

i

a

=

∑  (4.4) 

(4.3) can be referred to as an extended expression and (4.4) is a short expression. In the short 

expression we indicate the index that changes, i , and that it runs from the lower limit of 

summation, 1, to the upper one, n . If you have problems working with summation signs, 
replace them with extended expressions, do the algebra, and then convert everything back. 
For the beginning remember two things: 
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(i) The sum (4.4) does not depend on i , as one can see from the extended expression. In 

particular, the summation index can be replaced by anything else, for example, 
1

n

j

j

a

=

∑  is the 

same thing as (4.4). 

(ii) When more than one different indices are involved, it is better to use different notations 
for them. 

The answer to Exercise 4.8(b) looks as follows: 

Table 4.8 Joint probability table (general case) 

 
1

B  … 
m

B  Right margin 

1
A  

1 1
( )P A B∩  … 

1
( )

m
P A B∩  

1
( )P A  

… … … … … 

n
A  

1
( )

n
P A B∩  … ( )

n m
P A B∩  ( )

n
P A  

Lower margin 
1

( )P B  … ( )
m

P B  1 

Each of the families {
1
A , …, 

n
A } and {

1
B , …, 

m
B } is mutually exclusive and collectively 

exhaustive. 

Identities: 

(i) Sums across rows: 
11 1

( ) ( ),..., ( ) ( )
m m

i j n j nj j
P A B P A P A B P A

= =

∩ = ∩ =∑ ∑ . 

(ii) Sums across columns: 
1

( ) ( ), 1,..., .
n

i j ji
P A B P B j m

=

∩ = =∑  

(iii) Sums of own probabilities: 
1 1

( ) 1, ( ) 1
m n

j ij i
P B P A

= =

= =∑ ∑ . 

(iv) Sum of joint probabilities: 
1 1

( ) 1.
m n

i jj i
P A B

= =

∩ =∑ ∑  

Unit 4.8 Conditional probabilities (multiplication rule, 
independence of events, prior and posterior probability) 

Example 4.4 In the wheat example (Example 4.3), suppose the summer is over, the weather 
has been good and the harvesting time is approaching. We are left with one line of Table 4.7: 

Table 4.9 Leftover joint probabilities 

 H  H  Right margin 

S  ( )P S H∩  ( )P S H∩  ( )P S  

Here the sum 

 ( ) ( ) ( )P S H P S H P S∩ + ∩ =  (4.5) 

is not 1 and the completeness axiom is not satisfied. But we know that there are no missing 

events. To satisfy the completeness axiom, we can divide both sides of (4.5) by ( )P S , 

( ) ( )
1

( ) ( )

P S H P S H

P S P S

∩ ∩
+ =  
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and treat ( ) / ( )P S H P S∩  and ( ) / ( )P S H P S∩  as probabilities of events H  and H , 

provided that S  has occurred. 

Definition. Let ( ) 0P S > . The probability 
( )

( | )
( )

P H S
P H S

P S

∩

=  is called probability of H  

conditional on S . 

Comments. (1) If we are interested in probabilities of H and H , why not use simply ( )P H  

and ( )P H ? The reason is that occurrence of S  provides us with additional information. 

There may be some dependence between events S and H , in which case conditional 

probabilities ( | )P H S  and ( | )P H S  will be a better reflection of reality than own 

probabilities of the pair {H ,H }. This process of updating our beliefs as new information 
arrives is one of the fundamental ideas of the theory of probabilities. 

(2) Often random variables are introduced axiomatically. That is, take any numbers 
i
p  

satisfying 0 1
i
p< <  and 

1
... 1

n
p p+ + =  and you can be sure that there is a random variable 

whose values have probabilities exactly equal to those 
i
p ’s. Conditional probabilities are 

defined axiomatically and the subsequent theory justifies their introduction. 

Multiplication rule. The definition of ( | )P H S  immediately implies 

( ) ( | ) ( )P H S P H S P S∩ = . 

Try to see the probabilistic meaning of this equation. Denote M  the event that you obtain a 

passing grade in Math and by S  the event that you obtain a passing grade in Stats. Suppose 

that Math is a prerequisite for Stats. Then the equation  ( ) ( | ) ( )P S M P S M P M∩ =  basically 

tells us that to obtain a passing grade in both Math and Stats you have to pass Math first and, 
with that prerequisite satisfied, to obtain a passing grade in Stats. The fact that you have not 
failed Math tells something about your abilities and increases the chance of passing Stats. 

4.8.1 Independence of events 

Intuitive definition. Events A  and B  are called independent if occurrence of one of them 
does not influence in any way the chances of occurring of the other. For example, what 
happens to the coin has nothing to do with what happens to the die. 

Formal definition. Events A  and B  are called independent if ( ) ( ) ( )P A B P A P B∩ = . When 

( ) 0P B > , this can be equivalently written as ( | ) ( )P A B P A= . 

This definition is applied in two ways. 

(1) From independence to equation. If you know that A  and B  are independent, you can 
multiply ( )P A  and ( )P B  to get ( )P A B∩ . For example, 

( 1, 1) ( 1) ( 1) 1 /12.P Coin Die P Coin P Die= = = = = =  

(2) From equation to independence (or dependence). If you find that ( ) ( ) ( )P A B P A P B∩ ≠ , 

you conclude that A  and B  are dependent. 

Exercise 4.9 Prove that if A  and B  are independent, then their complements are also 
independent. 
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Solution. Always write down what is given and what you need to get. We know that 

( ) ( ) ( )P A B P A P B∩ =  and we need to prove that ( ) ( ) ( )P A B P A P B∩ = . When rearranging 

expressions indicate what rule you are applying, until everything becomes trivial. 

( ) ( )                                                (complement rule)

[1 ( )][1 ( )]               (multiplying out)

1 ( ) ( ) ( ) ( ) (by independence)

1 ( ) ( ) ( )   (additivity rule)

P A P B

P A P B

P A P B P A P B

P A P B P A B

=

= − −

= − − +

= − − + ∩

1 ( )                           (complement rule)

( )                                (de Morgan)

( )

P A B

P A B

P A B

= − ∪

=

= ∩

∪

 

A tangible example of independent events 

Take the square [0,1] [0,1]S = ×  as the sample space, see Figure 4.1. For any set A S⊂  

define its probability to be its area: ( ) ( )P A area A= . Since area is additive, nonnegative and 

( ) 1P S = , this will be really a probability. 

 
Figure 4.1 Example of independent events 

For any [ , ] [0,1]a b ⊂  define A  as the vertical strip {( , ) : ,0 1}A x y a x b y= ≤ ≤ ≤ ≤ . For any 

[ , ] [0,1]c d ⊂  define B  as the horizontal strip {( , ) : 0 1, }B x y x c y d= ≤ ≤ ≤ ≤ . Then 

( ) , ( ) ,

{( , ) : , },

( ) ( )( ) ( ) ( )

P A b a P B d c

A B x y a x b c y d

P A B b a d c P A P B

= − = −

∩ = ≤ ≤ ≤ ≤

∩ = − − =

 

Thus, A  and B  are independent. Now try to move the strip A  left and right and the strip B  
up and down. Independence takes a physical meaning: movements in mutually orthogonal 
directions do not affect each other. 

y

1

10 x

d

c

ba

A

B
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Theorem 4.1 (Bayes theorem) This theorem is one of realizations of the idea about updating 
one’s beliefs on the basis of new information. The easiest way to remember it is to express 

( | )P B A through ( | )P A B : 

( ) ( ) ( ) ( )
( | ) ( | ) .

( ) ( ) ( ) ( )

P B A P B A P B P B
P B A P A B

P A P B P A P A

∩ ∩

= = =  

Interpretation in terms of subjective probabilities. Before occurrence of the event A , an 

expert forms an opinion about likelihood of the event B . That opinion, embodied in ( )P B , is 

called a prior probability. After occurrence of A , the expert’s belief is updated to obtain 

( | )P B A , called a posterior probability. By the Bayes theorem, updating is accomplished 

through multiplication of the prior probability by the factor 
( | )

( )

P A B

P A
. 

A simple way to complicate the matters. Suppose 
1
,...,

K
B B  form a disjoint covering of the 

sample space. By the Bayes theorem for each 
i

B  

( | ) ( )
( | ) .

( )

i i

i

P A B P B
P B A

P A
=  

Here ( )P A  can be replaced by 

1

1 1

( )                                                              (assembly formula)

( ) ... ( )                  (multiplication rule)

( | ) ( ) ... ( | ) ( )

K

K K

P A

P A B P A B

P A B P B P A B P B

=

= ∩ + + ∩

= + +

 

The result is 

 
1 1

( | ) ( )
( | ) .

( | ) ( ) ... ( | ) ( )

i i

i

K K

P A B P B
P B A

P A B P B P A B P B
=

+ +

 (4.6) 

To me this is a good proof that knowing the derivation is better than remembering the result. 

Unit 4.9 Problem solving strategy 

Make sure that you can solve at least two typical exercises from each section. Have a look at 
Exercises (in NCT) 4.5, 4.6, 4.13, 4.14, 4.27, 4.28, 4.33, 4.35, 4.66, 4.76, 4.85, and 4.86. In 
the end of each chapter, starting from this one, there is a unit called Questions for Repetition, 
where, in addition to theoretical questions, I indicate a minimum of exercises from NCT. 

To write down the conditions, you need a good notation. Avoid abstract notation and use 

something that reminds you of what you are dealing with, like A  for Anthropology class. 

When looking for a solution of a problem, write down all the relevant theoretical facts. Don’t 
limit yourself to conclusions; repeat everything with proofs and derivations. Omit only what 
is easy; after a while everything will become easy. If you still don’t see the solution, go back 
by one or two steps and solve simpler similar exercises. 

Exercises in the end of Sections 4.4 and 4.5 are easier than they look. This is where writing 
down all the relevant equations is particularly useful. Remember what you need to find. In 

general, to find n  unknowns it is sufficient to have n  equations involving them. One of my 
students was able to solve those exercises without any knowledge of conditional and joint 
probabilities, just using common sense and the percentage interpretation of probabilities. 
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When you clearly see the idea, don’t calculate the numbers. Learn to save your time by 
concentrating on ideas. 

If section exercises are too simple, don’t waste your time and go directly to end-of-chapter 
exercises. 

Everybody finds difficult exercises that require orderings and combinations (there are many 
of them in the end of Section 4.3 and Chapter 4). Solve more of them, until you feel 
comfortable. However, it’s not a good idea to solve all of them. 

Don’t go wide, go deep! 

Unit 4.10 Questions for repetition 

1. What do we mean by set operations? 

2. Prove de Morgan laws. 

3. Prove and illustrate on a Venn diagram equation (4.2). 

4. Prove ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩ . 

5. Prove the formulas for orderings and combinations 

6. Using a simple example, in one block give all definitions and identities related to joint and 
marginal probabilities. 

7. Solve Exercise 4.9. 

8. Derive the complex form of the Bayes theorem (4.6). 

9. The minimum required: Exercises 4.5, 4.13, 4.27, 4.37, 4.47, 4.67, 4.88, 4.91, 4.93, 4.97, 
4.107 from NCT. 
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Chapter 5 Discrete Random Variables and 

Probability Distributions 

At some point you may feel that the amount of new information is overwhelming and you 
forget many facts. Then it’s the time to arrange a global repetition. Repeat everything with 
proofs. Look for those minor or significant details you missed earlier. Make a list of facts in a 
logical order. This chapter will be more challenging than all the previous taken together, and 
you will need to be in a perfect shape to conquer it. 

Unit 5.1 Random variable (random variable, discrete random 
variable) 

Intuitive definition. A random variable is a variable whose values cannot be predicted. 

For example, we can associate random variables with the coin and die. On the other hand, to 

know the value of sin x  it suffices to plug the argument x  in. sin x  or the number of days in 
a year are not random variables. 

Short formal definition. A random variable is a pair: values plus probabilities. 

Working definition of a discrete random variable. A discrete random variable is defined 
by Table 5.1: 

Table 5.1 Discrete random variable with n values 

Values of X  Probabilities 

1
x  

1
p  

… … 

n
x  

n
p  

Comments. (1) Most of the time, when people talk about random variables, they assume 
real-valued variables. Thus, in the first column we have real numbers. This is important to be 
able to use arithmetic operations. 

(2) Capital X  is used for the variable and lower-case x ’s for its values. The complete form 

of writing 
i

p
 
is ( )

i
P X x= . 

(3) Without the second column we would have a deterministic variable. 

(4) In the table X  takes a finite number of values. This is a simplification. In Unit 5.14 we’ll 
see an example of a discrete random variable that takes an infinite number of values. 

Unit 5.2 General properties of means (expected value, mean, 
average, mathematical expectation, uniformly distributed 
discrete variable, grouped data formula, weighted mean 
formula)  

Example 5.1 With probability 0.001 a strong earthquake destroys your house this year and 
then your loss is $200,000. Otherwise, your loss is just normal wear and tear, estimated at 
$4,000 per year. What is your expected loss? 

Sometimes I ask questions before giving formal definitions, to prompt you to guess. Guessing 
and inductive reasoning are important parts of our thinking process. In economics there is a 
French term “tâtonnement” (groping one’s way in the dark). There are cases when you 
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clearly see the idea and the solution is straightforward. In more complex situations there may 
be several competing ideas, and some of them may not be clear, looking like unfamiliar 
creatures in the dark. Looking for them and nurturing them until they shape up so that you 
can test them is a great skill. This is where you need to collect all the relevant information, 
mull it over again and again, until it becomes your second nature. This process is more time-
consuming than getting a ready answer from your professor or classmate but the rewards are 
also greater. 

The expected loss is (-4,000)×0.999 + (-200,000)×0.001 = -4,196. The general idea is that it 
is a weighted sum of the values of the variable of interest (the loss function). We attach a 
higher importance to the value that has a higher probability. 

In research ideas go before definitions. 

Expected value of a discrete random variable. Using the working definition of a random 

variable, we define the expected value of X  (also called a mean, or an average, or 
mathematical expectation) to be 

 
1 1

... .

n n
EX x p x p= + +  (5.1) 

Comments. (1) Expected value is a function whose argument is a complex object (it is 

described by Table 5.1) and the value is simple: EX  is just a number. And it is not a product 

of E and X ! 

(2) Relation to the sample mean. A discrete random variable is said to be uniformly 

distributed if 
1

... 1/
n

p p n= = = . In this case the expected value is just the sample mean: 

1

1

...1 1
... .

n

n

x x
EX x x X

n n n

+ +

= + + = =  

(3) Grouped data formula. Recall the procedure for finding relative frequencies. Denote 

1
,...,

n
y y  the values in the sample. Equal values are joined in groups. Let 

1
,...,

m
x x  denote the 

distinct values and 
1
,...,

m
n n  their absolute frequencies. Their total is, clearly, n . The sample 

mean is 

 

1

1

 times times

1 1

1 1

...
                  (sorting out 's into groups with equal values)

... ... ...

...
           (dividing through by  and using relative freq

m

n

nn

m m

m m

y y
Y y

n

x x x x

n

n x n x
n

n

+ +

=

+ + + + + +

=

+ +

=

����� �����

1 1

uencies)

... .
m m

r x r x EX= + + =

(5.2) 

In this context, the sample mean Y , the grouped data formula (in the third line) and the 
expected value are the same thing. The weighted mean formula from NCT (see their equation 

(3.12)) is the same thing as the grouped data formula with 
i i
n w= and 

i
n w=∑ . Note also 

that when data are grouped by intervals, as in Table 3.5 of NCT, in the grouped data formula 

the midpoints 
i

m  of the intervals are taken as the values of the variables. 
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(4) When the sample size becomes very large, the relative frequencies approach the true 
probabilities. Therefore (5.2) gives rise to the following intuitive interpretation of the 

expected value: EX  is what X  approaches when n  is very large. 

Unit 5.3 Linear combinations of random variables (linear 
combination, vector, parallelogram rule) 

Definition. Suppose that ,X Y  are two discrete random variables with the same probability 

distribution 
1
,...,

n
p p . Let ,a b  be real numbers. The random variable aX bY+  is called a 

linear combination of ,X Y  with coefficients ,a b . Its special cases are aX  ( X scaled by a ) 

and X Y+  (a sum of X  and Y ). The detailed definition is given by the next table. 

Table 5.2 Table of linear operations with random variables 

Values of X  Values of Y  Probabilities aX  X Y+  aX bY+  

1
x  

1
y  

1
p  

1
ax  

1 1
x y+  

1 1
ax by+  

… … … … … … 

n
x  

n
y  

n
p  

n
ax  

n n
x y+  

n n
ax by+  

Comments. (1) There is only one column of probabilities because X  and Y  are assumed to 
have the same probability distribution. The situation when the probability distributions are 
different is handled using joint probabilities (see Unit 5.5). 

(2) If you are asked what are vectors, you say the following. By a vector we call an n -tuple 

of real numbers 
1

( ,..., )
n

X x x= . Operations with vectors are defined by the last three columns 

of Table 5.2. When 1n = , vectors are just numbers and those operations are just usual 

summation and multiplication. Note that sometimes we need the product XY  defined 

similarly using coordinate-wise multiplication 
1 1

( ,..., )
n n

XY x y x y= . These formal definitions 

plus the geometric interpretation considered next is all you need to know about vectors. 

(3) Geometric interpretation. We live in the space of three-dimensional vectors. All our 

intuition coming from day-to-day geometrical experience carries over to the n -dimensional 

case. Let, for simplicity, 2n = . A vector 
1 2

( , )X x x=  is shown on the plane as an arrow 

starting at the origin and ending at the point 
1 2

( , )x x . The sum 
1 1 2 2

( ,..., )X Y x y x y+ = + +  is 

found using the parallelogram rule in Figure 5.1. The rule itself comes from physics: if two 
forces are applied to a point, their resultant force is found by the parallelogram rule. 

 
Figure 5.1 Summing vectors using the parallelogram rule 

X

X + Y

Y

x
2

x
2
+ y
2

y
2

x
1
+ y
1

x
1

y
1
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Scaling X  by a positive number a  means lengthening it in case 1a >  and shortening in case 

1a < . Scaling by a negative number means, additionally, reverting the direction of X . 

 
Figure 5.2 Scaling a vector 

To obtain a linear combination aX bY+  you first scale X  and Y  and then add the results. 

Unit 5.4 Linearity (portfolio, portfolio value, universal statements, 
existence statements, homogeneity of degree 1, additivity) 

Linearity is one of those many properties in which both the statement of the problem and its 
solution are mathematical. 

Problem statement. What is the relation between ( )E aX bY+ and ,EX EY ? 

Answer. For any random variables ,X Y  and any numbers ,a b  one has 

( )E aX bY aEX bEY+ = + . 

Proof. This is one of those straightforward proofs when knowing the definitions and starting 
with the left-hand side is enough to arrive at the result. Using the definitions in Table 5.2 the 
mean of the linear combination is 

1 1 1

1 1 1 1

1 1 1 1

( ) ( ) ... ( )              (multiplying out)

... ...       (grouping by variables)

( ... ) ( ... )

.

n n n

n n n n

n n n n

E aX bY ax by p ax by p

ax p by p ax p by p

ax p ax p by p by p

aEX bEY

+ = + + + +

= + + + + +

= + + + + +

= +

 

Chewing and digesting 

Going back. A portfolio contains 
1
n  shares of stock 1 whose price is 

1
S  and 

2
n  shares of 

stock 2 whose price is 
2
S . Stock prices fluctuate and are random variables. Numbers of 

shares are assumed fixed and are deterministic. What is the expected value of the portfolio? 

Answer. The portfolio value is its market price 
1 1 2 2

V n S n S= + . Since this is a linear 

combination, the expected value is 
1 1 2 2

EV n ES n ES= + . 

Going sideways. (1) Rewrite the proof of linearity of means using summation signs. 

(2) Do you think 2
( )E X  is the same as 2

( )EX ? Hint: It should be clear that 2 2 2

1
( ,..., )

n
X x x=

and 2 2 2

1 1
...

n n
EX x p x p= + + , see Unit 5.3. 

(3) While I don’t give an answer for the previous question, I want to use it to discuss the 
difference between universal statements (which should be true for a class of objects) and 
existence statements (which assert existence of objects with special properties). If you say: 

Yes, I think that 2 2
( ) ( )E X EX= , it should be a universal statement: for ANY random 

variable X  one has 2 2
( ) ( )E X EX= . If, on the other hand, you say: No, I don’t think so, then 

it should be an existence statement: I am producing X  such that 2 2
( ) ( )E X EX≠  (whereas 

X

2X2X

X

2X

0.5X

X

–X

X
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for other variables the equation may be true). Pay attention to the order of words when you 
use “for every” and “there exists”. In the next two propositions the words are the same, just 
their order is different: 

(i) In the city of X, for every man M there is a woman W such that W is a girlfriend of 
M. 

(ii) In the city of X, there is a woman W such that W is a girlfriend of M for every 
man M. 

Going forward. (1) Letting in the linearity property 0b =  we get ( )E aX aEX= . This 

property is called homogeneity of degree 1 (you can pull the constant out of the expected 
value sign). 

(2) Letting 1a b= = in the linearity property we get ( )E X Y EX EY+ = + . This is called 

additivity. 

(3) Use induction to prove the generalization to the case of a linear combination of n  
variables: 

1 1 1 1
( ... ) ...

n n n n
E a X a X a EX a EX+ + = + +  

(4) Expected value of a constant. The mean of a constant is that constant, 

1 1
... ( ... ) 1

n n
Ec cp cp c p p= + + = + + = , because a constant doesn’t change, rain or shine. 

Unit 5.5 Independence and its consequences (independent and 
dependent variables, multiplicativity of means) 

Background. You have to recall the definition of independence of two events 

( ) ( ) ( )P A B P A P B∩ =  and realize that a random variable is a much more complex object 

than an event. Visually, a random variable is a 1-D table with values and probabilities. A pair 
of random variables is represented by a 2-D table similar to Table 4.8. Since we want to 
work with variables whose probability distributions are not necessarily the same, a table of 
type Table 5.2 is insufficient. We deal with two random variables separately represented by 
the following tables 

Table 5.3 Separate probability tables 

Values of X  Probabilities  Values of Y  Probabilities 

1
x  

1

X
p   

1
y  

1

Y
p  

… …  … … 

n
x  X

n
p   

m
y  Y

m
p  

In general, n  is different from m . The probabilities are also different, that’s why they are 
provided with superscripts. If you remember, in this situation we cannot directly define the 

sum X Y+  and the product XY . This is why we need to work with the pair ( , )X Y  which 

has values ( , ), 1,..., , 1,...,
i j
x y i n j m= =  (you can think about throwing a coin and die at the 

same time; any value on the coin can occur in combination with any value on the die). The 

probabilities of these values are denoted , 1,..., , 1,...,
ij
p i n j m= = .  Now we arrange a 2-D 

table putting a pair of values ( , )
i j
x y  and corresponding probability 

ij
p  in the same cell: 

Table 5.4 Joint values and probabilities 

 
1
y  … 

m
y  Right margin 
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1
x  

1 1
( , )x y , 

11
p  … 

1
( , )

m
x y , 

1m
p  

1

X
p  

… … … … … 

n
x  

1
( , )

n
x y , 

1n
p  … ( , )

n m
x y , 

nm
p  X

n
p  

Lower margin 
1

Y
p  … Y

m
p  1 

Exercise 5.1 One and the same random variable can have many different (equivalent) 

realizations. The variable X  is realized in Table 5.3 on the sample space 
1

{ ,..., }
n

x x . What is 

its realization in terms of Table 5.4 (what are the sample space, probability distribution and 
values)? 

Exercise 5.2 You can refresh your memory by rewriting in this notation the identities 
following Table 4.8. 

Intuitive definition. We say that X  and Y  are independent if what happens to X  does not 

influence Y  in any way. 

Formal definition. We say that X  and Y  are independent if the events independence 
condition is satisfied for every pair of their values: 

 , 1,..., , 1,...,
X Y

ij i j
p p p i n j m= = =  (5.3) 

Comments. (1) This is an opportune moment to discuss the relation between universal 
statements and existence statements. Consider a universal statement: all students in a given 
class are younger than 30. Its opposite is: there are students in a given class who are at least 
30 years old, which is an existence statement. This is a general rule of logic: rejecting a 
universal statement you obtain an existence one, and vice versa. 

(2) Rejecting the definition of independence, we obtain the definition of dependence, and it 

should be an existence statement. Thus, we say that X  and Y  are dependent if at least one of 
the equations (5.3) is not true. 

Definition. The sum X Y+  and the product XY  are defined by the tables 

Table 5.5 General definitions of the sum and product 

 Definition of X Y+    Definition of XY  

 
1
y  … 

m
y    

1
y  … 

m
y  

1
x  

1 1
x y+  … 

1 m
x y+   

1
x  

1 1
x y  … 

1 m
x y  

… … … …  … … … … 

n
x  

1n
x y+  … 

n m
x y+   

n
x  

1n
x y  … 

n m
x y

 

Exercise 5.3 How is the definition related to the earlier one? 

Multiplicativity of expected values. If ,X Y  are independent, then their mean is 

multiplicative: ( )( )EXY EX EY= . 

Proof. Earlier you were asked to rewrite the proof of linearity of means using summation 
signs. Here we need a special case of that property: 

1 1

m m

j j

j j

az a z

= =

=∑ ∑ . 

Using Table 5.5 and probabilities from Table 5.4 we have 
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1 1

1 1

1 1

                           (using independence assumption)

                      (  is a constant for the inner sum)

( )( ).

n m

i j ij

i j

n m
X Y X

i j i j i i

i j

n m
X Y

i i j j

i j

EXY x y p

x y p p a x p

x p y p EX EY

= =

= =

= =

=

= =

= =

∑∑

∑∑

∑ ∑

 

Comments. (1) If you don’t understand this, take 2n m= = , write out everything without 
summation signs and then write out equivalents with summation signs. 

(2) Multiplicativity is not a linear property. All operators in math that are linear may have 
nonlinear properties only under special conditions. Independence is such a special condition. 

Recapitulating, ( )E aX bY aEX bEY+ = +  is true for ANY ,X Y  and ( )( )EXY EX EY=  holds 

ONLY under independence. 

(3) The complete notation for the fact that X  takes the value 
i
x  with probability X

i
p is 

( )
X

i i
P X x p= = . Similarly, the complete expression for the probabilities from Table 5.4 is 

( , )
i j ij

P X x Y y p= = = . This formalism is necessary to understand some equations in NCT. 

(4) Two other characteristics of random variables, variance and covariance, are defined in 
terms of means. Therefore we shall be using linearity of means very often. 

Unit 5.6 Covariance (linearity, alternative expression, 
uncorrelated variables, sufficient and necessary conditions, 
symmetry of covariances) 

Definition. For two random variables ,X Y  their covariance is defined by 

cov( , ) ( )( )X Y E X EX Y EY= − − . 

Comments. (1) Covariance has two complex arguments, whereas its value is simple – just a 
number. 

(2) X EX− is the deviation of X  from its mean; Y EY− is the deviation of Y  from its 
mean. Therefore cov( , )X Y  is the expected value of the product of these two deviations. 

Explain all formulas for yourself in this way. 

(3) The book says that covariance is a measure of relationship between two variables. This is 
true with some caveats. We keep covariance around mainly for its algebraic properties. 

Property 1. Linearity. Covariance is linear in the first argument when the second argument 

is fixed: for any random variables , ,X Y Z  and numbers ,a b  one has 

 cov( , ) cov( , ) cov( , ).aX bY Z a X Z b Y Z+ = +  (5.4) 

Proof. We start by writing out the left side of (5.4): 
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cov( , )

[( ) ( )]( )               (using linearity of means)

( )( )                   (collecting similar terms)

[ ( ) ( )]( )                (multiplying

aX bY Z

E aX bY E aX bY Z EZ

E aX bY aEX bEY Z EZ

E a X EX b Y EY Z EZ

+

= + − + −

= + − − −

= − + − −  out)

[ ( )( ) ( )( )]  (using linearity of means)

( )( ) ( )( )  (by definition of covariance)

cov( , ) cov( , ).

E a X EX Z EZ b Y EY Z EZ

aE X EX Z EZ bE Y EY Z EZ

a X Z b bY Z

= − − + − −

= − − + − −

= +

 

Exercise 5.4 Covariance is also linear in the second argument when the first argument is 
fixed. Write out and prove this property. You can notice the importance of using parentheses 
and brackets. 

Learning longer proofs will develop your logic and intuition to the extent that you’ll be able 
to produce results like this on demand. 

Property 2. Alternative expression: cov( , ) ( )( )X Y EXY EX EY= − . 

Proof. 

cov( , )

( )( )                                      (multiplying out)

[ ( ) ( )( )]             ( ,  are constants; use linearity)

( )( ) ( )( ) ( )( )

( )( ).

X Y

E X EX Y EY

E XY XEY EX Y EX EY EX EY

EXY EX EY EX EY EX EY

EXY EX EY

= − −

= − − +

= − − +

= −

 

Definition. Random variables ,X Y  are uncorrelated if cov( , ) 0X Y = . Uncorrelatedness is 

close to independence, so the intuition is the same: one variable does not influence the other. 
You can also say that there is no statistical relationship between uncorrelated variables. 

Property 3. Independent variables are uncorrelated: if ,X Y  are independent, then 

cov( , ) 0X Y = . 

Proof. By the alternative expression of covariance and multiplicativity of means for 

independent variables cov( , ) ( )( ) 0X Y EXY EX EY= − = . 

Comments. (1) This is a good place to discuss necessary and sufficient conditions. We say 

that condition A is sufficient for condition B if A implies B: A ⇒ B. When this is true, we 
also say that B is necessary for A. Visually, the set of all objects satisfying A is a subset of all 
objects satisfying B when A is sufficient for B. For example, the statement on relationship 
between independence and uncorrelatedness is visualized like this: 
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Figure 5.3 Independent versus uncorrelated pairs of variables 

(2) When A is both necessary and sufficient for B, we say that A is equivalent to B and write 

A ⇔ B. An interesting question is whether independence is equivalent to uncorrelatedness or, 
put it differently, if there exist uncorrelated pairs which are not independent. The answer is 

Yes. Take any variable X  such that 3
0EX EX= =  and put 2

Y X= . This Y  is not 

independent of X  because knowledge of the latter implies knowledge of the former. 
However, they are uncorrelated: 

3
cov( , ) ( )( ) ( )( ) 0.X Y EXY EX EY EX EX EY= − = − =  

(3) Here we show that the condition 3
0EX EX= =  is satisfied for any random variable that 

is symmetric around zero. The symmetry definition implies that any negative value 
i
x
−  can be 

written as 
i i
x x
− +

= −  where 
i
x
+  is a positive value of the same variable and the probabilities 

are the same: ( ) ( )
i i

P X x P X x
− +

= = = . Therefore 

0 0

0

                                (sorting out positive and negative values)

              (replacing negative values and their probabilities)

[( ) ] ( ) (

i i

i

i i

i i i i

x x

i i i

x

EX x p

x p x p

x x P X x

− +

+

− +

< >

+ + +

>

=

= +

= − + =

∑

∑ ∑

∑ the two terms cancel out)

0.=  

The proof of 3
0EX =  is similar. 

Property 4. Correlation with a constant. Any random variable is uncorrelated with any 
constant: cov( , ) ( )( ) 0.X c E X EX c Ec= − − =  

Property 5. Symmetry. Covariance is a symmetric function of its arguments: 

cov( , ) cov( , )X Y Y X= . 

Unit 5.7 Variance (interaction term, variance of a sum, 
homogeneity of degree 2, additivity of variance) 

Definition. For a random variable X , its variance is defined by 2
( ) ( )V X E X EX= − . 

Comments. (1) Variance measures the spread of X  around its mean. 

All uncorrelated 

pairs X,Y

All 

independent

pairs X,Y
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(2) For linear operations, like the mean EX , it is common to write the argument without 
parentheses, unless it is complex, as in ( )E aX bY+ . For nonlinear operations, of type ( )V X , 

the argument must be put in parentheses. 

Property 1. Relation to covariance: ( ) cov( , )V X X X= . 

Property 2. Variance of a linear combination. For any random variables ,X Y  and 

numbers ,a b  one has 

 2 2
( ) ( ) 2 cov( , ) ( ).V aX bY a V X ab X Y b V Y+ = + +  (5.5) 

The term 2 cov( , )ab X Y  in (5.5) is called an interaction term. 

Proof. Use Property 1: 

2 2

( ) cov( , )

(using linearity with respect to the first variable)

cov( , ) cov( , )

(using linearity with respect to the second variable)

cov( , ) cov( , ) cov( , ) cov( ,

V aX bY aX bY aX bY

a X aX bY b Y aX bY

a X X ab X Y ab Y X b Y

+ = + +

= + + +

= + + +

2 2

)

(using symmetry of covariance and collecting similar terms)

( ) 2 cov( , ) ( ).

Y

a V X ab X Y b V Y= + +

 

Exercise 5.5 (1) Prove the property directly, without appealing to covariance. 

(2) How do you obtain from this property two special cases: 

(i) ( ) ( ) 2cov( , ) ( )V X Y V X X Y V Y+ = + +  (variance of a sum) 

and 

(ii) 2
( ) ( )V aX a V X=  (homogeneity of degree 2)? 

(3) What do you think is larger: ( )V X Y+ or ( )V X Y− ? 

(4) If we add a constant to a variable, does its variance change? 

Property 3. Variance of a constant: 2
( ) ( ) 0V c E c Ec= − = . 

Property 4. Nonnegativity: ( ) 0V X ≥  for any X . 

Proof. By definition, 

 2 2 2

1 1
( ) ( ) ( ) ... ( ) .

n n
V X E X EX p x EX p x EX= − = − + + −  (5.6) 

This is a weighted sum of squared deviations, each of which is nonnegative, and the weights 
are positive, so the whole thing is nonnegative. 

Property 5. Characterization of all variables with vanishing variance. We want to know 
exactly which variables have zero variance. We know that constants have this property, so 

X c=  is sufficient for ( ) 0V X = . Conversely, suppose that ( ) 0V X = . Since all probabilities 

are positive, from (5.6) we see that 
1

... 0
n

x EX x EX− = = − = . This implies that all values are 

equal to the mean, which is a constant. Conclusion: ( ) 0V X =  if and only if X c= . 
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Property 6. Additivity of variance: if ,X Y  are independent, then ( ) ( ) ( )V X Y V X V Y+ = +  

(the interaction terms disappears). 

Since variance is a nonlinear operator, it is additive only under special circumstances, when 
the variables are uncorrelated or, in particular, when they are independent. 

Unit 5.8 Standard deviation (absolute value, homogeneity, 
Cauchy-Schwarz inequality) 

Definition. For a random variable X , the quantity ( ) ( )X V Xσ =  is called its standard 

deviation. 

In general, there are two square roots of a positive number, one positive and the other 
negative. The positive one is called an arithmetic square root. An arithmetic root is applied 

here to ( ) 0V X ≥ , so standard deviation is always nonnegative. 

Absolute values. An absolute value of a real number is defined by 

 

,    if  is nonnegative
| |

,  if  is negative

a a

a

a a


= 

−  (5.7) 

It is introduced to measure the distance from point a  to the origin. For example, dist(3,0) = 

|3| = 3 and dist(–3,0) = |–3| = 3. More generally, for any points ,a b  on the real line the 

distance between them is given by dist( , ) | |a b a b= − . 

The distance interpretation of the absolute value makes it clear that 

(i) the condition [ , ]a b b∈ −  is equivalent to | |a b≤  

and 

(ii) the condition [ , ]a b b∉ −  is equivalent to | |a b> . 

By squaring both sides in (5.7) we get 2 2
| |a a= . Application of the arithmetic square root 

gives 2| |a a= . This is the equation we need right now. 

Property 1. Standard deviation is homogeneous of degree 1: 
2( ) ( ) ( ) | | ( )aX V aX a V X a Xσ = = = σ . 

Property 2. Cauchy-Schwarz inequality. (1) For any random variables ,X Y  one has 

| cov( , ) | ( ) ( )X Y X Y≤ σ σ . 

(2) If the inequality sign turns into equality, | cov( , ) | ( ) ( )X Y X Y= σ σ , thenY  is a linear 

function of X : Y aX b= + . 

Proof. (1) If at least one of the variables is constant, both sides of the inequality are 0 and 

there is nothing to prove. To exclude the trivial case, let ,X Y  be nonconstant. Consider a 

real-valued function of a real number t  defined by ( ) ( )f t V tX Y= + . Here we have variance 

of a linear combination: 2
( ) ( ) 2 cov( , ) ( )f t t V X t X Y V Y= + + . 

We see that ( )f t  is a parabola with branches looking upward (because the senior coefficient 

( )V X  is positive). By nonnegativity of variance, ( ) 0f t ≥  and the parabola lies above the 

horizontal axis in the ( , )f t  plane. Hence, the quadratic equation ( ) 0f t =  may have at most 
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one real root. This means that the discriminant of the equation is non-positive: 
2

[cov( , )] ( ) ( ) 0.D X Y V X V Y= − ≤  Applying square roots to both sides of 
2

[cov( , )] ( ) ( )X Y V X V Y≤  we finish the proof of the first part. 

(2) In case of the equality sign the discriminant is 0. Therefore the parabola touches the 

horizontal axis where ( ) ( ) 0f t V tX Y= + = . But we know that this implies tX Y c+ =  which 

is just another way of writing Y aX b= + . 

Do you think this proof is tricky? During the long history of development of mathematics 
mathematicians have invented many tricks, small and large. No matter how smart you are, 
you cannot reinvent all of them. If you want to learn a lot of math, you’ll have to study the 

existing tricks. By the way, the definition of what is tricky and what is not is strictly personal 
and time-dependent. 

Unit 5.9 Correlation coefficient (unit-free property, positively and 
negatively correlated variables, uncorrelated variables, perfect 
correlation) 

Definition. Suppose random variables ,X Y  are not constant. Then their standard deviations 

are not zero and we can define 

cov( , )
( , )

( ) ( )

X Y
X Y

X Y
ρ =

σ σ
 

which is called a correlation coefficient between X  and Y . 

Property 1. Range of the correlation coefficient: for any ,X Y one has 1 ( , ) 1X Y− ≤ ρ ≤ . 

Proof. By the properties of absolute values the Cauchy-Schwarz inequality can be written as 

( ) ( ) cov( , ) ( ) ( ).X Y X Y X Y−σ σ ≤ ≤ σ σ  

It remains to divide this inequality by ( ) ( )X Yσ σ . 

Property 2. Interpretation of extreme cases. (1) If ( , ) 1X Yρ = , then Y aX b= +  with 0.a >  

(2) If ( , ) 1X Yρ = − , then Y aX b= +  with 0a < . 

Proof. (1) ( , ) 1X Yρ =  implies 

 cov( , ) ( ) ( )X Y X Y= σ σ  (5.8) 

which, in turn, implies that Y  is a linear function of X : Y aX b= + . Further, we can 

establish the sign of the number a . By the properties of variance and covariance 

cov( , ) cov( , ) cov( , ) cov( , ) ( ),

( ) ( ) ( ) | | ( ).

X Y X aX b a X X X b aV X

Y aX b aX a X

= + = + =

σ = σ + = σ = σ

 

Plugging this in (5.8) we get 2
( ) | | ( )aV X a X= σ   and see that a  is positive. 

The proof of (2) is left as an exercise. 

Property 3. Suppose we want to measure correlation between weight W  and height H  of 

people. The measurements are either in kilos and centimeters ,

k c
W H  or in pounds and feet 
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,p fW H . The correlation coefficient is unit-free in the sense that it does not depend on which 

units are used: ( , ) ( , )k c p fW H W Hρ = ρ . 

Proof. One measurement is proportional to another, ,k p c fW aW H bH= =  with some positive 

constants ,a b . By homogeneity 

cov( , ) cov( , )cov( , )
( , ) ( , ).

( ) ( ) ( ) ( ) ( ) ( )

p f p fk c
k c p f

k c p f p f

aW bH ab W HW H
W H W H

W H aW bH ab W H
ρ = = = = ρ

σ σ σ σ σ σ
 

Definition. Because the range of ( , )X Yρ is [ 1,1]− , we can define the angle 
,X Y
α  between X  

and Y by 
, ,

cos ( , ), 0 .
X Y X Y

X Yα = ρ ≤ α ≤ π  

Table 5.6 Geometric interpretation of the correlation coefficient 

X  and Y  are positively correlated: 0 1< ρ ≤  
,

0
2

X Y

π
≤ α <  (acute angle) 

X  and Y  are negatively correlated: 1 0− ≤ ρ <  
,

2
X Y

π
< α ≤ π  (obtuse angle) 

X  and Y  are uncorrelated: 0ρ =  
,

2
X Y

π

α =   (right angle) 

X  and Y  are perfectly positively correlated: 1ρ =  Y aX b= +  with 0a >  

X  and Y  are perfectly negatively correlated: 1ρ = −  Y aX b= +  with 0a <  

Unit 5.10 Standardization (standardized version) 

Questions. The motivation here is purely mathematical. (1) What can be done to a random 

variable X  to obtain a new random variable with mean zero? 

(2) What can be done to X  to obtain a new variable with unit variance (and standard 
deviation)? 

Digression on linear transformations. Let us look at what happens to the distribution of X  

when a linear transformation Y aX b= +  is applied to it. From Table 5.2 it is clear that 

Y aX b= +  takes values 
i

ax b+ . 

Consider a special case 1a = . When a constant b  is added to X , all values of X  move to 

the right ( 0b > ) or to the left ( 0b < ) by the same amount. Correspondingly, the histogram 
moves right or left as a rigid body (the distances between values do not change). 

Consider another special case 0b = . If X  is multiplied by a , its values will be stretched (

| | 1a > ) or contracted towards the origin ( | | 1a < ). In case of stretching its variance increases 

and in case of contraction it decreases. 

In the general case stretching/contraction is combined with the movement along the x-axis. 

Answers. (1) To obtain a variable with mean zero out of X  we subtract its mean: 

( ) 0E X EX EX EX− = − = . 

(2) To obtain a variable with unit variance out of X  we divide it by ( )Xσ  (provided it’s not 

zero): 
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2

1
(by homogeneity) ( ) 1.

( ) ( )

X
V V X

X X

 
= = = 

σ σ 
 

To satisfy both requirements we combine the two transformations: 

 .
( )

X EX
Y

X

−

=

σ

 (5.9) 

Definition. The transformation of X  defined in (5.9) is called standardization and Y  is 

called a standardized version of X . 

Exercise 5.6 Check that (5.9) has mean zero and unit variance. 

In NCT the mean, variance and standard deviation are denoted by 2
,  and µ σ σ , respectively. 

Always put a subscript to reflect the variable in question in this notation: 
2, ( ), ( ) ( ).

X X X
EX V X V X Xµ = σ = σ = = σ  

Unit 5.11 Bernoulli variable (population, sample, sample size, 
sampling with replacement, ex-post and ex-ante treatment of 
random variables, identically distributed variables, parent 
population, binomial variable, number of successes, 
proportion of successes, standard error) 

Intuitive definition. A Bernoulli variable is the variable that describes an unfair coin. 

Formal definition. A Bernoulli variable is defined by the table: 

Table 5.7 Bernoulli variable definition 

Values of B  Probabilities 

1 p  

0 1 p−  

where 0 1p< < . Often it is convenient to denote 1q p= − . 

Property 1. Mean of the Bernoulli variable: 1 0 (1 )EB p p p= ⋅ + ⋅ − = . 

Property 2. Variance of the Bernoulli variable. Using the alternative expression for variance, 

2 2

2 2 2 2

( ) ( )

1 0 (1 ) (1 ).

V B EB EB

p p p p p p p

= −

= + − − = − = −

 

Note that ( )V B  is a parabola with branches looking downward. It vanishes at 0 and 1p p= =  

and is maximized at 1/ 2p = , which corresponds to a fair coin. 

5.11.1 Some facts about sampling not many people will tell you 

Here we provide an example of an unfair coin and use it to discuss the notions of population 
and sample. 

Take any book in English. All alphabetic characters in it are categorized as either consonants 

or vowels. Denote by p  the percentage of consonants. We assign 1 to a consonant and 0 to a 

vowel. The experiment consists in randomly selecting an alphabetic character from the book. 

Then the outcome is 1 with probability p  and 0 with probability q . We have a random 
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variable described by Table 5.7. In this context, the population is the set of consonants and 

vowels, along with their percentages p and q . This description fits the definition from 

Section 1.2 of NCT: a population is a complete set of all items that interest the investigator. 

Another definition from the same section says: a sample is an observed subset of population 

values with sample size given by n . It is important to imagine the sampling process step by 

step. To obtain a sample in our example we can randomly select n  characters and write the 
sample as 

1
,...,

n
X X  

where some X ’s are unities and others are zeros. The problem is that “random selection” can 
be understood in different ways. We consider the most important two. 

Case I. We randomly select 
1

X  from the whole book. Suppose it’s the first character in the 

table of contents, which is “C” in NCT. Then 
1
1X = . Then we randomly select 

2
X , again 

from the whole book. It may well be the same “C” in the table of contents, in which case 

2
1X = . We continue like this following two rules: (1) each selection is random and (2) the 

selection is made from the whole book. The second condition defines what is called a 
sampling with replacement: to restore the population, selected elements are returned to it. 

After we have obtained a sample of size n , we can form a sum of the observed values 

 
1

...

n n
S X X= + +  (5.10) 

and a sample mean 

 1
...

.

n n
X X S

X
n n

+ +

= =  (5.11) 

After we obtain an actual sample, there will be nothing random. 
n
S , being a sum of unities 

and zeros, will be some integer from the range [0, ]n  and X  will be some fraction from 

[0,1]. 

The subtlety of the theoretical argument in statistics is that 
1
,...,

n
X X  are treated not as 

realized (ex-post) values but as theoretical (ex-ante) random variables that are associated with 
the drawings from the population. 

Let us rewind the movie and think about the selection process again. The first time you don’t 
actually select a character, you just THINK about randomly selecting it from the whole book. 

The associated random variable is denoted 
1

X  and, clearly, is described by the same table as 

B . Similarly, you think about what possibilities you would face in all other cases and come 
to the conclusion that all drawings are described by the same table, just the names of the 
variables will be different. 

Definition. Random variables that have the same distributions (that is, values plus 
probabilities) are called identically distributed. 

Comments. (1) Since values plus probabilities is all one needs to find the mean and variance 
of a random variable, identically distributed variables have identical means and variances. 

(2) Instead of saying “
1
,...,

n
X X  are identically distributed” we can equivalently say “

1
,...,

n
X X  are drawn from the same population”. In this case the population we draw the 

sample from is called a parent population. 
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(3) By construction, in Case I the variables are independent. The common abbreviation for 
“independent identically distributed” is i.i.d. 

(4) In the sum (5.10) the variables 
1
,...,

n
X X  may take independently values 0 and 1. If all are 

zeros, 
n
S  is zero. If all are unities, 

n
S  will be equal to n . In general, 

n
S  may take any 

integer value from 0 to n , inclusive. To emphasize that we deal with variables, in the 
equation 

1
0,10,..., 0,1

...

n n

n

S X X= + +  

below the variables I write their possible values. Now the next definition must be clear. 

Definition. A binomial variable is a sum of n  independent identically distributed Bernoulli 
variables. 

Case II. Think about an opinion poll on a simple question requiring a simple answer: Yes or 

No. Suppose everybody has a definite opinion on the matter, and denote p  the percentage of 

voters who have an affirmative answer. A team is sent out to conduct a survey. They record 1 
for Yes and 0 for No. The population will be again Bernoulli but there are problems with the 
sample. It doesn’t make sense to ask the same person twice, so the elements in the sample 
cannot be repeated. In essence, after having randomly selected the first individual, you cross 
out that individual from the population before selecting the next one. This implies two things: 
the observations are dependent and their distributions are not identical. 

The general statistical principle is that removing one element from a large population does 
not change its characteristics very much. So in the case under consideration, the observations 
can be assumed approximately i.i.d. 

Conclusion. If 
1
,...,

n
X X  are drawn from the same parent population and 

X
µ  and 

X
σ  denote 

the mean and standard deviation of the parent population, then 

 1 1
... , ( ) ... ( ) .

n X n X
EX EX X X= = = µ σ = = σ = σ

 (5.12) 

5.11.2 An obvious and handy result 

It is possible to calculate means and variances of  and 
n

S X  by deriving their distributions and 

applying the definitions of a mean and variance directly (see Exercise 5.8). But there is a 
much easier way to do that, which should be obvious, if not now then at least after reading 
the proof below. It is as handy as it is indispensable in a number of applications. 

The sum 
1

...

n n
S X X= + +  and the sample mean X  can be used when 

i
X  are drawn from an 

arbitrary population. In the context of drawing from a Bernoulli population 
n
S  is called a 

number of successes (because only unities contribute to it). The sample mean X in this case 

is called a proportion of successes and denoted p̂ . 

Exercise 5.7 The mean and variance of 
n
S  and X . (1) If 

1
,...,

n
X X  are i.i.d., then 

 
2

2, ( ) , , ( ) .X

n X n X X
ES n V S n EX V X

n

σ
= µ = σ = µ =  (5.13) 

(2) If, additionally, 
n
S  is a binomial variable and 

X
p  denotes the parameter of the parent 

Bernoulli population, then (5.13) becomes 
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(1 )

ˆ ˆ, ( ) (1 ), , ( ) .X X

n X n X X X

p p
ES np V S np p Ep p V p

n

−

= = − = =  (5.14) 

Proof. (1) Here our derivation of algebraic properties of means and variances starts paying 
back. 

1

1 1

( ... )    (by additivity)

...      ( ,...,  are identically distributed)

.

n n

n n

X

ES E X X

EX EX X X

nEX n

= + +

= + +

= = µ

 

For variance we use also independence. Due to independence, all interaction terms vanish 
and variance is additive. 

1

1 1

2

( ) ( ... )          (by additivity)

( ) ... ( )     ( ,...,  are identically distributed)

( ) .

n n

n n

X

V S V X X

V X V X X X

nV X n

= + +

= + +

= = σ

 

The results for the sample mean follow by homogeneity: 

2

2

2 2

1 1
,

1 1
( ) ( ) .

n

n X X

n X

n X

S
EX E ES n

n n n

S
V X V V S n

n n n n

= = = µ = µ

σ = = = σ = 
 

 

(2) In case of the binomial variable just replace 
X

µ  by 
X

p  and 2

X
σ

 
by (1 )

X X
p p− . 

From this exercise it follows that X

X

n

σ

σ = . The quantity on the left is called a standard error 

of X . 

An important consequence is that ( )V X →∞  as n→∞  (as the sample increases, the 

estimation precision improves and the values of the sample mean become more and more 
concentrated around the population mean; is this result intuitive?) This is a general statistical 
fact: increasing the sample is always good. 

Unit 5.12 Distribution of the binomial variable 

Case 3n = . When you need to recall what a binomial variable is, you start with “it is a sum” 

and then disclose the rest. Let us derive the distribution of 
3
S . The idea is to list all possible 

combinations of values of 
1 2 3
, ,X X X , find the corresponding values of 

3
S  and then calculate 

their probabilities. This is done in two steps. Remember that the objective is to get the 
“values plus probabilities” table. 

In mathematical exposition ideas sometimes are not stated. The presumption is that you get 
the idea after reading the proof. In your mind, ideas should always go first. 

Step 1. 

Table 5.8 Table of possible outcomes and probabilities 

Row Combinations of values of 
1 2 3
, ,X X X  Values of 

3
S  Probabilities 

1 (0,0,0) 0 3
q  
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2 (1,0,0) 1 2
pq  

3 (0,1,0) 1 2
pq  

4 (0,0,1) 1 2
pq  

5 (1,1,0) 2 2
p q  

6 (0,1,1) 2 2
p q  

7 (1,0,1) 2 2
p q  

8 (1,1,1) 3 3
p  

Here we used the multiplication rule. For example, the probability 2
pq  in the second row is 

obtained like this: 

2

1 2 3 1 2 3
( 1, 0, 0) ( 1) ( 0) ( 0) .P X X X P X P X P X pq= = = = = = = =  

Step 2. The next step is to collect equal values of 
3
S . This is done using the additivity rule. 

For example, the events (1,0,0), (0,1,0) and (0,0,1) in rows 2-4 are mutually exclusive and 
therefore 

3

2

( 1) ((1,0,0) (0,1,0) (0,0,1))

               ((1,0,0)) ((0,1,0)) ((0,0,1)) 3 .

P S P

P P P pq

= = ∪ ∪

= + + =

 

Thus the result is 

Table 5.9 Distribution of S3 

Values of 3
S

 
Probabilities 

0 3
q  

1 2
3pq  

2 2
3p q  

3 3
p  

Exercise 5.8 Using this table find 
3 3
, ( )ES V S . 

Case of general n . The first thing to understand is that 
n
S  takes all integer values x  from 0 

to n , inclusive, and for each of these values we need to figure out the probability ( )
n

P S x=  

(that’s what Table 5.9 is about in case 3n = ). 

Step 1. The equation 
n

S x=  tells us that in a sequence 
1

( ,..., )
n

X X  of zeros and unities there 

are x  unities and n x−  zeros. The probability of ONE such sequence is x n x

p q
−  by the 

multiplication rule. 

Step 2. We have to find out how many such sequences exist for the given x . This question 

can be rephrased as follows: in how many different ways x  places (where the unities will be 

put) can be chosen out of n  places? Since the order doesn’t matter, the answer is: in n

x
C  

ways. Because each of these ways has the same probability x n x

p q
−  and they are mutually 

exclusive, by the additivity rule 

 ( ) , 0,..., .n x n x

n x
P S x C p q x n

−

= = =  (5.15) 
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Unit 5.13 Distribution function (cumulative distribution function, 
monotonicity, interval formula, cumulative probabilities) 

The full name from NCT is a cumulative distribution function but I am going to stick to the 
short name (used in more advanced texts). This is one of the topics most students don’t get on 
the first attempt. 

Example 5.2. Electricity consumption sharply increases when everybody starts using air 
conditioners, and this happens when temperature exceeds 20°. The utility company would 
like to know the likelihood of a jump in electricity consumption tomorrow. 

(i) Consider the probability ( 15)P T ≤  that T  will not exceed 15°. How does it relate to the 

probability ( 20)P T ≤ ? 

(ii) Suppose in the expression ( )P T t≤  the real number t  increases to +∞ . What happens to 

the probability? 

(iii) Now think about t  going to −∞ . Then what happens to ( )P T t≤ ? 

Definition. Let X  be a random variable and x  a real number. The distribution function
X
F  

of X  is defined by 

( ) ( ).
X

F x P X x= ≤  

Answers 

(i) ( )
X

F x is the probability of the event { }X x≤ , so the value ( )
X

F x  belongs to [0,1]. As the 

event becomes wider, the probability increases. This property is called monotonicity and is 

formally written as follows: if 
1 2
x x≤ , then 

1 2
{ } { }X x X x≤ ⊂ ≤  and 

1 2
( ) ( )

X X
F x F x≤ . 

(ii) As x  goes to +∞ , the event { }X x≤  approaches a sure event and ( )
X

F x  tends to 1. 

(iii) As x  goes to −∞ , the event { }X x≤  approaches an impossible event and ( )
X

F x  tends 

to 0. 

(iv) From (i)-(iii) the following graph of the distribution function emerges: 

 
Figure 5.4 Distribution function shape 

Most values of X  are concentrated where the growth of ( )
X

F x  is the fastest (say, between 

a  and b ). 

(v) In many applications we are interested in probability of an event that X  takes values in 

an interval { }a X b< ≤ . Such probability can be expressed in terms of the distribution 

function. Just apply the additivity rule to the set equation 

{ } { } { }X b X a a X b−∞ < ≤ = −∞ < ≤ ∪ < ≤  to get ( ) ( ) ( )
X X

F b F a P a X b= + < ≤  and, 

finally, 

 ( ) ( ) ( ).
X X

P a X b F b F a< ≤ = −  (5.16) 

a

1

b

F
X

x
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This equation can be called an interval formula. 

(vi) The definition of ( )
X

F x  equally applies to discrete and continuous variables. However, 

in case of a discrete random variable the argument x  is often restricted to the values taken by 
the variable. From the working definition of a discrete random variable it should be clear that, 
if the values are ordered, then 

1 1 1 1

2 2 1 2 1 2

1

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

...

( ) ... .

X

X

X n n

F x P X x P X x p

F x P X x P X x P X x p p

F x p p

= ≤ = = =

= ≤ = = + = = +

= + +

 

The sums arising here are called cumulative probabilities. We summarize our findings in a 
table: 

Table 5.10 Table of probabilities and cumulative probabilities 

Values of X  Probabilities Cumulative probabilities 

1
x  

1
p  

1 1
c p=  

2
x  

2
p  

2 1 2
c p p= +  

… …  

n
x  

n
p  

1
...

n n
c p p= + +  

Note that probabilities can be restored from the cumulative probabilities: 

1 1 2 2 1 1
, ,

n n n
p c p c c p c c

−

= = − = −  

(vii) In Unit 6.2, Property 2, we shall see that a continuous random variable takes any fixed 

value with probability zero. Therefore for such variables ( ) ( ) ( )
X

F x P X x P X x= ≤ = < . 

Unit 5.14 Poisson distribution (monomials, Taylor decomposition) 

The derivation of the Poisson distribution from primitive assumptions would be even more 
difficult than for the binomial variable. Therefore we introduce it axiomatically and then start 
looking for real-world applications. 

Taylor decomposition. The functions 0 1 2
1, , ,...x x x x= =  are called monomials. Unlike 

marsupials, they are considered simple. The idea is to represent other functions as linear 

combinations of monomials. For example, a polynomial 
0 1

( ) ...
n

n
p x a a x a x= + + +  is such a 

combination. Linear and quadratic functions are special cases of polynomials. If infinite 
linear combinations, called Taylor decompositions, are allowed, then the set of functions 
representable using monomials becomes much wider. We are interested in the decomposition 
of the exponential function 

 

2

0

1 1 1 1
1 ... ... .

1! 2! ! !

n x

x

e

n x

∞

λ

=

= + λ + λ + + λ + = λ∑
 (5.17) 

Here λ  is any real number (see calculus texts for more information). 

Definition. Take 0λ >  and divide both sides of (5.17) by eλ  to obtain 

2

0

1 1 1 1
1 ... ... .

1! 2! ! !

n x

x

e e e e e

n x

∞

−λ −λ −λ −λ −λ

=

= + λ + λ + + λ + = λ∑  
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We see that quantities 
1

!

x

x
p e

x

−λ
= λ  satisfy the probability postulate. Hence, we can define a 

random variable X  by 

1
( ) , 0, 1, 2,...

!

x

P X x e x
x

−λ
= = λ =  

This variable is called a Poisson distribution. 

Comments. (1) This is a discrete random variable with an infinite number of values. An 
application should be a variable which can potentially take nonnegative integer values, 
including very large ones. Normally, a mobile network operator, such as T-Mobile, has a very 

large number of subscribers. Let X  denote the number of all customers of T-Mobile who use 
their mobile service at a given moment. It is random, it takes nonnegative integer values and 
the number of customers using their mobile phones simultaneously can be very large. Finally, 
decisions by customers to use their cell phones can be considered independent, unless there is 
a disaster. 

(2) Compare this definition with what is written in Section 5.6 of NCT. “Assumptions of the 
Poisson Probability Distribution” from that section is an attempt to show how this 
distribution is derived from primitive assumptions. Since all the accompanying logic has been 
cut off, the result is a complete mystery. 

Exercise 5.9 Calculate the mean and variance of the Poisson distribution. 

Solution. In the definition of the mean the sum is, naturally, extended over all nonnegative 
integers: 

0 0

1

1

1

1

!

(the term with 0 is actually 0, so summation starts with 1)

1
 

( 1)!

(we pull out ,  to obtain matching 1 in the power and factorial)

1

( 1)!

(repl

x

x

x x

x

x

x

x

EX xp x e
x

x x

e
x

x

e
x

∞ ∞

−λ

= =

∞

−λ

=

∞

− −λ

=

= = λ

= =

= λ
−

λ −

= λ λ
−

∑ ∑

∑

∑

0 0

ace 1,  to get Poisson probabilities)

1
.

!

y

y

y y

y x

e p
y

∞ ∞

−λ

= =

= −

= λ λ = λ = λ∑ ∑

 

With the view to apply the alternative expression for variance, we calculate first 
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2 2 2

0 0

1

1

1 1

1

!

1

( 1)!

(this time it is possible to cancel out only one , so we replace 1 1)

1
( 1 1)

( 1)!

1 1
( 1)

( 1)! ( 1)!

(the idea is

x

x

x x

x

x

x

x

x x

x x

EX x p x e
x

x e
x

x x x

x e
x

x e e
x x

∞ ∞

−λ

= =

∞

−λ

=

∞

−λ

=

∞ ∞

−λ −λ

= =

= = λ

= λ
−

= − +

= − + λ
−

= − λ + λ
− −

∑ ∑

∑

∑

∑ ∑

2 2 1 2

2 1

 again to obtain Poisson probabilities)

1 1
.

( 2)! ( 1)!

x x

x x

e e
x x

∞ ∞

− −λ − −λ

= =

= λ λ +λ λ = λ + λ
− −

∑ ∑

 

As a result, 2 2 2 2
( ) ( )V X EX EX= − = λ + λ −λ = λ . 

Conclusion. The Poisson distribution is special in that its mean and variance are the same, 

( )EX V X= = λ . This is another indication as to where it can be applied. 

Unit 5.15 Poisson approximation to the binomial distribution 

The Poisson distribution is applied directly (see Examples 5.11 and 5.12 in NCT) or 
indirectly, via the binomial distribution. Before taking up the last point, we look at an 
example. 

Exercise 5.10 An insurance company holds fraudulence insurance policies on 6,000 firms. In 
any given year the probability that any single policy will result in a claim is 0.001. Find the 
probability that at least three claims are made in a given year. 

Solution. (a) Using the binomial. 

On the exam you may not have enough time to calculate the answer. Show that you know the 
material by introducing the right notation and telling the main idea. Ideas go first! 

Put 1X =  if a claim is made and 0X =  if it is not. This is a Bernoulli variable, 

( 1) 0.001P X p= = = . Denote 
n
S  the binomial variable. By the additivity rule 

( 3) 1 ( 2) 1 ( 0) ( 1) ( 2).
n n n n n

P S P S P S P S P S≥ = − ≤ = − = − = − =  

From this equation and the general formula ( ) n x n x

n x
P S x C p q

−

= =  

 

6000 5999 2 5998

6000 5999 2 5998

6000 5999 5998

6000! 6000!
( 3) 1 0.999 0.001 0.999 0.001 0.999

1!5999! 2!5998!

1 0.999 6000 0.001 0.999 3000 5999 0.001 0.999

1 0.999 6 0.999 3 5.999 0.999 .

n
P S ≥ = − − ⋅ − ⋅

= − − ⋅ ⋅ − ⋅ ⋅ ⋅

= − − ⋅ − ⋅ ⋅

 (5.18) 

 

You will die before you finish raising 0.999 to the power 6000 by hand. The trick is to use 

the properties of the exponential function and natural logarithm: ln a
a e=  and ln ln

b
a b a=  

for any positive number a  and real number b . In our case 
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60006000 ln0.999 6000ln0.999 6000( 0.0010005)
0.999 0.00247e e e

−

= = = = . 

Eventually we get ( 3) 0.93812
n

P S ≥ = . 

(b) Using the Poisson distribution. The distinctive feature of (5.18) is that 0.999 raised to a 
high power may become so small that a simple calculator will identify the result with zero. 

This small number is multiplied by combinations n

x
C  which, when n  is very large, may be 

for a simple calculator the same thing as infinity. However, the product of the two numbers, 
one small and another large, may be manageable. 

Mathematicians are reasonably lazy. When they see such numbers as in (5.18), they prefer to 
develop a theory than apply brute force. The device for the problem at hand is called a 

Poisson approximation to the binomial distribution and sounds as follows. Suppose p  is 

small and n  is large but their product npλ =  is moderate (the book says 7λ ≤ ). Then the 

probability of the binomial taking the value x  can be approximated by the probability of the 
Poisson taking the same value: 

( ) (Poisson ) .
!

x

n

e
P S x P x

x

−λ
λ

= ≈ = =  

This result gives a reasonably good approximation ( 3) 0.938031
n

P S ≥ = . 

Unit 5.16 Portfolio analysis (rate of return) 

In Unit 5.4 we already defined the portfolio value, and that definition corresponds to what the 
book has. In fact, the portfolio analysis is a little bit different. To explain the difference, we 
start with fixing two points of view. 

(i) I hold a portfolio of stocks. If I want to sell it, I am interested in knowing its market value. 
In this situation the numbers of shares in my portfolio, which are constant, and the market 
prices of stocks, which are random, determine the market value of the portfolio, defined in 
Unit 5.4. The value of the portfolio is a linear combination of stock prices. 

(ii) I have a certain amount of money 0
M  to invest. Being a gambler, I am not interested in 

holding a portfolio. I am thinking about buying a portfolio of stocks now and selling it, say, 

in a year at price 1
M . In this case I am interested in the rate of return defined by 

1 0

0

M M
r

M

−

= . 

0
M is considered deterministic (current prices are certain) and 1

M  is random (future prices 
are unpredictable). The rate of return thus is random. 

Main result. The rate of return on the portfolio is a linear combination of the rates of return 
on separate assets. 

Proof. As it often happens in economics and finance, this result depends on how one 

understands the things. The initial amount 0
M  is invested in n  assets. Denoting 0

i
M  the 

amount invested in asset i , we have
0 0

1

n

i

i

M M

=

=∑ . Denoting 0 0
/

i i
s M M=  the share 

(percentage) of 0

i
M  in the total investment 0

M , we have 
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0 0 0 0

1

, .

n

i i i

i

M sM M s M

=

= =∑
 (5.19) 

The shares
i
s  are deterministic. Denote 1

i
M  what becomes of 0

i
M  in one year and by 

1 1

1

n

i

i

M M

=

=∑  the value of the total investment at the end of the year. Since different assets 

change at different rates, generally it is not true that 1 1

i i
M s M= . Denote 

 
1 0

0

i i

i

i

M M
r

M

−

=  (5.20) 

the rate of return on asset i . Then using (5.19) and (5.20) we get 

0 0 0 01 0

0 0 0 0

(1 )
.

i i i i i i i

i i

r M M rM rs MM M
r s r

M M M M

+ −−
= = = = =

∑ ∑ ∑ ∑
∑

 

This is the main result. Once you know this equation you can find the mean and variance of 
the rate of return on the portfolio in terms of shares and rates of return on assets. 

Unit 5.17 Questions for repetition 

1. List and prove all properties of means. 

2. List and prove all properties of covariances. 

3. List and prove all properties of variances. 

4. List and prove all properties of standard deviations. 

5. List and prove all properties of the correlation coefficient including the statistical 
interpretation from Table 3.3. 

6. How and why do you standardize a variable? 

7. Define and derive the properties of the Bernoulli variable. 

8. Explain the term “independent identically distributed”. 

9. Define a binomial distribution and derive its mean and variance with explanations. 

10. Prove equation (5.15). 

11. Define a distribution function, describe its geometric behavior and prove the interval 
formula. 

12. Define the Poisson distribution and describe (without proof) how it is applied to the 
binomial distribution. 

13. Minimum required: Exercises 5.13, 5.23, 5.37, 5.47, 5.67, 5.68, 5.82, 5.91, 5.97. 
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Chapter 6 Continuous Random Variables and 

Probability Distributions 

Unit 6.1 Distribution function and density (integral, lower and 
upper limits of integration, variable of integration, additivity 
with respect to the domain of integration, linear combination of 
functions, linearity of integrals, order property) 

Please review the information about distribution functions from Unit 5.13. The definition of 
the distribution function given there is general and applies equally to discrete and continuous 

random variables. It has been mentioned that in case of a discrete variable X  the argument 

x  of its distribution function is usually restricted to the values of X . Now we are going to 
look into the specifics of the continuous case. 

6.1.1 Properties of integrals 

Definition. Let the function f  be defined on the segment [ , ]a b . By an integral 

 ( )

b

a

f x dx∫  (6.1) 

we mean the area delimited by the graph of f , the x-axis and two vertical lines: one at a  

(called a lower limit of integration) and another at b  (called an upper limit of integration). 

 
Figure 6.1 Integral as area 

Where f  is negative, the area is counted with a negative sign. Thus, for the function in 

Figure 6.1 
1 2

( )

b

a

f x dx A A= − +∫  where 
1
A  is the area below the x-axis and above the graph 

and 
2

A  is the area above the x-axis and below the graph. 

Comments. (1) To see what the arguments of the integral are, try to see in Figure 6.1 what 

affects its value. If we change any of , ,a b f , the integral will change. The argument x  does 

not affect the value of the integral, even though it is present in the notation of the integral 

(6.1). For example, the same integral can be written as ( )
b

a

f t dt∫  and it will not depend on t . 

The variable of integration t  is included here to facilitate some manipulations with integrals. 

a

b

A
1

A
2

c
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(2) Instead of changing separately a  or b  we can think of the whole segment [ , ]a b  as 

changing, and then we can ask what properties the integral has as a function of a segment 

(when f  is fixed). Its fundamental and geometrically obvious property is additivity with 

respect to the domain of integration: if a c b< < , then 

( ) ( ) ( )

b c b

a a c

f x dx f x dx f x dx= +∫ ∫ ∫  

(see Figure 6.1). 

(3) Since the area of a segment is equal to zero, for any a  we have 

 ( ) 0.

a

a

f x dx =∫  (6.2) 

(4) We can also ask how the integral changes when the segment [ , ]a b  is fixed and the 

function f  changes. Let ,f g  be two functions and let ,c d  be two numbers. The function 

( ) ( )cf x dg x+  is called a linear combination of  ,f g  with coefficients ,c d . The linearity 

property states that 

[ ( ) ( )] ( ) ( ) .

b b b

a a a

cf x dg x dx c f x dx d g x dx+ = +∫ ∫ ∫  

This property is quite similar to linearity of means and its applications are along the same 
lines but the proof requires a different level of math. This is one of those cases when you can 
use the cow-and-goat principle: here is a cow and there is a goat; they are quite similar and 
can be used, to a certain extent, for the same purposes. When it’s time to tell you how the 
cow is different from the goat, I will. 

(5) The order property of integrals is immediate from their interpretation as area: if the graph 

of the function f  is above that of the function g , ( ) ( ) for all [ , ]f x g x x a b≥ ∈ , then 

( ) ( ) .

b b

a a

f x dx g x dx≥∫ ∫  

Unit 6.2 Density of a continuous random variable (density, 
interval formula in terms of densities) 

Recall the short definition of a discrete random variable: values plus probabilities. Regarding 
the probabilities, we have established two properties: they are percentages and they satisfy 
the completeness axiom. We want an equivalent of these notions and properties in the 
continuous case. 

Definition. Let X  be a continuous random variable and let 
X

F  be its distribution function. 

If there exists a function 
X

p  such that 

 ( ) ( )  for all ,

x

X X
F x p t dt x

−∞

= −∞ < < ∞∫  (6.3) 

then we say that the function 
X

p  is the density of X . 
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Comments. (1) Please follow my practice of attaching subscripts to emphasize that 
X

F  and 

X
p  pertain to X . 

(2) The definition appeals to existence of a function 
X

p  satisfying (6.3). All continuous 

random variables that do not satisfy this existence requirement are left out in this course. 

Property 1. From (6.3) we can obtain a more general equation (an interval formula in terms 
of densities): 

 ( ) ( ) .

b

X

a

P a X b p t dt< ≤ = ∫  (6.4) 

Proof. Use the interval formula (5.16)  and additivity of integrals to get 

( ) ( ) ( ) ( ) ( ) ( ) .

b a b

X X X X X

a

P a X b F b F a p t dt p t dt p t dt
−∞ −∞

< ≤ = − = − =∫ ∫ ∫  

Property 2. The probability of X  taking any specific value is zero because by (6.2) 

( ) ( ) ( ) ( ) 0.

a

X

a

P X a P X a P X a p t dt= = ≤ − < = =∫  

For this reason ( )P X x≤  is the same as ( )P X x<  and ( )P a X b< ≤  is the same as 

( )P a X b≤ ≤ . 

Property 3. ( ) 0
X

p t ≥  for all t . 

Proof. If the density is negative at some point 
0
x , we can take a  and b  close to that point 

and then by the interval formula (6.4) ( )P a X b< ≤  will be negative, which is impossible. 

Property 4. Any density satisfies the completeness axiom in the form 

( ) 1
X

p t dt

+∞

−∞

=∫  

(the total area under the graph is 1). 

Proof. This is because { }X−∞ < < +∞  is a sure event and ( ) 1
X
F +∞ = . 

Differences between the cow and goat. (i) In the discrete case the variable takes its values 

with positive probabilities ( )
i i

P X x p= = . In the continuous case ( ) 0P X x= =  for any x . 

(ii) In the discrete case the numbers 
i

p  are probabilities (percentages). In the continuous case 

the values of the density ( )
X

p t  mean nothing and can be larger than 1. It’s the area ( )

b

X

a

p t dt∫  

that means probability! 

Exercise 6.1 Take two related continuous random variables and draw what you think would 
be their densities. For example, you can take: (i) distributions of income in a wealthy 
neighborhood and in a poor neighborhood, (ii) distributions of temperature in winter and 
summer in a given geographic location; (iii) distributions of electricity consumption in two 
different locations at the same time of the year. Don’t forget that the total density is 1! 
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Unit 6.3 Mean value of a continuous random variable (mean) 

This whole section is about the definition of EX . In the preamble of the definition you will 
see the argument of type used in the times of Newton and Leibniz, the fathers of calculus. It 
is still used today in inductive arguments by modern mathematicians. 

 
Figure 6.2 Approximation of an integral 

Approximation of integrals by integral sums. The idea of the next construction is 

illustrated in Figure 6.2. The segment [ , ]a b  is divided into many small segments, denoted 

 
0 1 1

[ , ], ...., [ , ]
m m

t t t t
−

 (6.5) 

where the leftmost point 
0
t  coincides with a  and the rightmost point 

m
t  is b . By additivity 

of integrals, the integral over the whole segment is a sum of integrals over subsegments: 

 
1

0 1

( ) ( ) ... ( ) .
m

m

ttb

a t t

f x dx f x dx f x dx

−

= + +∫ ∫ ∫  (6.6) 

When m  is large and the subsegments are small, for each of them the area 

1

( )
i

i

t

t

f x dx

−

∫  of a 

curvilinear figure can be approximated by the area 
1

( )( )
i i i

f t t t
−

−  of a rectangle. Therefore 

(6.6) is approximately 

 
1 1 0 1

( ) ( )( ) ... ( )( ).

b

m m m

a

f x dx f t t t f t t t
−

≈ − + + −∫  (6.7) 

In particular, if the segment [ , ]a b  itself is small, then 

 ( ) ( )( ).

b

a

f x dx f b b a≈ −∫  (6.8) 

Preamble. Let X  be a continuous random variable that takes values in [ , ]a b . Let us divide 

[ , ]a b  into equal parts (6.5). If we have a sample of n  observations on X , they can be 

grouped in batches depending on which subsegment they fall into. Let 
1
n  be the number of 

observations falling into the first subsegment 
0 1

[ , ]t t , …, 
m
n  the number of observations 

a = t
0

t
1

t
2

t
3 b = t

4

f(t
1
)

f(t
2
)

f(t
3
)

f(t
4
)
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falling into the last one 
1

[ , ]
m m
t t
−

. All observations falling into 
1

[ , ]
i i
t t
−

 are approximately 

equal to the right end 
i
t  of this subsegment. Then 

1
...

m
n n n+ + =  and by the mean of 

grouped data formula (see the third line in (5.2)) 

 

1 1
...

.

m m
n t n t

EX
n

+ +

≈

 (6.9) 

In the frequentist interpretation, i
n

n

approximates the probability that X  takes values in 

1
[ , ]
i i
t t
−

. By the interval formula (6.4) and approximation (6.8) 

 

1

1

1 1

( ) ( )

( )( )

i

i

t

i

i i X

t

X i i i

n
P t X t p t dt

n

p t t t

−

−

− −

≈ < ≤ =

≈ −

∫

 (6.10) 

when the subsegments are short enough. (6.9) and (6.10) imply that 

 1 1 1 0 1
( )( ) ... ( )( ).

X m X m m m
EX t p t t t t p t t t

−

≈ − + + −
 (6.11) 

From (6.7) and (6.11) we see that 

( )

b

X

a

EX tp t dt≈ ∫  

where the approximation improves as the partitioning into subsegments becomes finer. 

Definition. The mean of a continuous random variable is defined by 

( ) .

b

X

a

EX tp t dt= ∫  

Extending the density by zero outside [ , ]a b we can with equal success define the mean by 

 ( ) .
X

EX tp t dt

+∞

−∞

= ∫  (6.12) 

Unit 6.4 Properties of means, covariance, variance and 
correlation 

It might be relieving to know that it’s only the definition of the mean that is different from the 
discrete case. All properties of means, covariance and variance derived from that definition 
are absolutely the same as in the discrete case. Here is the list of properties that will be 
constantly used: 

(1) Linearity of means: ( )E aX bY aEX bEY+ = + . 

(2) Expected value of a constant: Ec c= . 

(3) Multiplicativity of expected values: ( )( )EXY EX EY=  for independent ,X Y . 

(4) Linearity of covariance: for example, for the first argument
cov( , ) cov( , ) cov( , ).aX bY Z a X Z b Y Z+ = +  

(5) Alternative expression for covariance: cov( , ) ( )( )X Y EXY EX EY= − . 
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(6) Independent variables are uncorrelated: cov( , ) 0X Y = . 

(7) Covariance with a constant: cov( , ) 0.X c =  

(8) Symmetry of covariance: cov( , ) cov( , )X Y Y X= . 

(9) Link between variance and covariance: ( ) cov( , )V X X X= . 

(10) Alternative expression for variance: 2 2
( ) ( )V X EX EX= − . 

(11) Variance of a linear combination: 2 2
( ) ( ) 2 cov( , ) ( ).V aX bY a V X ab X Y b V Y+ = + +  

(12) Variance of a constant: ( ) 0V c = . 

(13) Nonnegativity: ( ) 0V X ≥ . 

(14) Variables with vanishing variance: ( ) 0V X =  if and only if X c= . 

(15) Additivity of variance: ( ) ( ) ( )V X Y V X V Y+ = +  for independent ,X Y . 

(16) Standard deviation is homogeneous: ( ) | | ( )aX a Xσ = σ . 

(17) Range of the correlation coefficient: 1 ( , ) 1X Y− ≤ ρ ≤  for any ,X Y . 

(18) Standardization: 
( )

X EX
Y

X

−

=

σ

has mean zero and unit variance. 

Here only property (3) requires additional definitions: joint density, independence etc. Also, 
for (10) we need the definition of a function of a random variable, and this is better explained 
following the cow-and-goat principle. 

Table 6.1 Definition of a function of a random variable 

 The variable 
has values 

Probability/Density A function of a 
variable has values 

Discrete case 
i
x  

i
p  ( )

i
f x  

Continuous case t  ( )
X

p t  ( )f t  

Example 6.1
2

X  takes values 2t . sinX takes values sin t . Therefore 

2 2 ( ) , sin (sin ) ( ) .
X X

EX t p t dt E X t p t dt

+∞ +∞

−∞ −∞

= =∫ ∫  

Unit 6.5 The uniform distribution (uniformly distributed variable, 
primitive function, integration rule) 

You might want to review the definition of a uniformly distributed discrete variable in Unit 
5.2. 

Example 6.2 Take the power cable of your computer and stretch it along the real line. How 
would you describe the probability of the cable failing at any fixed point (plugs don’t count)? 
Do you think this probability at some points is higher than at others? 

Intuitive definition. Fix some segment [ , ]a b . We say that a random variable U  is uniformly 

distributed over [ , ]a b  if 

(a) U  does not take values outside [ , ]a b  and 
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(b) its values inside [ , ]a b  are equally likely. 

After having heard the motivating example and the intuitive definition most students are able 

to formally define the density of U . 

Formal definition. U is such a variable that its density is 

(a) null outside [ , ]a b  and 

(b) constant inside [ , ]a b . 

Denoting 

0  if  t [ , ]
( )

1   if  t [ , ]
U

a b
p t

a b

∉
= 

∈  

 we can find the constant using the fact that the total density must be 1: 

( )                                             (using additivity of integrals)

( ) ( ) ( )     (using density definition)

                                         

U

a b

U U U

a b

b

a

p t dt

p t dt p t dt p t dt

cdt

+∞

−∞

+∞

−∞

= + +

=

∫

∫ ∫ ∫

∫          (this is area of a rectangle)

( ) 1c b a= − =

 

so 
1

c
b a
=

−

. The result is 

 

0          if  [ , ]

( ) 1
   if  [ , ]

U

t a b

p t
t a b

b a

∉


= 
∈ −

 (6.13) 

Important. In the interval formulas (5.16) and (6.4) the segment [ , ]a b  is arbitrary, whereas 

in the definition of U  it is fixed. To remember this, sometimes it’s useful to denote [ , ]a b
U  the 

variable which is uniformly distributed over [ , ]a b . 

Property 1. Usually students can guess that 
[ , ]

2
a b

a b
EU

+
= . 

Proof. Using definitions (6.12) and (6.13) we get 

 
[ , ]

1
( ) ( ) .

b b

a b U U

a a

EU tp t dt tp t dt tdt
b a

+∞

−∞

= = =

−
∫ ∫ ∫  (6.14) 

The last integral can be found using two steps from calculus. 

Step 1. We have to find what is called a primitive function. ( )F x is called a primitive function 

of ( )f x  if '( ) ( ).F x f x=  The primitive of ( )f t t=  is 
2

( )
2

t
F t = . 

Step 2 is to use the primitive according to the integration rule 
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( ) ( ) ( ).

b

a

f t dt F b F a= −∫  

In our case 
2 2 ( )( )

.
2 2 2

b

a

b a b a a b
tdt

− +
= − =∫  This together with (6.14) implies 

 
[ , ]

1 ( )( )
.

2 2
a b

b a a b a b
EU

b a

− + +
= =

−

 (6.15) 

Property 2. ( )
2

[ , ]

( )

12
a b

b a
V U

−

= . 

Proof. There is no need to try to guess or remember this result. We start with the alternative 
expression: 

 
( ) ( )

2
2

[ , ] [ , ] [ , ] .

a b a b a b
V U EU EU= −

 (6.16) 

Here the first term is 

2 2 2

[ , ]

1
( ) .

b

a b U

a

EU t p t dt t dt
b a

+∞

−∞

= =

−
∫ ∫  

The primitive of 2
( )f t t= is 

3

( )
3

t
F t = . We can continue the previous display as 

 
3 3 2 2 2 2

2

[ , ]

1 1 ( )( )
.

3 3 3 3
a b

b a b a b ab a b ab a
EU

b a b a

  − + + + +
= − = = 

− − 
 (6.17) 

The equation 3 3 2 2
( )( )b a b a b ab a− = − + +  we have used can be verified directly. Combining 

(6.15), (6.16) and (6.17) yields 

( )
22 2 2 2 2

[ , ]

2 ( )
.

3 2 12 12
a b

b ab a a b b ab a b a
V U

+ + + − + − 
= − = = 

 
 

Exercise 6.2 The distribution function of [ , ]a b
U  is 

0          if  

( )    if  

1           if  .

U

t a

t a
F t a t b

b a

t b

<
 −

= ≤ ≤
−

>

 

Unit 6.6 The normal distribution (parameter, standard normal 
distribution, normal variable and alternative definition, 
empirical rule) 

6.6.1 Parametric distributions 

Following the general recommendation to think in terms of sets rather than elements, let us 
think about families of similar distributions. One element of a family of similar distributions 
can be thought of as a function. The argument of the function is called a parameter. This 
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parameter can be a number or a vector. All families we have seen so far are either one-
parametric or two-parametric. Let us look at the examples. 

(i) The family of Bernoulli distributions is one-parametric. A Bernoulli distribution is 

uniquely identified by the probability (0,1)p∈ . 

(ii) The binomial variable has two parameters: n  and p . It’s value x  which we write in the 

expression ( )
n

P S x=  is not a parameter. 

(iii) The Poisson distribution has one parameter: ( )EX V X= = λ . 

(iv) The uniform distribution has two parameters, which are the endpoints of the segment 

[ , ]a b . 

(v) Remembering about parameters is especially important when you work with more than 
one distribution. For example, the result from Unit 5.15 on Poisson approximation to the 
binomial distribution is clearer if you write it like this: 

(Binomial | , ) (Poisson | ).P x n p P x np= ≈ = λ =  

6.6.2 Standard normal distribution 

Definition. A standard normal distribution, denoted z , has a density function 

 

2

2
1

( ) .
2

t

z
p t e

−

=

π

 (6.18) 

It is universal in the sense that many other distributions converge to it. The exact meaning of 
this will be explained in Theorem 6.1. 

We say that a function ( )f x  of a real argument is odd if ( ) ( ).f x f x− = −  Such a function is 

called symmetric about zero or even if ( ) ( ).f x f x− =  We shall need a simple statement: If a 

function ( )f x  is symmetric, then ( )xf x  is odd: ( ) ( ) ( ).x f x xf x− − = −  

Property 1. The density of a standard normal is symmetric about zero. 

Proof. 

2( )

2
1

( ) ( )
2

t

z z
p t e p t

−

−

− = =

π

 for 0t > . 

Property 2. 0Ez = . 

Proof. The symmetry of the density implies that ( )
z

tp t  is an odd function and by additivity 

of integrals 

0

0

( ) ( ) ( ) .
z z z

R

Ez tp t dt tp t dt tp t dt
+∞

−∞

= = +∫ ∫ ∫  

This mean is zero because 
0

( )
z

A tp t dt
+∞

= ∫  cancels out with 
0

( )
z

A tp t dt
−∞

− = ∫ , see Figure 

6.3. 
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Figure 6.3 Density of standard normal 

Property 3. 2
1Ez = . 

We take this for granted. But note that 2 2
( ) ( ) 1V z Ez Ez= − =  and ( ) 1zσ = . 

Property 4. Even though the standard normal can take arbitrarily large values, the probability 
of z  taking large values quickly declines. More precisely, 

 (| | 1) 0.3174, (| | 2) 0.0456, (| | 3) 0.0028.P z P z P z> = > = > =  (6.19) 

Proof. Using the definition of density 

2

1

1

2

1 1

(| | 1) ( ) ( )           (by symmetry)

2
 2 ( ) .

2

z z

t

z

P z p t dt p t dt

p t dt e dt

− +∞

−∞

+∞ ∞ −

> = +

= =

π

∫ ∫

∫ ∫
 

There are no simple rules to calculate integrals like this. Therefore such integrals have been 
tabulated. Whatever density and table you deal with, try to express the integral through the 

area given in the table. Table 1 on p.841 in NCT gives the area ( )F z  for 0z >  (in that table 

z  means a real number, not the standard normal variable). By the complement rule and 
mentioned table 

1

1

( ) 1 ( ) 1 (1) 1 0.8413
z z

p t dt p t dt F
+∞

−∞

= − = − = −∫ ∫  

so (| | 1) 2(1 0.8413) 0.3174P z > = − = . In the other two cases the derivation is similar. 

6.6.3 Normal distribution 

Definition. A normal variable X  is defined as a linear transformation of the standard 

normal: X z= σ +µ , where 0σ > . 

Property 1. The density of X  is bell-shaped and centered on µ : EX = µ . 

Proof. By linearity of means EX Ez= σ +µ = µ . Recall our discussion of linear 

transformations: multiplication of z  by σ  stretches/squeezes its density and the subsequent 

addition of µ  moves the result to the left or right. 

Property 2. 2
( )V X = σ . 

Proof. Adding a constant doesn’t change a variable and variance is homogeneous:
2 2

( ) ( ) ( ) ( ) .V X V z V z V z= σ +µ = σ = σ = σ  

Property 3. Standardization of a normal distribution gives a standard normal distribution. 

Proof. By properties 1 and 2 
X z

z
−µ σ +µ −µ

= =
σ σ

. 

Property 4. Empirical rule: 

− A

tp
z
(t)

A

p
z
(t)
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(| | ) 0.68, (| | 2 ) 0.95, (| | 3 ) 0.997.P X P X P X−µ ≤ σ = −µ ≤ σ = −µ ≤ σ =  

Proof. This follows from (6.19). For example, (| | ) (| | 1) 1 0.3174 0.68.P X P z−µ ≤ σ = ≤ = − ≈  

Notation. Another notation for a normal variable with mean µ  and variance 2
σ  is 2

( , )N µ σ . 

The standard normal in this notation is (0,1)N . We see that the family of normal 

distributions is two-parametric. Each of the parameters takes an infinite number of values, 
and it would be impossible to tabulate all normal distributions. This is why we need the 
standardization procedure. 

Definition from NCT. X  is normal if its density is 

2
1

2

2

1
( ) .

2

t

X
p t e

−µ −  σ 
=

πσ

 Working with 

this definition is more difficult, trust me. 

Unit 6.7 Normal approximation to the binomial (point estimate, 
interval estimate, confidence interval, confidence level, left and 
right tails, significance level, convergence in distribution, 
central limit theorem) 

Example 6.3 Compare two statements: 

(i) The price of Microsoft stock tomorrow is expected to be $43. 

(ii) With probability 0.95 the price of Microsoft stock tomorrow will be between $40 and 

$46, (40 46) 0.95P X≤ ≤ = . 

The first statement, called a point estimate, entails too much uncertainty. The second 
estimate, called an interval estimate, is preferable. 

Definition. An interval which contains the values of a random variable X  with high 
probability, ( ) 1P a X b≤ ≤ = −α , where α  is close to zero, is called a confidence interval 

and the number 1−α is called a confidence level. The areas { }X a<  and { }X b>  are called a 

left tail and right tail, respectively. Confidence intervals can be two-tail and one-tail. If both 

probabilities ( )P X a<  and ( )P X b>  are positive, it is a two-tail interval; if one of them is 

zero, we deal with a one-tail interval. The number α  is called a significance level. 

The interest in confidence intervals leads us to the next definition. 

Definition. Let 
1 2
, , ...X X  be a sequence of random variables. We say that it converges to a 

random variable X  in distribution if ( )
n

X
F x  approaches ( )F x  for all real x . 

Corollary 6.1 If 
n

X  converges to X  in distribution, then for all large n  by the interval 

formula 

 ( ) ( ) ( ) ( ) ( ) ( ).
n n

n X X X X
P a X b F b F a F b F a P a X b≤ ≤ = − ≈ − = ≤ ≤  (6.20) 

Theorem 6.1 (Central limit theorem) Let 
1 2
, , ...X X  be i.i.d. random variables obtained by 

sampling from an arbitrary population. We want to obtain confidence intervals for the sums 

1
...

n n
S X X= + + . Denote 

n

n n

n

S

S ES
z

−

=

σ
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the standardized versions of 
n
S . 

n
z  in general are not standard normal but they converge in 

distribution to a standard normal distribution. 

Corollary 6.2 Let 
n
S  be a binomial distribution. Then for any numbers ,a b  and large n  one 

has 

 ( ) .

n n

n n

n

S S

a ES b ES
P a S b P z

 − −
≤ ≤ ≈ ≤ ≤ 

 σ σ 
 (6.21) 

Proof. We need two properties of ordering of real numbers: 

(1) the inequality u v≤  is equivalent to the inequality u c v c+ ≤ +  for any constant c , 

(2) the inequality u v≤ is equivalent to the inequality uc vc≤  for any positive constant c . 

It follows that the next three inequalities are equivalent: 

(i) ,   (ii) , (iii) .

n n n

n n n n

n n n n n

S S S

a ES S ES b ES
a S b a ES S ES b ES

− − −
≤ ≤ − ≤ − ≤ − ≤ ≤

σ σ σ
 

Hence, probabilities of these events are the same. Now by the central limit theorem 

( ) .

n n n n

n n n n

n n

S S S S

a ES b ES a ES b ES
P a S b P z P z

   − − − −
≤ ≤ = ≤ ≤ ≈ ≤ ≤   

   σ σ σ σ   
 

Exercise 6.3 Obtain an approximate confidence interval for ˆ n
S

p
n
= . 

Unit 6.8 Joint distributions and independence (joint distribution 
function, marginal distribution function, independent variables: 
continuous case) 

All definitions in this section had precedents. 

Consider vectors ( , )X Y  and ( , )x y  ( ( , )X Y  is a pair of random variables and ( , )x y  is a pair 

of real numbers). The function ( , ) ( , ) ( , )
X Y

F x y P X x Y y= ≤ ≤  is called a joint distribution 

function of the vector ( , )X Y . The marginal distribution functions are defined to be 

( , ) ( , )( , ), ( , )
X Y X Y

F x F y∞ ∞ . They satisfy ( , ) ( , )( , ) ( ), ( , ) ( )
X Y X X Y Y

F x F x F y F y∞ = ∞ =  (marginal 

distributions coincide with own distributions). We say that a function ( , ) 1 2( , )
X Y

p t t  is a joint 

density of ( , )X Y  if 

( , ) ( , ) 1 2 1 2( , ) ( , ) .

yx

X Y X Y
F x y p t t dt dt

−∞ −∞

= ∫ ∫  

Suppose X  and Y  have densities 
X
p  and 

Y
p , respectively. X  and Y  are called 

independent if the joint density decomposes into a product of own densities: 

( , ) 1 2 1 2( , ) ( ) ( )
X Y X Y

p t t p t p t= . With these definitions we can prove Property 3) from Unit 6.4. 

Exercise 6.4 For independent continuous random variables we have multiplicativity of 

means: ( )( )EXY EX EY= . 

Proof. Everything follows from definitions: 
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1 2 ( , ) 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

( , )       (by independence)

( ) ( )

( ) ( ) ( )( ).

X Y

R R

X Y

R R

X Y

R R

EXY t t p t t dt dt

t t p t p t dt dt

t p t dt t p t dt EX EY

=

=

= =

∫ ∫

∫ ∫

∫ ∫

 

Constructing independent standard normal variables. We wish to have independent 

standard normal 
1 2
,z z  (both must have the same density ( )

z
p t . To satisfy the definition of 

independence just put 
1 2 1 2

( , ) 1 2 1 2( , ) ( ) ( )
z z z z

p t t p t p t= . In a similar way for any natural n  we can 

construct n  independent standard normal variables. 

Unit 6.9 Questions for repetition 

1. Discuss the five properties of integrals that follow their definition: do summations have 
similar properties? 

2. How do you prove that a density is everywhere nonnegative? 

3. How do you justify the definition of the mean of a continuous random variable? 

4. With the knowledge you have, which of the 18 properties listed in Unit 6.4 can you prove? 
Mark with a star those you can’t prove at this point and look for the answers later. 

5. Define the uniformly distributed random variable. Find its mean, variance and distribution 
function. 

6. In one block give the properties of the standard normal distribution, with proofs, where 
possible, and derive from them the properties of normal variables. 

7. What is the relationship between distribution functions ,

z X
F F  if X z=σ +µ ? How do you 

interpret (1) ( 1)
z z
F F− − ? 

8. Divide the statement of the central limit theorem into a preamble and convergence 
statement. Provide as much justification/intuition for the preamble as you can. How is this 
theorem applied to the binomial variable? 

9. Draw a parallel between the proofs of multiplicativity of means for discrete and continuous 
random variables. 

10. Minimum required: Exercises 6.5, 6.15, 6.25, 6.45, 6.85, 6.95. 
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Chapter 7 Sampling and Sampling Distribution 

Unit 7.1 Sampling distribution (simple random sample, quota 
sampling, statistic, sampling distribution, estimator, 
unbiasedness, upward and downward bias,) 

Example 7.1 Suppose we are interested in finding the average income of the population of 
Kazakhstan. The random variable is income of a person (incomes have frequencies). Its mean 
is the parameter of the population we are interested in. Observing the whole population is 
costly. Therefore we want to obtain a sample and make inference (conclusions) about the 
population from the sample information. Review the theory we’ve studied so far and satisfy 
yourself that most theoretical facts critically depend on two assumptions: randomness and 
independence of observations. 

Definition. A simple random sample satisfies two conditions: 

(i) Every object has an equal probability of being selected and 

(ii) The objects are selected independently. 

Comments. (1) Condition (i) can be satisfied by shuffling in case of playing cards. If a list of 
objects is available, it can be satisfied using random numbers generated on the computer. 

Suppose we have a list of N  objects to choose from. The function RAND() (with empty 
parentheses) from Excel is uniformly distributed over the segment (0,1). Then N*RAND() is 
uniformly distributed over (0, )N . Applying the function INT which rounds a number down 

to the closest integer we get INT(N*RAND()) that takes integer values from 0 to 1N − . 

(2) It’s good to know a couple of examples when the above conditions are violated. One 
example is sampling without replacement (see section 5.11.1). Another is quota sampling. In 
quota sampling elements are sampled until certain quotas are filled. For example, if the 
percentage of men in the country is 49 and the percentage of employed is 80, one might want 
to keep the same percentages in the sample. The problem with this type of sampling is 
dependence (inclusion of a new element in the sample depends on the previously selected 
ones) and impossibility to satisfy more than one quota simultaneously, unless by coincidence. 

Definition. Let τ  be a population parameter (for example, 
X

τ = µ  can be the population 

mean) and let T  be the sample characteristic designed to estimate τ  (for example, the sample 

mean is a good estimator for the population mean because 
X

EX = µ ). T  is constructed from 

sample observations 
1
,...,

n
X X  and in theory these observations are thought of as ex-ante 

random variables. Therefore T  is a random variable and, as any random variable, it has a 

distribution. In the situation just described T  is called a statistic and its distribution is called 
a sampling distribution. 

Working definition. A statistic is a random variable constructed from sample observations 
and designed to estimate a parameter of interest. A sampling distribution is a table “values + 
probabilities” for the statistic. 

Definition. Let T  be a statistic designed to estimate (to approximate) a population parameter 

τ . T  is called an estimator of τ . To recapitulate, it is a random variable and it depends on 

the sample data. We say that T  is an unbiased estimator of τ  if ET = τ . If ET > τ  we say 

that T  is biased upward and if ET < τ  it is biased downward. 
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Comments. (1) If we think of τ  as the target, then the equation ET = τ  means that T  hits 
the target on average (in a large number of trials). 

(2) From (5.13) we know that the sample mean is an unbiased estimator of the population 
mean. In general, it is believed that for any population parameter there exists a statistic that 

estimates it. For example, the sample variance 2

X
s  is an unbiased estimator of the population 

variance 2

X
σ : 

 2 2
.

X X
Es = σ  (7.1) 

This is the true reason of definition (3.4). 

Controlling variances in sampling is important for at least three reasons. Firstly, in a 
production process of a certain product large deviations of its characteristics from 
technological requirements are undesirable. Secondly, the statistical procedure for comparing 
sample means from two populations requires knowledge of corresponding variances. Thirdly, 
in survey sampling by reducing the sample variance we reduce the cost of collecting the 
sample. 

Exercise 7.1 Study the proof of (7.1) on pp. 273-274 of NCT and work out a version of the 
proof for yourself with two purposes in mind: (i) you should be able to reproduce the proof 
with complete explanations and (ii) try to extract general ideas that can be applied in other 
situations. 

Solution. Your solution may be very different from mine. From the proof we see that the 
variables must be i.i.d. 

Step 1. The beginning of the proof reminds me the derivation of the alternative expression for 

variance. Let us write the alternative expression formula as 2 2 2
( ) ( )E Y EY EY EY− = −  and 

let us apply it to a random variable Y  with values 
1
,...,

n
Y Y  and uniform distribution 1/ .

i
p n=  

Then from the above formula we get 2 2 21 1
( )

i i
Y Y Y Y

n n
− = −∑ ∑ . Putting here 

i i X
Y X= −µ  

we get 
X

Y X= −µ  and 

 2 2 21 1
( ) ( ) ( ) .

i i X X
X X X X

n n
− = −µ − −µ∑ ∑  (7.2) 

This is an equivalent of the first step in NCT. This trick will prove useful again in Chapter 12. 

Introducing 
X
µ  here is necessary because in 2

( ) ( )
X

V X E X= −µ  we need deviations from 

the population mean. 

Always try to see general features in particular facts. 

Step 2. We apply the population mean to both sides of (7.2). It’s important to distinguish the 

population mean from the sample mean. Since 
i

X  are identically distributed we have 

 2 2 2
( ) ( ) .

i X X X
E X E X−µ = −µ = σ  (7.3) 

Now equations (7.2), (7.3), (5.13) and the definition of sample variance imply 
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2 2 2

2 2 2 2

1 1
( ) ( )

1 1

1 1
.

1 1

X i i

X X X X

n
Es E X X E X X

n n n

n n n

n n n n

= − = −
− −

− 
= σ − σ = σ = σ − − 

∑ ∑
 

Exercise 7.2 Prove the sample covariance 
,X Y

s  is an unbiased estimator of the population 

covariance cov( , ).X Y  

Unit 7.2 Sampling distributions of sample variances (chi-square 
distribution, degrees of freedom) 

Definition. Let 
1
,...,

n
z z  be standard normal independent (we know from Unit 6.8 how to 

construct them). Then the variable 
2 2

1

n

n i

i

z

=

χ =∑  is called a chi-square distribution with n  

degrees of freedom. “Degrees of freedom” is just a formal parameter that determines which 
entry to look up in a statistical table. 

Property 1. 2

n
χ  is nonnegative, therefore its density 

2
( )

n

p t
χ

 vanishes for 0t < . 

Property 2. 2

n
E nχ = . 

Proof. 
2 2

1

n

n i

i

E Ez n

=

χ = =∑  by linearity of means and Property 3 of standard normals (section 

6.6.2). 

Property 3. 2
( ) 2

n
V nχ = . 

Proof. By independence and the alternative expression for variance 

2 2 4 2 2

1 1

( ) ( ) [ ( ) ].
n n

n i i i

i i

V V z Ez Ez

= =

χ = = −∑ ∑  

We accept without proof that 

4
3 for a standard normal.Ez =  

Hence, 
2

1

( ) (3 1) 2
n

n

i

V n

=

χ = − =∑ . 

Usually I use the name “Theorem” for complex statements that will not be proved here. 

Theorem 7.1 For a random sample of n  independent observations from a normal population 

with variance 2

X
σ  the variable 

2

2

1 2

( 1)
X

n

X

n s

−

−
χ =

σ
 

is distributed as chi-square with 1n −  degrees of freedom. 

Exercise 7.3 Find 2
( )

X
V s . 

Solution. By the preceding theorem, homogeneity of variance and Property 3 
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( )
2 4 4

2 2 2

1 12

2
( ) .

1 ( 1) 1

X X X

X n n
V s V V

n n n
− −

 σ σ σ
= χ = χ = − − − 

 

As you get used to algebra, don’t write every little detail. Try to perform more operations 
mentally. Tigran Petrosian became a chess grandmaster because at elementary school his 
teacher wanted him to write detailed solutions, while he wanted to give just an answer. 

Exercise 7.4 Find a confidence interval for 2

X
s . 

Solution. Since 2

X
s  is positive, in the expression 2

( )
X

P a s b≤ ≤  it makes sense to consider 

only nonnegative a . You might want to review the proof of Corollary 6.2. By Theorem 7.1 

2

2

2 2 2

2

12 2

( 1)( 1) ( 1)
( )

( 1) ( 1)
      .

X

X

X X X

n

X X

n sn a n b
P a s b P

n a n b
P

−

 −− −
≤ ≤ = ≤ ≤ σ σ σ 

 − −
= ≤ χ ≤ σ σ 

 

If we want this probability to be 1−α , we can use Table 7 from NCT to find ,a b  so that both 

tails will have probability / 2α : 

2 2

1 12 2

( 1) ( 1)
.

2
n n

X X

n a n b
P P

− −

   − − α
χ < = χ > =   σ σ   

 

Unit 7.3 Monte Carlo simulations 

Exercise 7.5 (Modeling Bernoulli) Let (0,1)U U=  denote the variable that is uniformly 

distributed over (0,1). Put 

 
0  if 

1  if 

U p
X

U p

>
= 

≤
 (7.4) 

Prove that then X  is a Bernoulli variable and ( 1)P X p= = . 

Proof. X  takes only values 0 and 1. By the definition of U  we have 

0

( 1) ( ) .
p

P X P U p dt p= = ≤ = =∫  

In Excel the function RAND() supplies the variable U . The mathematical definition (7.4) in 

Excel is realized by the command IF(condition,
1
v ,

2
v ). If condition is true, it 

gives 
1
v , and if it is wrong, the command gives 

2
v . Thus, Exercise 2.1 models a Bernoulli 

variable with 1/ 4p = . 

Exercise 7.6 (Modeling binomial) How would you model the binomial variable 
3
S  in Excel? 

Solution. With three independent variables 
1 2 3
, ,X X X  defined by (7.4) put 

3 1 2 3
S X X X= + + . When you put the function RAND() in different cells, the resulting 

variables will be independent. Therefore Exercise 2.2 models the binomial for which 

3
3 3 / 4ES p= = . 



85 

 

Before we move on to modeling continuous random variables we need to review the notion 

of an inverse function. Let f  be a function with the domain ( )D f  and range ( )R f . If for 

any value ( )y R f∈  the equation ( )f x y=  has a unique solution, we say that f  has an 

inverse function 1
f
−  and write the solution as 1

( )x f y
−

= . 

In equations try to write the knowns on the right and the unknowns (or what you define) on 
the left side. 

Working definition. f  is invertible if the equality of values 
1 2

( ) ( )f x f x=  implies the 

equality of arguments 
1 2
x x= . 

Example 7.2 Consider the function 2
y x=  on the real line. It does not have an inverse 

function because for any value 0y >  there are two different solutions of the equation 2
x y= . 

The same function on a smaller domain ( ) [0, )D f = ∞  has an inverse because a positive 

square root of a positive number is unique. Thus, a function may not be invertible globally 
(on the whole domain) but can be invertible locally (on a subset of a domain). 

Property 1. The direct function maps the argument to the value: ( )y f x= . The inverse 

function maps the value to the argument: 1
( )x f y

−

= . A successive application of the two 

mappings amounts to an identical mapping: 1
( ( ))f f y y
−

= . 

Property 2. f  is called nondecreasing if 
1 2
x x≤  implies 

1 2
( ) ( )f x f x≤ . Suppose f  is 

invertible. Then f  is nondecreasing if and only if its inverse is nondecreasing. 

Proof. Let f  be nondecreasing and let us prove that its inverse is nondecreasing. Suppose 

the opposite: there exist 
1 2
y y>  such that 1 1

1 2
( ) ( )f y f y

− −

≤ . Then by monotonicity of the 

direct function 1 1

1 1 2 2
( ( )) ( ( ))y f f y f f y y
− −

= ≤ =  which contradicts our assumption. Hence, 

the assumption is wrong and the inverse is nondecreasing. 

Conversely, let 1
f
−  be nondecreasing and let us prove that f  is nondecreasing. This follows 

from what we’ve proved and the fact that 1 1
( )f f
− −

= . 

Condition sufficient for invertibility of a distribution function. The distribution function 

X
F  of a random variable X  is invertible where the density 

X
p  is positive. 

Proof. Suppose 
X

p  is positive in some interval [ , ]a b  and let us show that the distribution 

function is invertible in that interval. Suppose 
1 2

a x x b≤ < ≤ . Then by the interval formula 

2

1

2 1
0 ( ) ( ) ( )

x

X X X
x

p t dt F x F x< = −∫ . Thus, the values 
2 1

( ), ( )
X X

F x F x  cannot be equal and by 

the working definition 1

X
F
−  exists. 

Corollary 7.1 For a normal variable its distribution function is invertible everywhere. The 

distribution function of the chi-square is invertible on the half-axis [0, )∞ . For ( , )a b
U  its 

distribution function is invertible on [ , ]a b . 

Exercise 7.7 How would you model an arbitrary random variable with an invertible 
distribution function? 
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Solution. Put 1
( )

X
Y F U

−

=  where U  is uniformly distributed on (0,1). Since 
X

F  is 

nondecreasing, the inequality 1
( )

X
F U x
−

≤  is equivalent to 1
( ( )) ( )

X X X
U F F U F x

−

= ≤ . 

Therefore for any real x  
( )

1

0
( ) ( ( ) ) ( ( )) ( ).

X
F x

Y X X X
F x P F U x P U F x dt F x

−

= ≤ = ≤ = =∫  Y  is 

identically distributed with X . 

Despite being short, this proof combines several important ideas. Make sure you understand 
them. 

In Excel the function NORMINV( y ,µ,σ) denotes 1
( )

X
F y
−  where X z=σ +µ  is normal. 

Hence, in Exercise 2.4 we model 8 25X z= + . 

Unit 7.4 Questions for repetition 

1. Fill out the next table: 

Table 7.1 Comparison of population and sample formulas 

 Population formula Sample formula 

Mean Discrete and continuous  

  

Variance   

Standard deviation   

Correlation   

2. How would you satisfy the definition of the simple random sampling in case of measuring 
average income of city residents? 

3. Define a sampling distribution and illustrate it with a sampling distribution of a sample 
proportion. 

4. Stating all the necessary assumptions, derive the formulas for the mean and variance of the 
sample mean. 

5. Suppose we sample from a Bernoulli population. How do we figure out the approximate 

value of p ? How can we be sure that the approximation is good? 

6. Define unbiasedness and prove that the sample variance is an unbiased estimator of the 
population variance. 

7. Find the mean and variance of the chi-square distribution. 

8. Find 2
( )

X
V s  and a confidence interval for . 

9. Minimum required: 7.9, 7.10, 7.30, 7.40, 7.57, 7.61. 

 

2

X
s
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Chapter 8 Estimation: Single Population 

Unit 8.1 Unbiasedness and efficiency  

In NCT this chapter starts with the definition of unbiasedness. In my exposition it was more 
appropriate to put that definition in Unit 7.1. 

Exercise 8.1 If there exists one unbiased estimator of a population parameter, then there exist 
many unbiased estimators of that parameter. 

Proof. Let ET = τ . Take any random variable Y  with mean zero and put X T Y= + . Then 

EX ET EY= + = τ . 

This exercise makes clear that even though unbiasedness is a desirable property, it is not 
enough to choose from many competing estimators of the same parameter. In statistics we 
want not only to be able to hit the target on average but also to reduce the spread of estimates 
around their mean. 

Definition. If 
1
T  and 

2
T  are two unbiased estimators of the same parameter τ  and 

1 2
( ) ( )V T V T< , then we say that 

1
T  is more efficient. 

Exercise 8.2 If 
1
T  and 

2
T  are two unbiased estimators of the same parameter τ  and 

1 2
( ) ( )V T V T≠ , then, with exception of two cases, there exists an unbiased estimator of the 

same parameter which is more efficient than either 
1
T  or 

2
T . 

Proof. Define 
1 2

( ) (1 )T a aT a T= + −  where a  is real. This is a special type of a linear 

combination which is convenient to parameterize the points of the segment 
1 2

[ , ]T T . With 

0 or 1a =  we get the left and right endpoints of the segment: 
1 2

(1) , (0)T T T T= = . Values 

(0,1)a∈  give all other points of the segment. Values [0,1]a∉  give points of the straight line 

drawn through 
1 2
,T T . 

( )T a  is unbiased: 
1 2

( ) (1 )ET a aET a ET= + − = τ . Its variance is 

2 2

1 1 2 2
( ) ( ) 2 (1 )cov( , ) (1 ) ( )V T a V T a a T T a V T= + − + −  

and the first-order condition for its minimization is 

1 1 2 2
2 ( ) (2 4 )cov( , ) 2(1 ) ( ) 0.aV T a T T a V T+ − − − =  

Solving this equation for a , 

2 1 2

1

( ) cov( , )
.

( )

V T T T
a

V T

−

=  

The minimum of ( )V T  is at point 0a =  if 
2 1 2

( ) cov( , )V T T T=  and at point 1a =  if 

1 1 2
( ) cov( , )V T T T= . In these two cases it is not possible to reduce variance by forming linear 

combinations. In all other cases ( )T a  is more efficient than either 
1
T  or 

2
T . 
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Unit 8.2 Consistency (consistent estimator, Chebyshov 
inequality) 

This is one of the topics most students don’t understand, partly because too little information 
about it is given in NCT and partly because the notion is complex. I give more information 
but am not sure that it will simplify the topic. Consistency is an asymptotic property and 
therefore we have to work with a sequence of estimators. 

Definition. Let { }
n
T  be a sequence of estimators of the same parameter τ . We say that 

n
T  is 

a consistent estimator of τ  if the probability of deviations of 
n
T  from τ  decreases as n  

increases. More precisely, this condition is formulated as follows: 

For any 0, (| | ) 0 as .
n

P T nε > − τ ≥ ε → →∞  

Comment. Let 
n
p  denote the density of 

n
T . Then 

(| | ) ( ) ( ) .
n n n

P T p t dt p t dt

τ−ε +∞

−∞ τ+ε

− τ ≥ ε = +∫ ∫  

 
Figure 8.1 Illustration of consistency 

In Figure 8.1 the area below the density outside the interval ( , )τ−ε τ+ε  must tend to zero as 

n→∞ , and this should be true for any 0ε > . The density of 
n
T  collapses to a spike at τ . 

Theorem 8.1 (Chebyshov inequality) For any continuous random variable X  and for any 

0ε >  one has 2

2

1
(| | ) .P X EX≥ ε ≤

ε
 

Proof. In the area | |t ≥ ε  the inequality 
2

2
1

t
≤

ε

 is true. Therefore 

2 2

2

2

2

(| | ) ( ) ( )                  (using the above inequality)

1
                 ( ) ( )   (increasing the domain of integration)

1
                  (

X X

X X

X

P X p t dt p t dt

t p t dt t p t dt

t p

−ε +∞

−∞ ε

−ε +∞

−∞ ε

≥ ε = +

 
≤ + 
ε  

≤
ε

∫ ∫

∫ ∫

2

2

1
) .

R

t dt EX=
ε∫

 

n small

τ−ε τ τ+ε

n large
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Consistency of the sample mean. If 
1 2
, ,...X X  are i.i.d., then X  is a consistent estimator of 

X
µ . 

Proof. By the Chebyshov inequality for any 0ε >  

2

2 2

2 2 2

1 1
(| | ) ( ) ( ) 0, .X

X X
P X E X E X EX n

n

σ
−µ ≥ ε ≤ −µ = − = → →∞

ε ε ε
 

Relationship between consistency and unbiasedness 

Consistency is an asymptotic property and unbiasedness is a fixed-sample property. If we 
want to compare them, in both cases we have to assume an infinite sequence of estimators. 

Suppose we have a sequence of estimators { }
n
T  of τ . We can ask what is the relationship 

between 

(i) consistency of 
n
T  and  

(ii) unbiasedness of 
n
T  for every n . 

Exercise 8.3 We prove that (i) does not imply (ii). Put 
1

n
T X

n
= + . The sample mean 

consistently estimates the population mean and 
1
0

n

→ , therefore 
n
T  consistently estimates 

the population mean but it is biased. 

Exercise 8.4 We prove that (ii) does not imply (i). Suppose 0
X

µ =  and put 

/ ( / )
n X

T X n= σ . We have 0
n

ET =  (unbiasedness). By the central limit theorem 
n
T  

converges in distribution to standard normal z  and for any 0ε >  (| | ) (| | )
n

P z P z≥ ε ≈ ≥ ε  

which does not tend to zero. 

 An unbiased estimator sequence may have a large variance. When choosing between such a 
sequence and a consistent sequence we face a tradeoff: we can allow for a small bias if 
variance reduces significantly. 

Unit 8.3 Confidence interval for the population mean. Case of a 

known σ (critical value, margin of error) 

Assumptions. A sample of size n  is drawn from a normal population. σ  is assumed to be 

known, µ  is unknown and the objective is to obtain a confidence interval for µ . 

Step 1. Select the significance level α . 

Step 2. Using Table 1 in the Appendix to NCT find a number 
/2

0z
α

>  such that 

 /2 /2
( ) 1 .P z z z
α α

− < < = −α
 (8.1) 

/2
z
α

 is called a critical value of the z statistic corresponding to α (for a two-tail confidence 

interval). / 2α  is the probability of the left and right tails and the critical value could be 

equivalently defined by 
/2 /2

/ 2 ( ) ( )P z z P z z
α α

α = < − = > . 

Step 3. Let us standardize the sample mean 
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/

X X

X X

X X
z

n

−µ −µ
= =

σ σ

 (8.2) 

The second equality here uses (5.13). We want to prove that this is really a standard normal. 

Theorem 8.2 A sum of independent normal variables is normal. 

Exercise 8.5 A linear transformation of a normal variable is normal. 

Proof. Suppose X  is normal, X z=σ +µ  where z  is standard normal, and Y  is its linear 

transformation,  Y aX b= + . Then ( ) ( )Y a z b a z a b= σ +µ + = σ + µ+  is normal as a linear 

transformation of a standard normal. Here the product aσ  may be negative but it doesn’t 
matter because of the symmetry of z . 

From Theorem 8.2 it follows that 
1

...

n n
S X X= + +  is normal. (8.2) is a linear transformation 

of 
n
S , so it is normal too. And we know that, being a standardized variable, it has mean zero 

and variance 1. Thus, (8.2) is standard normal. 

Now we plug (8.2) in (8.1) and use equivalent transformations to get 

/2 /2 /2 /2

/2 /2

1
/

.

X X X

X

X

X X

X

X
P z z P z X z

n n n

P X z X z

n n

α α α α

α α

 −µ σ σ 
−α = − < < = − < −µ <    σ   

σ σ 
= − < µ < + 

 

 

The quantity 
/2

X
ME z

n
α

σ

=  is called a margin of error. We have obtained a confidence 

interval for the population mean 

 ( )1 .
X

P X ME X ME−α = − < µ < +  (8.3) 

Note that (8.3) can be written in a different way: 

 ( )1 .
X X

P ME X ME−α = µ − < < µ +  (8.4) 

These two forms reflect different points of view: 

(i) In (8.3) the population mean is unknown and estimated from the sample data. 

(ii) In (8.4) the population mean is known and the purpose is to obtain ex-ante bounds for the 
sample mean. 

Unit 8.4 Confidence interval for the population mean. Case of an 

unknown σ (t-distribution) 

Assumptions. A sample of size n  is drawn from a normal population. σ  is unknown and 

estimated by the sample standard deviation, µ  is unknown and the objective is to obtain a 

confidence interval for µ . 

We apply a general statistical idea: when some parameter is unknown, replace it by its 
estimator. Applied to (8.2) this idea gives 

 .
/

X

X

X
t

s n

−µ
=  (8.5) 
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This takes us to a new class of distributions. 

Definition. Let 
0 1
, ,...,

n
z z z  be standard normal independent. Then the random variable 

0

2

1

n
n

ii

z
t

z
=

=

∑
 

is called a t -distribution with n  degrees of freedom. 

Property 1. Like z , 
n
t  is symmetric around zero and therefore 0

n
Et = . 

Property 2. The tails of 
n
t  are fatter than those of z . Both have densities that are bell-

shaped, see Figure 8.7 in NCT. If the density of 
n
t  is higher than that of z for large 

arguments, then for small arguments (around the origin) the opposite should be true because 
the total density is 1. 

Property 3. As n→∞ , 
n
t  converges to z . This means that for values 60n >  that are not in 

Table 8 in the Appendix of NCT one can use values for z  from Table 1. 

Theorem 8.3 Under independent sampling from a normal population the variables X  and 2
X
s  

are independent. 

Exercise 8.6 Show that (8.5) is distributed as 
1n

t
−

. 

Solution. Using Theorem 7.1 we get 

0

2 2 2

1

1
.

/ / / / ( 1)

X X

X X X X n

zX X

s n n s n
−

−µ −µ
= =

σ σ χ −

 

We have proved in Unit 8.3 that 
0

/

X

X

X
z

n

−µ
=

σ

 is standard normal. By Theorem 8.3 and 

definition of the t  distribution (8.5) is really 
1n

t
−

. 

Exercise 8.7 (1) Derive the confidence interval for 
X

µ  when 
X

σ  is unknown. 

(2) What happens to the critical value 1, /2n
t

− α
 and to the confidence interval when (i) n  

increases, (ii) α  decreases, (iii) 
X
s  increases? 

Unit 8.5 Confidence interval for population proportion 

From (5.14) we know that 
(1 )

ˆ ˆ, ( ) .
p p

Ep p V p
n

−

= =  By the central limit theorem the variable 

 
ˆ

ˆ ˆ ˆ

(1 )p

p Ep p p

p p

n

− −

=

σ −

 (8.6) 

is approximately normal if n  is large enough ( (1 ) 9np p− > ). The problem with (8.6) is that 

in the denominator we have an unknown p . Following the general statistical idea, we replace 

it by p̂  and obtain 
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ˆ

.
ˆ ˆ(1 )

n

p p
z

p p

n

−

=

−

 (8.7) 

Exercise 8.8 Using (8.7) derive the confidence interval for p . What is the expression for 

ME ? 

Unit 8.6 Questions for repetition 

1. Show that existence of one unbiased estimator of some parameter implies existence of 
many unbiased estimators of the same parameter. 

2. If you have two unbiased estimators of the same parameter, how do you construct a more 
efficient one? 

3. Define consistency and illustrate geometrically. 

4. Derive the confidence interval for the population mean when: (a) σ  is unknown and (b) σ  
is unknown. 

5. Prove that (8.5) is distributed as 
1n

t
−

 stating all theoretical facts that you use. 

6. Derive the confidence interval for population proportion. Why do you use z  statistic in 
this case? 

7. Minimum required: Exercises 8.13, 8.14, 8.25, 8.26, 8.33, 8.34. 
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Chapter 9 Estimation: Additional Topics 

As we move into a more applied area, problem statements, their solutions and conditions for 
validity of the solutions will become more complex. The previous material should provide 
many enough stepping stones. 

 

Unit 9.1 Matched pairs 

Example 9.1 A group of students takes a course and their performance in the subject is 
measured before and after taking it. The sample sizes are equal and there is a high 

dependence between the grade 
i
x  of the ith student before taking the course and the grade 

i
y  

after taking it. Instead of writing the samples as separate vectors 

1 1
( ,..., ), ( ,..., )

n n
x x x y y y= =  we write the observations in pairs 

1 1
( , ),..., ( , )

n n
x y x y . 

Assumptions. Suppose n  matched pairs 
1 1

( , ),..., ( , )
n n

x y x y  of observations from populations 

with means ,

X Y
µ µ  are given and suppose that the differences 

i i i
d x y= −  are i.i.d. normal. 

Finding the confidence interval 

Step 1. Find the sample mean d  and standard deviation 
d
s . Note that 

d X Y
µ = µ −µ . 

Step 2. Choose the level of significance α . Since we use sample standard deviation, the right 

statistic is t . Find its critical value for the two-tail confidence interval from the condition 

1 1, /2
( ) / 2

n n
P t t

− − α
> = α . 

Step 3. By what we know from Unit 8.4 the confidence interval is 

1, /2( ) 1 , .d

d n

s
P d ME d ME ME t

n
− α

− < µ < + = −α =  

It remains to replace 
d
µ  by 

X Y
µ −µ . 

Unit 9.2 Independent samples. Case I:  σX, σY known 

When efficiency of a new medicine is tested, usually its effect on a group of patients is 
compared to the health of members of a control group, who are not administered any 

Objective: compare 
means of two samples

Sample sizes are equal and the 
corresponding elements are 
similar (matched pairs)

Samples are very 
different 

(independent)

Population variances 
unknown

Case III. Population 
variances unequal

Case II. Population 
variances equal

Case I. Population 
variances known
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medication. In this case we have two distinct samples of different sizes ,

X Y
n n . They come 

independently from two different populations. 

Assumptions. The samples 
1 1

( ,..., ), ( ,..., )
X Y

n n
x x x y y y= =  are independent normal. The 

population means are unknown and the population variances are known. 

By properties of means and variances 

 
2 2

( ) , ( ) ( ) ( ) .X Y

X Y

X Y

E X Y EX EY V X Y V X V Y
n n

σ σ
− = − = µ −µ − = + = +  (9.1) 

Finding the confidence interval 

Step 1. Find the sample means. 

Step 2. Choose the level of significance α  and find the critical value of the z  statistic from 

1 /2
( ) / 2

n
P z z

− α
> = α . 

Step 3. Then the confidence interval for 
X Y

µ −µ  is 

2 2

/2
( ) 1 , .X Y

X Y

X Y

P X Y ME X Y ME ME z
n n

α

σ σ
− − < µ −µ < − + = −α = +  

Unit 9.3 Independent samples. Case II:  σX, σY unknown but equal 
(pooled estimator) 

When 22 2

X Y
σ =σ = σ  from (9.1) we see that 

 
1 1

( ) .
X Y

X Y
n n

σ − = σ +  (9.2) 

The question therefore is how one combines the information contained in two samples to 

better estimate σ ? Theorem 7.1 provides the leading idea in this and the next section. 

Idea. The population variance 
2
σ , sample variance 

2
s  and degrees of freedom r  should 

satisfy the equation 

 

 
2

2

2r

rs

χ =
σ

 (9.3) 

To find the right estimator we use an inductive argument. By Theorem 7.1 we have 
equations 

2 2

2 2

1 12 2

( 1) ( 1)
, .

X Y

X X Y Y

n n

n s n s

− −

− −
χ = χ =

σ σ
 

Summing them and using the fact that the two chi-square distributions involved are 
independent we get 

 
2 2

2 2 2

1 1 22 2

( 1) ( 1)
.

X Y X Y

X X Y Y

n n n n

n s n s

− − + −

− −
+ = χ + χ = χ

σ σ
 (9.4) 

From (9.3) and (9.4) we see that the estimator of 
2
σ  should be defined by 
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2 2

2 ( 1) ( 1)
.

2

X X Y Y
p

X Y

n s n s

s

n n

− + −

=

+ −

 (9.5) 

Definition. (9.5) is called a pooled estimator. 

Exercise 9.1 (1) In addition to (9.3), the pooled estimator has the usual unbiasedness property 
2 2

p
Es = σ . 

(2) Besides, it gives more weight to the sample with the larger size. 

(3) Obviously, (9.2) is estimated by 
1 1

( ) p

X Y

X Y s
n n

σ − = + . Following the general 

statistical idea, in 

0

( ) 1 1

X Y

X Y X Y
z

X Y

n n

− −
= =

σ −

σ +

 

replace σ  by the pooled estimator to obtain 

1 1

p

X Y

X Y
t

s
n n

−

=

+

 

Show that this t  is distributed as 
2

X Y
n n
t
+ −

. 

Finding the confidence interval 

Step 1. Calculate 
2 2 2

, , , ,

X Y p
X Y s s s . 

Step 2. Choose α  and find the critical value of the t  statistic 
2, /2

X Y
n n
t

+ − α
. 

Step 3. The confidence interval is ( ) 1 ,
X Y

P X Y ME X Y ME− − < µ −µ < − + = −α

 

where 2, /2

1 1
.

X Y
n n p

X Y

ME t s
n n

+ − α
= +  

Unit 9.4 Independent samples. Case III:  σX, σY unknown and 
unequal (Satterthwaite’s approximation) 

Assumptions. There are two samples of sizes ,

X Y
n n , respectively, drawn from normal 

populations with unknown population means. Population variances 2 2
,

X Y
σ σ  are unknown and 

unequal. 

This topic shows how complex and long a preamble can be. 

Preamble. Equations (9.1) continue to be true. Denote D X Y= − . Because of (9.1), as 

usual, 2

D
σ  is estimated by 

2 2

2 X Y

D

X Y

s

n n

σ σ
= +

 

and instead of 
0

( )
D X Y

D D

D X Y
z

−µ − − µ −µ
= =

σ σ
 we 

use 
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( )

.X Y

D

X Y
t

s

− − µ −µ
=  (9.6) 

The idea used in Case II now sounds like this: find the number of degrees of freedom r  in 
such a way that 

 
2

2

2
.

D

r

D

rs
χ =

σ
 (9.7) 

Suppose (9.7) is true. Taking variance of both sides and using homogeneity we get 
2

2 2

2
2 ( ) ( )

r D

D

r
r V V s

 
= χ =  σ 

 or, rearranging, 

 

4

2

2
.

( )

D

D

r
V s

σ

=

 (9.8) 

To find

 

2( )
D

V s  we use the result from Exercise 7.3:

 
4 4

2 2 2

2 2

2 21 1
( ) ( ) ( ) .

1 1

X Y

D X Y

X Y X Y

V s V s V s
n n n n

σ σ
= + = +

− −

 Combining this with (9.8) yields 

 
4

2 2
2 2

.

1 1

1 1

D

X Y

X X Y Y

r

n n n n

σ
=

   σ σ
+   

− −   

 (9.9) 

Definition. Replacing in (9.9) population variances by their sample counterparts we obtain 
Satterthwaite’s approximation for the number of degrees of freedom: 

2
2 2

2 2
2 2

.

1 1

1 1

X Y

X Y

X Y

X X Y Y

s s

n n

v

s s

n n n n

 
+ 

 =
   

+   
− −   

 

Finding the confidence interval 

Step 1. Calculate 2 2
, , , ,

X Y
X Y s s v . 

Step 2. Choose α  and find the critical value of the t  statistic 
, /2v

t
α

. 

Step 3. The confidence interval is ( ) 1 ,
X Y

P X Y ME X Y ME− − < µ −µ < − + = −α

 

where 
2 2

, /2 .

X Y

v

X Y

s s
ME t

n n
α

= +  
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Unit 9.5 Confidence interval for the difference between two 
population proportions 

Exercise 9.2 Suppose that a random sample of 
X

n  observations from a population with 

proportion 
X

p  of successes yields a sample proportion ˆ
X

p  and that an independent random 

sample of 
Y
n  observations from a population with proportion 

Y
p  of successes produces a 

sample proportion ˆ
Y
p . Which of the Cases I-III would you apply? 

Unit 9.6 Questions for repetition 

1. Assuming that the population variances are known, derive the confidence interval for the 
difference between two means in case of (a) matched pairs and (b) independent samples. 

2. In the context of two independent samples with unknown but equal variances: (a) calculate 

( )V X Y− , (b) define the pooled estimator and find its mean and (c) derive the confidence 

interval. 

3. Give the decision tree for testing the difference between two means showing your choices 

when: (a) σ  is known/unknown, (b) the samples are similar (matched) or independent, (c) in 

case of unknown σ , equal or unequal variances and (d) the parent population is general or 

Bernoulli. In all cases give the expression for ME . 

4. Minimum required: 9.4, 9.6, 9.11, 9.12, 9.18, 9.27, 9.35. 
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Chapter 10 Hypothesis Testing 

Unit 10.1 Concepts of hypothesis testing (null and alternative 
hypotheses, Type I and Type II errors, Cobb-Douglas 
production function; increasing, constant and decreasing 
returns to scale) 

In hypothesis testing we assume two possibilities, called hypotheses, about the state of nature. 
They must be mutually exclusive and collectively exhaustive events, like “the accused is 
guilty” and “the accused is innocent”. In practice, the true state of nature is never known, and 
we have to use statistical evidence to make judgment. 

One hypothesis is called a null hypothesis and denoted 
0

H  and the other is called an 

alternative hypothesis and denoted 
a
H . Rejecting the null, when it is true, we commit an 

error called Type I error. Rejecting the alternative, when it is true, leads to another error, 
called Type II error. 

Table 10.1 States of nature and our decisions 

  States of nature 

  
0

H  is true 
a
H  is true 

Decision Accept 
0

H  Right decision Type II error 

Reject 
0
H  Type I error Right decision 

The choice of the hypotheses is up to us and depends on the circumstances. If we seek a 
strong evidence in favor of a particular outcome, that outcome should be designated as the 
alternative hypothesis, because, as comparison of Unit 10.3 and Unit 10.5 shows, it’s easier 
to control the probability of Type I error. 

Example 10.1 In a criminal trial the prosecutor wants to prove that the defendant is guilty, 
and that would be the alternative. For the defendant’s lawyer the alternative is that the 
defendant is innocent. 

Example 10.2 A Cobb-Douglas production function is defined by ( , )f K L AK L
α β

=  where 

, ,A α β  are constants and ,K L  are independent variables (capital and labor). It is 

homogeneous of degree α+β : ( , ) ( ) ( ) ( , )
b

f tK tL A tK tL t f K L
α β α+

= = . We say that this 

function exhibits increasing, constant or decreasing returns to scale if, respectively, 

1α+β > , 1α+β =  or 1α+β< . In applied research we might want to test 

  (10.1) 

Example 10.3 We believe that usually the supply curve is positively sloping. If we model it 

as a straight line, , then to prove that it is really positively sloped we test 

  (10.2) 

Example 10.4 The hypotheses in (10.1) and (10.2) are complementary. In NCT you can see 
examples of noncomplementary hypotheses, such as 

  (10.3) 

0
: 1 against : 1.

a
H Hα +β = α +β ≠

p a bq= +

0
: 0 against : 0.

a
H b H b≤ >

0
: 1 against : 1.

a
H Hα +β = α +β >
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The same testing procedures are applied in case of noncomplementary hypotheses, just 
because the statistical science is not perfect. 

Unit 10.2 Tradeoff between Type I and Type II errors (significance 
level, power of a test) 

We always try to minimize the probability of error. The probability  is 

called a significance level. The probability  doesn’t have a special name 

but  is called a power of a test. In hypothesis testing 

we want low  and high . Unfortunately, these are contradicting requirements. 

Exercise 10.1 Suppose applicants to a university are given a test which is graded on a 100 
point scale. The admission committee has to choose the passing grade. In this context discuss 
the tradeoff between Type I and Type II errors. 

Solution. We categorize applicants as “weak” and “strong”. These characteristics are not 
directly observable and the committee has to use the grades as a proxy. It is imperfect: strong 
applicants may get lower grades than weak ones, due to a number of reasons. In statistics all 
statements are probabilistic. Committee’s task is to make the decision using conditional 
probabilities 

 

The first of these probabilities decreases with  and the second increases, see Figure 

10.1. 

 
Figure 10.1 Tradeoff between two types of errors 

The cut-off level  is better to sort out weak students. The passing grade  is preferable if 

the objective is to admit all potentially good students. Since these are contradictory 

objectives, the role of hypotheses is not symmetric:  is given preference. If the emphasis 

is on admission of strong students, the choice is 

 

Universities which maximize tuition do the opposite: they don’t want to lose anybody who is 
able to study and pay. 

Important observation: the distribution used for decision making is determined by the null 
hypothesis, see Exercise 10.2. 

Cautious terminology. When we reject the null, we indicate the significance level to 

emphasize that our decision may be wrong with probability . Instead of saying “we accept 

the null” we say “fail to reject the null” bearing in mind that  can still be wrong. 

(Type I error)Pα =

(Type II error)Pβ =

1 (Accepting  when it is true)
a

P H−β =

α 1−β

(applicant is weak | ), (applicant is strong | ).
w s
p P grade p P grade= =

grade

100 100g
1

g
1

g
2

g
2

p
w p

s

2
g

1
g

a
H

0
: applicant is weak, : applicant is strong.

a
H H

α

0
H
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Unit 10.3 Using confidence intervals for hypothesis testing 
(decision rule, acceptance and rejection regions, simple and 
composite hypotheses) 

Exercise 10.2 A cereal package should weigh . If it weighs less, the consumers will be 

unhappy and the company may face legal charges. If it weighs more, company’s profits will 
fall. Thus for the quality control department of the company the right choice is 

. Devise the hypothesis testing procedure. 

Solution. Step 1. Suppose that the package weight is normally distributed,  is known and 

 is the sample mean based on a sample of size . From Unit 8.3 we know that 

  (10.4) 

 Under  the confidence interval is . 

Step 2. Formulate the consequences of the null hypothesis. 

(a) If , then  is likely to be close to . This is expressed by 

. 

(b) On the other hand, under the null the sample mean is not likely to be far from from the 

assumed mean: . 

Step 3. State the decision rule. 

(a) Fail to reject the null if the sample mean is consistent with it, that is 

 (this defines the acceptance region) 

(b) Reject the null if the sample mean is consistent with the alternative:  (that 

is, either ; this defines the rejection region). Then 

. 

The decision rule is illustrated in Figure 10.2. 

 
Figure 10.2 Rejection and acceptance regions 

0
w

0 0 0
: , :

w a w
H w H wµ = µ ≠

w
σ

w n

( ) /2
1   where  .

w

w w
P ME w ME ME z

n
α

σ
µ − < < µ + = −α =

0
H

0 0
( )w ME w w ME− < < +

0w
wµ = w

0
w

0 0
( ) 1P w ME w w ME− < < + = −α

0
(| | )P w w ME− ≥ = α

0 0
w ME w w ME− < < +

0
| |w w ME− ≥

0 0
 or w w MEP w w ME≥ + ≤ −

(Type I error)P = α

Density of     under 

the hull

w
0 
−ME w

0
+ MEµ

w
= w

0

Rejection region

Acceptance region

w
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Comments. (1) When solving exercises you can usually jump to the decision rule but 
remember that it is always based on confidence intervals. When in doubt, do the derivation 
and draw the diagram. 

(2) The above decision rule is in terms of the sample mean. Equivalently, it can be expressed 

in terms of the standardized sample mean. When the population is normal and  is known, 

we use the  statistic  and the decision rule looks like this: reject the null if 

 and fail to reject the null if . 

(3) In theory it doesn’t matter if the endpoints of the confidence interval are included in the 
rejection or acceptance region (the probability of one point is zero). In practice, with the view 

to smoothly transit to -values it is better to include the endpoints in the rejection area. 

(4) To obtain a confidence interval, we need to fix the distribution by selecting a parameter 
which satisfies the null. If the null is simple (contains only one parameter value), this is easy. 
If the null is composite (contains a whole interval), the parameter is usually fixed at the 
boundary of the interval. No better procedures have been designed so far. 

Unit 10.4 p-values 

Preamble. Consider the situation in Figure 10.3. 

 
Figure 10.3 Changing level of significance 

Let us think about the dynamics of the confidence interval when  changes. When  
decreases, the confidence interval becomes wider. The sample mean, being random, can take 
values both inside and outside a given confidence interval. It is possible to have the situation 

depicted in Figure 10.3:  where  corresponds to  

and . We can reject the null at the significance level  and would be able to do that 

at a slightly lower significance level. Similarly, we fail to reject the null at the level of 

significance  and the decision would be the same at a slightly higher significance level. As 

it is desirable to reduce the probability of Type I error, this leeway is not good. We would 
like to know the precise value of the significance level, beyond which we would always fail 
to reject the null hypothesis. 
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Definition. The p -value is the smallest significance level at which the null hypothesis can 

still be rejected. 

Comments. (1) In case of long verbal definitions divide and repeat them in short logical 
groups: 

The -value 

is the smallest significance level 

at which the null hypothesis 

can still be rejected. 

(2) The critical value  in (10.4) is a function of  and is defined from 

. It doesn’t depend on the realized value . The -value, on the other hand, is defined by 

 and depends on the realized sample mean. 

(3) It must be clear from the definition that 

(i) the null is rejected at any  and 

(ii) for any  the decision is “Fail to reject the null”. 

Unit 10.5 Power of a test 

There are not many exercises for assessing the power of a test so this will probably be your 
first and last chance to learn the topic. 

From the definition 

 

we see that we have to find the probability of the nonrejection region (= acceptance region), 
where the nonrejection region is found under the null and the probability is found under the 

alternative hypothesis, and then put Power = . More precisely, there are three steps: 

Step 1. Fix the sampling distribution by selecting a parameter that satisfies , choose  

and find the nonrejection region . 

Step 2. Suppose that the alternative is true. Fix any value  of the parameter that 

satisfies  and find the probability of accepting  under the NEW sampling distribution 

 

 estimates . 

Step 3. Then Power = . 

Example 10.5  For the sample mean  test  against , assuming  is 

known and the sample size is . 

Step 1. This is a one-tail test. The margin of error is , the rejection region is 

 and the nonrejection region is , see Figure 10.4. 
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Figure 10.4 The nonrejection region under the null 

 has been found under the OLD density . 

Step 2. Now instead of  satisfying  we take  satisfying . With the new 

parameter we have  and the standardized sample mean is . The 

probability of the OLD region  under the NEW density  is 

 

Step 3, concluding. Power = . 

Exercise 10.3 Repeat the procedure for finding the power in one of the following cases: 

(a)  

(b)  

(c)  

(d)  

(e)  

Answer the following questions: 

(i) What happens to the power when  moves away from ? 

(ii) What happens to  when  decreases? 

(iii) How does the sample size affect the power? 

(iv) How does  behave if  increases? 

(v) Summarize your answers in an intuitive, easy-to-remember form that would not appeal to 
graphs. 
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Unit 10.6 Questions for repetition 

1. In the context of a university admission test discuss the trade-off between Type I and Type 
II errors. 

2. Explain the statistical logic behind the decision rule using the example of a cereal package 
(the choice of hypotheses and the use of the confidence interval). 

3. z  statistics versus p -values 

(a) Give economic examples of the null and alternative hypotheses which lead to (i) a 
one-tail test and (ii) a two-tail test.  

(b) How are the critical values defined and what are the decision rules in these cases 
using  statistics? 

(c) Define  values for each of those cases and explain the benefits/drawbacks of 

using  statistics versus -values. 

4. Normal population versus Bernoulli 

(a) Select two pairs of hypotheses such that in one case you would apply a two-tail 
test and in the other – a one-tail test. Assuming that the population is normal and the 
variance is unknown, illustrate graphically the procedure of testing the mean. 

(b) What changes would you make if the population were Bernoulli? 

5. Using the example of testing the sample mean describe in full the procedure of assessing 
the power of a test. Answer the following questions: 

(a) What happens to the power when  moves away from ? 

(b) What happens to  when  decreases? 

(c) How does the sample size affect the power? 

(d) How does  behave if  increases? 

6. Give the decision tree for testing the difference between two population means 
distinguishing between: (a) dependent and independent samples, (b) cases of known and 
unknown variances, (c) equal and unequal variances when they are unknown and (d) normal 
and Bernoulli populations. 

7. Minimum required: 10.06, 10.13, 10.16, 10.32. 
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Chapter 11 Hypothesis Testing II 

If you have been following the material, as my students do, this chapter must be easy for you. 
That’s why the chapter is short. 

Unit 11.1 Testing for equality of two sample variances (F-
distribution) 

Definition. Let  and  be independent. Then 

 

is called and -distribution with  degrees of freedom. 

Comments. (1) Equivalently,  can be defined by 

 

where  are standard normal independent. 

(2) From the definitions of  and  it follows that . This fact is used in simple 

regression (a  test of significance of a regression coefficient is equivalent to the  test of 
significance). 

(3) We know that for independent samples from two normal populations 

 

Hence, 

 

(4) To test the null  against the alternative  choose , find the 

critical values for the two-tail test from 

 

(the notation of critical values follows Table 9 from NCT). Then under the null 
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Unit 11.2 Questions for repetition 

1. In one block define and describe properties of chi-square, t and F distributions. 

2. Testing for equality of variances 

(a) What is the distribution of the ratio of two sample variances from two normal 
populations? 

(b) How would you test for equality of variances from two normal populations? 

2. Minimum required: 11.24, 11.28. 
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Chapter 12 Linear Regression 

Unlike the previous chapter, this one will be densely populated. It’s because solutions to 
some exercises from NCT are completely spelled out. This chapter covers the first chapter of 
a standard econometrics text. 

Unit 12.1 Algebra of sample means 

For a discrete random variable  with  and uniform distribution denote 

. This is just the sample mean: . Therefore all properties 

we’ve established for the mean value operator translate to corresponding properties of sample 
means. We need: 

(a) linearity of means , 

(b) alternative expression for covariance  and 

(c) variance . 

To see usefulness of these abbreviations, compare the last equation to its full form: 

 

The tricky part of the notation just introduced is that  can be treated not as real 

values of a random variable  but as random variables sampled from the same population 
(this is why they are written using capital X’s). To emphasize the distinction between the 

population mean and sample mean, I use the notation  for the latter. It give rise to 

cov ( , ) ( )( )
u
X Y X X Y Y= − −  and 2

( ) ( )
u

V X X X= − . 

Unit 12.2 Linear model setup (linear model, error term, 
explanatory variable, regressor) 

We assume that vectors  are observed and want to capture dependence of 

 on . The linear model seeks a linear dependence . Since usually data are 

chaotic, exact linear dependence is impossible and it is more realistic to suppose that  

differs from a linear function  by a random error term . Thus, the main 

assumption is 

  (12.1) 

The independent variable  is called an explanatory variable or a regressor. 

Regarding the random variables  for now we assume that their mean is zero. The 

regressor is assumed to be deterministic. 

An immediate consequence of this is that the dependence of population means of  on  is 

linear: . Out first task is to estimate the intercept  and the slope . 
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Unit 12.3 Ordinary least squares estimation (OLS estimators, 
normal equations, working formula) 

Definition (Gauss). Follow this definition on Figure 12.1. Take an arbitrary straight line 

, find the residuals  from approximation of the observed values  

by the corresponding values  along the straight line and accept as OLS estimators of 

 and  those values  which minimize the sum of squared residuals 

 

 
Figure 12.1 Illustration of the OLS procedure 

12.3.1 Derivation of OLS estimators 

The first order conditions for the minimization of  are 

 

Getting rid of −2 and dividing both equations by  we get 
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we can write (12.2) as  Using linearity of sample means 
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We have obtained what is called normal equations. 

From the first of them we see that we can find 

 
1 2
b y b x= −  (12.5) 

if we know . To find , plug (12.5) into the second normal equation: 

 

This last equation implies 
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(12.6) 

(12.5) and (12.6) are called OLS estimators. Applying notation from Unit 12.1 we get an 

equivalent expression for the estimator of the slope: 
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=  (12.7) 

The last part of (12.6) is better for calculations. (12.7) is better for establishing theoretical 

properties. 

12.3.2 Unbiasedness of OLS estimators 

Exercise 12.1 (1) If  then the OLS estimators exist. 

(2) If, further, 
 
and , then the OLS estimators are 

unbiased. 

Proof. The statement about existence is obvious. Using notation (12.3) let us write the system 

of equations (12.1) in a vector form 

 

Using linearity of covariances we rearrange the slope estimator 

 

Covariance of a constant with anything is zero. Covariance of a variable with itself is its 

variance. Therefore from the last equation we obtain a working formula for the slope 

estimator: 

  (12.8) 

Since, by assumption,  is deterministic and the error has mean zero, we get unbiasedness of 

the slope estimator 
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The vector form of the linear model implies 

 

We use the last two equations to prove unbiasedness of the intercept estimator: 

 

Unit 12.4 Variances of OLS estimators (homoscedasticity, 
autocorrelation, standard errors) 

In addition to the assumptions of Exercise 12.1 suppose that 

  (12.9) 

  (12.10) 

Comments. (1) Homoscedasticity means that variances of the error terms are the same across 

observations. It holds when the errors are identically distributed. In economics usually 

variances of variables are proportional to their levels (variation in income grows with 

income) so the errors are often heteroscedastic. 

(2)  Absence of autocorrelation holds for independent errors (provided that their means are 

null). The condition can be equivalently written as cov( , ) 0,
i j

u u i j= ≠ . Time series data are 

usually autocorrelated. 

Exercise 12.2 Prove that under the above assumptions 

  (12.11) 

Proof. Step 1. Suppose that a random variable  is a linear combination of the errors with 

constant coefficients: 

  (12.12) 
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Separating the diagonal products from off-diagonal and using conditions (12.9)-(12.10) we 

get 

 

Step 2. To make use of Step 1, we obtain a representation of type (12.12) for . Rewrite the 

working formula (12.8) as 

  (12.13) 

where 

 

The coefficients  are deterministic and satisfy 

 

This allows us to simplify (12.13) 

 

Therefore by unbiasedness and Step 1 

  (12.14) 

The sum of squares involved here can be found using properties of means 

 

The last two equations prove the first equation in (12.11). 

Step 3. We need to derive a similar representation for 

 

With the notation  this becomes  In the way similar to (12.14) we 
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It remains to calculate the sum of squares 

 

The second of the formulas (12.11) follows from the last two equations. 

12.4.1 Statistics for testing hypotheses 

Definition. Standard errors of OLS estimators are defined by 

 

Theorem 12.1  Let the regressor  be deterministic with  different from zero. Assume 

that the random variables  are i.i.d. normal with mean zero and that the true 

coefficients are . Then the variables 

 

are distributed as  distribution with  degrees of freedom. 

Unit 12.5 Orthogonality and its consequences (fitted value, 
residual vector, orthogonality, Pythagorean theorem, Total 
Sum of Squares, Explained Sum of Squares, Residual Sum of 
Squares) 

After having estimated the coefficients, for prediction purposes we put . This 

linear function is called a fitted value. It is defined everywhere, both inside and outside the 

sample. It is customary to use the same notation for the vector  

where the fitted value is calculated only at the sample points. Hopefully you will see from the 

context if the fitted value is a function or a vector. The residual vector is defined as ɵ
.e y y= −  

Definition. Vectors  are called orthogonal if . 

Exercise 12.3 (1) Check that the vectors  are orthogonal. 

(2) The notion of uncorrelated random variables has been borrowed from orthogonality. Let 

 be arbitrary random variables such that . Put . Prove 

that then  are uncorrelated. How can you guess a result like this? 

First orthogonality relation. . 
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Comments. (1) This equation is a reflection of the assumption 0Eu = . Notice that in one 

case the sample mean is used and in the other the population mean. 

(2) Keep in mind that for a model without the intercept  the sum of residuals may not 

be zero. 

(3) This relation also means that the residual is orthogonal to the vector of unities (1,…,1): 

. 

Proof. By the first normal equation (12.4)  

Corollary 12.1 The fitted value has the same sample mean as : . 

Proof. By the definition of the residual vector 

  (12.15) 

which implies 

  (12.16) 

Second orthogonality relation. The fitted value and residual are orthogonal: . 

Proof. From the second normal equation (12.4) 

 

This equation and the first orthogonality relation give 

 

Theorem 12.2 (Pythagorean theorem) If the vectors  are orthogonal, , then 

. 

Proof.  

Definition. If all  are the same, they are all equal to  and there is no variation in the 

dependent variable. Now suppose  follows the linear model. The idea is to still measure its 

deviation from the sample mean  but decompose it into two parts: one which is due to the 

linear part  and the other which is due to the error. Subtracting the sample mean from 

both sides of (12.15) we realize this idea as 

  (12.17) 

This decomposition is accompanied by three definitions: 

Total Sum of Squares = measure of magnitude of : , 

Explained Sum of Squares = measure of magnitude of : , 

Residual Sum of Squares = measure of magnitude of  the error: . 
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Proof. In the representation (12.17) the two terms on the right are orthogonal by the 1
st
 and 

2
nd
 orthogonality relations: 

 

By the Pythagorean theorem then 

 

Unit 12.6 Goodness of fit (coefficient of determination) 

Definition. The coefficient of determination is defined by . It is interpreted as the 

percentage of total variation of  around the sample mean  explained by the regression. 

Property 1. From Exercise 12.4 it follows that 

 

and that , which justifies its interpretation as percentage. 

Property 2. The sample correlation  equals . 

Proof. By definition and (12.16) 

 

Here by the orthogonality relations 

 

Therefore 

 

Unit 12.7 Questions for repetition 

1. Explain the setup of simple regression: what is observed, what is the assumed relation 

between variables, why we have to include the error, the assumptions about the error and how 

we write everything in a vector form. 

2. Write down the formal equations from Unit 12.1 and other properties of means, variances 

and covariances until you get used to that notation. 

3. Define the OLS estimators, derive them and prove unbiasedness. When you do this, do you 

have to use assumptions (12.9) and (12.10)? 

4. Using t  statistics, write down confidence intervals for the coefficients. How do you test 

their significance? 
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5. How do you evaluate goodness of fit using the coefficient of determination, sum of 

squared errors and p -values of the estimated coefficients? In other words, if you have two 

models for the same dependent variable with different regressors, how can you tell which one 

is better? 

6. How are the formulas obtained used for prediction? 

7. Minimum required: 12.3, 12.20. 
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