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Abstract 

To analyze the welfare gain from allowing for differentiated patent protection across 

sectors, this study develops a two-sector quality-ladder growth model in which patent breadth is 

a policy variable and derives optimal patent breadth under two patent regimes. We show that (a) 

uniform optimal patent breadth is a weighted average of sector-specific optimal patent breadth, 

and (b) sector-specific optimal patent breadth is larger in the sector that has a larger market size 

and more technological opportunities. To derive the optimal policy, we allow for an arbitrary 

path of patent breadth and derive the optimal path by solving a Stackelberg differential game. 

We find that the optimal path of patent breadth under each patent regime is stationary, time-

consistent and subgame perfect. Finally, we perform a numerical investigation and find that even 

a moderate degree of asymmetry across sectors can generate a significant welfare cost of uniform 

patent protection. 
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“The economic evidence is overwhelming that innovation works differently in different 

industries, and that the way patents affect innovation also differs enormously by industry. 

The question for patent policy is how to respond to those differences.” 

– Burk and Lemley (2009, p. 4-5) 

 

1. Introduction 

An important shortcoming of the patent system is that diverse industries, such as biotechnology, 

software and semiconductors, are governed by the same set of rules. For example, as a result of 

the TRIPS agreement,
1
 the statutory term of patent in the US is 20 years for inventions across 

almost all fields of technology, and this one-size-fits-all patent policy is unlikely to provide the 

appropriate incentives for innovation in every industry. Fortunately, there are other patent-policy 

instruments that can be controlled by policymakers. An important example is patent breadth that 

determines the broadness or scope of a patent. When an inventor applies for a patent, she makes 

a number of claims about the invention in her application to be reviewed by a patent examiner. A 

flexible patent regime should allow the level of patent breadth to vary across industries. 

In a recent book, Burk and Lemley (2009) also suggest that the courts should tailor the 

unitary patent rules through interpretations and applications to suit the different needs of diverse 

industries.
2
 As stated in the quote at the beginning of this paper, Burk and Lemley (2009) argue 

that the process of innovation varies substantially across industries and responds to patent policy 

in different ways. Therefore, the optimal design of a patent system should take into account these 

crucial differences. Applying the Burk-Lemley proposal to our analysis of patent breadth implies 

                                                 
1 The World Trade Organization’s Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS), 

initiated in the 1986-94 Uruguay Round, establishes a minimum level of intellectual property protection that must be 

provided by all member countries. 
2 Burk and Lemley (2009) note that the courts already treat innovation across industries differently, but they also 

argue that the current degree of differentiation is insufficient. 
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that the courts should be given the discretion to decide how broadly or narrowly patent claims 

are to be interpreted on a case-by-case basis tailoring to the needs of different industries. It is 

useful to note that while Burk and Lemley (2009) consider the effects of sector-specific patent 

protection on innovation, we analyze its implications on economic growth and social welfare. In 

our theoretical model, we find that under both sector-specific and uniform optimal patent breath, 

the aggregate growth rate of the economy is the same. However, the regime under sector-specific 

patent protection achieves the same rate of innovation with a more efficient allocation of R&D 

inputs and hence exhibits a higher level of social welfare. 

In summary, in this study, we develop a two-sector quality-ladder growth model in which 

patent breadth is a policy variable and apply the model to analyze the welfare implications of 

sector-specific patent protection. We derive optimal patent breadth under two policy regimes (a) 

uniform patent breadth across sectors and (b) sector-specific patent breadth. Also, we perform a 

numerical investigation on the potential welfare gain from allowing for differentiated patent 

breadth across sectors. 

Specifically, we extend the quality-ladder model of Grossman and Helpman (1991) by 

incorporating two sectors that are differentiated by market size and technological opportunity. 

Within this framework, we show that (a) sector-specific optimal patent breadth is larger in the 

sector that has a larger market size and more technological opportunities and (b) uniform optimal 

patent breadth is a weighted average of sector-specific optimal patent breadth and the optimal 

weight is given by each sector’s market size. Comparing the differences in economic growth and 

social welfare under the two patent regimes, we find that although the growth-rate differential is 

zero in this model, the welfare difference is generally nonzero and determined by an interaction 

between technological opportunity and market size across sectors. This finding has an important 
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policy implication that even if empirical studies do not find a significant improvement in growth 

upon implementing differentiated patent protection across sectors, the welfare gain can still be 

significant. In the numerical analysis, we find that even a moderate degree of asymmetry across 

sectors can generate a significant welfare gain from allowing for sector-specific patent breadth. 

Some interesting recent studies, such as Acemoglu and Akcigit (2009) and Mosel (2009), 

also analyze the implications of differentiated patent protection across sectors. In addition to 

some modeling differences in the growth-theoretic framework, the present study differs from the 

above studies in the following ways. Firstly, these studies model patent protection as a constant 

parameter and numerically compute the parameter value that maximizes growth or welfare. In 

contrast, we allow for an arbitrary path of patent breadth and analytically derive the optimal path 

by solving a differential game,
3
 in which policymakers move first by choosing a time path of 

patent breadth and then households response by choosing a time path of consumption (i.e., a 

Stackelberg differential game). We find that the optimal path of patent breadth under each policy 

regime is stationary, time-consistent and subgame perfect. Time consistency and subgame 

perfectness imply that policymakers have no incentive to deviate from the optimal path of patent 

breadth under any realization of the state variables along and off the equilibrium path. 

In their seminal study, Kydland and Prescott (1977) consider patent protection as an 

important example of time-inconsistent policies for which they point out the following problem. 

“Given that resources have been allocated to inventive activity which resulted in a new product 

or process, the efficient policy is not to permit patent protection.” To show that optimal patent 

policy is not necessarily time inconsistent, this study adopts a differential-game approach and 

derives time-consistent optimal patent breadth in a modified version of the Grossman-Helpman 

                                                 
3 A differential game is a dynamic game in which the state variables evolve according to differential equations. See, 

for example, Dockner et al. (2000) for a comprehensive textbook treatment on differential games. 
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model,
4
 which is a workhorse model in the literature on R&D-based growth. Time inconsistency 

does not arise in this model because the equilibrium allocation at any point in time depends only 

on the current level of patent breadth and is independent of future patent policies. 

A second difference with Acemoglu and Akcigit (2009) is that while they consider the 

level of patent protection to be differentiated by the technological gap between the leader and the 

follower in an industry, we consider patent breadth to be differentiated by an industry’s market 

size and technological opportunity that drive the observable industry differences in productivity 

growth and R&D intensity according to Klenow (1996). In other words, we examine a different 

set of industry-specific characteristics that are also important features of the economy and hence 

complement the analysis in Acemoglu and Akcigit (2009), who also find a significant welfare 

gain from sector-specific patent protection. Thirdly, while Mosel (2009) considers a related set 

of industry-specific characteristics in a different model, he focuses on the interesting effects of 

sector-specific patent length on economic growth. Given that growth maximization does not 

necessarily give rise to welfare maximization, it is useful to consider the welfare effects as well, 

and the present study fills this gap in the literature. 

The seminal study of the patent-design literature is Nordhaus (1969), who concludes that 

the optimal level of patent protection should tradeoff the static welfare costs of markup pricing 

against the dynamic welfare gains from innovation. A comprehensive review of the subsequent 

developments in this literature can be found in Scotchmer (2004). While most studies in the 

patent-design literature are based on a qualitative partial-equilibrium setting, the macroeconomic 

literature plays a complementary role in providing dynamic general-equilibrium (DGE) analysis 

on patent policy. For example, Iwaisako and Futagami (2003) and Futagami and Iwaisako (2007) 

                                                 
4 It can be shown that optimal patent breadth is also time consistent in the original Grossman-Helpman model. A 

proof is available upon request from the author. 



 - 5 -

derive optimal patent length in the Romer model and show that it can be finite. Li (2001) extends 

the Grossman-Helpman model to consider patent breadth and finds that it has a positive effect on 

R&D and economic growth. As for quantitative DGE analysis, Kwan and Lai (2003) evaluate the 

quantitative implications of the effective lifetime of patent in the Romer model and find that 

extending the effective lifetime of patent would lead to a substantial increase in R&D and social 

welfare. Chu (2009) builds on the quality-ladder model in O’Donoghue and Zweimuller (2004) 

to provide a quantitative analysis on the effects of blocking patents and finds that reducing the 

negative effect of blocking patents on R&D would lead to a significant welfare gain. All these 

studies are based on R&D growth models that have only one R&D sector.
5
 The present study 

complements them by analyzing the welfare implications of patent policy in a growth model that 

features multiple R&D sectors. 

The rest of this study is organized as follows. Section 2 presents the model. Section 3 

defines the equilibrium and analyzes its dynamic properties. Section 4 derives optimal patent 

breadth under the two policy regimes. Section 5 provides a quantitative analysis on welfare. The 

final section concludes, and proofs are relegated to Appendix A. 

 

2. A two-sector quality-ladder growth model with patent breadth 

The quality-ladder model is based on Grossman and Helpman (1991).
6
 In the original Grossman-

Helpman model, there is a representative household who consumes a continuum of differentiated 

intermediate goods, and the quality of these intermediate goods improves overtime as a result of 

profit-seeking R&D activities. Both R&D and the production of intermediate goods require labor 

                                                 
5 O’Donoghue and Zweimuller (2004) also analyze the case of two R&D sectors in one of their extensions. However, 

their focus is on the distortionary effect of patent polices on the allocation of R&D across sectors. Therefore, they 

only consider exogenous changes in the uniform level of patent protection. 
6 See, also, Aghion and Howitt (1992) and Segerstrom et al. (1990) for the other pioneering studies on the quality-

ladder growth model. 
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input that is supplied by the household. When incentives for R&D increase, labor is reallocated 

from production to R&D. Consequently, production of intermediate goods falls, but the rate of 

quality improvement (i.e., economic growth) increases.  

To consider the effects of patent protection, we modify the Grossman-Helpman model by 

incorporating patent breadth as a policy variable into the model following the formulation in Li 

(2001). Also, we assume that there are two sectors that produce different types of intermediate 

goods. To analyze sector-specific patent breadth, the two sectors are differentiated by market 

size and technological opportunity. Klenow (1996) also considers a two-sector R&D model (but 

based on the Romer model of variety expansion) with three industry-specific characteristics that 

are commonly discussed in the industrial-organization literature. He finds that market size and 

technological opportunity best explain empirical differences in R&D intensity and productivity 

growth across industries. Our model also captures the third industry-specific characteristic (i.e., 

appropriablility) analyzed in Klenow (1996) by featuring different rates of creative destruction 

across sectors. 

In the following model, patent breadth is allowed to be a time-varying (but deterministic) 

variable. In Section 3, we show that the optimal path of patent breadth under each policy regime 

is stationary, time-consistent and subgame perfect. 

  

2.1 Households 

There is a unit continuum of identical households, and their lifetime utility is given by 

(1) ∫
∞

−=
0

ln.

t

t CeU ρ . 
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tC  denotes consumption at time t, and the parameter 0>ρ  is the subjective discount rate. 

Households maximize utility subject to  

(2) tttttt CPWVRV −+=& . 

tP  denotes the price of consumption at time t. Each household supplies one unit of labor (chosen 

as the numeraire) to earn a wage income tW  that will be normalized to unity. tV  is the value of 

assets owned by households, and tR  is the nominal rate of return. The familiar Euler equation is  

(3) ρ−= ttt rCC /& , 

where tttt PPRr /&−≡  is the real interest rate. 

 

2.2 Consumption 

To consider a two-sector R&D-based growth model, consumption is aggregated from two types 

of final goods }2,1{∈i . This aggregation process can be done by households themselves or by 

competitive firms, and these two formulations are equivalent to each other. We follow Klenow 

(1996) to consider a Cobb-Douglas aggregator given by  

(4) αα −= 1

,2,1 )()( ttt YYC , 

where )1,0(∈α  is the market-size parameter. We use this Cobb-Douglas aggregator instead of a 

CES aggregator because we want to allow tY ,1  and tY ,2  to grow at different rates. In the case of a 

CES aggregator, tY ,1  and tY ,2  growing at different rates is incompatible with a balanced-growth 

path. From standard cost minimization, the price index of consumption can be expressed as 

])1(/[)()( 11

,2,1

αααα αα −− −= ttt PPP , where tP ,1  and tP ,2  are the prices of tY ,1  and tY ,2  respectively. 

The condition demand functions for tY ,1  and tY ,2  are respectively 
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(5) tttt CPYP .,1,1 α= , 

(6) tttt CPYP )1(,2,2 α−= . 

Therefore, α  determines the output share of the two types of final goods (i.e., the market size). 

 

2.3 Final goods 

Final goods }2,1{∈i  are produced by a standard Cobb-Douglas aggregator over a unit continuum 

of differentiated intermediate goods )(, jX ti  indexed by ]1,0[∈j . 

(7) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫

1

0

,, )(lnexp djjXY titi . 

This sector is perfectly competitive, and final-goods firms take both the output and input prices 

as given. Given (7), the price index of final goods i  can be expressed as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫

1

0

,, )(lnexp djjPP titi , 

where )(, jP ti  is the price of )(, jX ti . 

 

2.4 Intermediate goods 

In each sector }2,1{∈i , there is a unit continuum of differentiated intermediate goods indexed by 

]1,0[∈j . Each intermediate goods j of sector i is produced by a monopolistic leader, who holds a 

patent on the latest innovation. This industry leader dominates the market temporarily until the 

arrival of the next innovation.
7
 The production function for the leader of intermediate goods j in 

sector i is  

(8) )()( ,

)(

,
, jLzjX ti

jn

ti
ti= . 

                                                 
7 Grossman and Helpman (1991) show that the next innovation must come from a new entrant due to the Arrow 

replacement effect. Cozzi (2007) provides an alternative interpretation on the Arrow effect that the incumbents’ 

choice of R&D is indeterminate so that the aggregate economy behaves as if innovation is targeted only by entrants. 
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)(, jL ti  denotes the number of workers producing intermediate goods j of sector i. 1>z  is the 

exogenous step size of productivity improvement from each innovation. )(, jn ti  is the number of 

innovations that have occurred in intermediate goods j of sector i as of time t. The marginal cost 

of production for the leader of intermediate goods j in sector i is  

(9) 
)(

,
,/)(

jn

tti
tizWjMC = . 

As commonly assumed in the literature, the current leader and the former leader engage 

in Bertrand competition. The profit-maximizing price for the current leader is a constant markup 

over the marginal cost.  

(10) )/()(
)(

,,
, jn

ttiti
tizWjP μ= ,  

where tib

ti z ,

, =μ  and ]1,0(, ∈tib  is the level of patent breadth at time t.
8
 Grossman and Helpman 

(1991) assume complete patent protection against imitation (i.e., 1, =tib ). Li (2001) generalizes 

the patent regime to allow for incomplete patent protection. We follow Li’s (2001) formulation 

of patent breadth here. Because of incomplete protection, the current leader’s innovation enables 

the former leader to increase her productivity by a factor of bz −1  without infringing the current 

leader’s patent. Therefore, the limit-pricing markup for the current leader is bz . A larger patent 

breadth enables the current leader to charge a higher markup, and the resulting increase in profit 

improves incentives for R&D.
9
 For the rest of this study, we use ),( ,, titi bzμμ ≡  to denote patent 

breadth for convenience and consider changes in ti,μ  coming from changes in tib ,  only. 

 

                                                 
8 When an inventor applies for a patent, she makes a number of claims about the invention to be patented. If these 

claims are narrowly interpreted, then competitors may be able to imitate around them to avoid infringement. 
9 Li (2001) also generalizes (7) to a CES function. In this case, the markup is )}1/(,min{ −εεb

z , where ),1( ∞∈ε  

is the elasticity of substitution between intermediate goods. Therefore, when )1/( −< εεb
z , the effect of patent 

breadth on R&D and growth is the same as in the case of a Cobb-Douglas production function. 
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2.5 R&D 

Denote the value of the latest innovation in intermediate goods j of sector i by )(, jV ti .
10

 Due to 

the Cobb-Douglas specification in (7), the amount of profit is the same across industries within a 

sector (i.e., titi j ,, )( ππ =  for ]1,0[∈j ). As a result, titi VjV ,, )( =  for ]1,0[∈j  in a symmetric 

equilibrium in which the arrival rate of innovation is equal across industries within a sector.
11

 

The familiar no-arbitrage condition for tiV ,  is  

(11) tititititit VVVR ,,,,, λπ −+= & . 

Intuitively, (11) equates the interest rate to the asset return per unit of asset. The asset return is 

the sum of (a) the profit ti ,π  generated by this asset, (b) the potential capital gain tiV ,
&  and (c) the 

expected capital loss titi V ,,λ  due to creative destruction for which ti,λ  is the aggregate Poisson 

arrival rate of innovation in sector i.  

 There is a unit continuum of R&D entrepreneurs in each sector i. They hire R&D workers 

tiH ,  for innovation, and the expected profit for R&D in sector i is  

(12) tittititi HWV ,,,,

~
−=Π λ , 

where tiiti H ,,

~ ϕλ =  is the individual Poisson arrival rate of innovation. Following Klenow (1996), 

we allow the technological-opportunity parameter iϕ  to vary across sectors.
12

 Without loss of 

generality, we assume that 21 ϕϕ ≤ . The zero-expected-profit condition for R&D in sector i is  

                                                 
10 It will become clear why we use Vi,t to denote the market value of inventions and Vt to denote the value of assets 

owned by households. 
11 We follow the standard approach in the literature to focus on the symmetric equilibrium. See, for example, Cozzi 

et al. (2007) for a theoretical justification for the symmetric equilibrium to be the unique rational-expectation 

equilibrium in the quality-ladder growth model. 
12 In the literature, the parameter φi is sometimes referred to as R&D efficiency. Because our study relates to Klenow 

(1996), we follow his terminology to refer to φi as technological opportunity. Intuitively, in a sector that has more 

technological opportunities, the chance of discovering an invention is higher for a given amount of R&D input. 
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(13) 1, == ttii WVϕ ,
13

 

where the second equality of (13) follows from choosing labor as the numeraire. 

 The Cobb-Douglas specification in (7) implies that each intermediate goods j of sector i 

employs an equal number of production workers. Substituting (8) into (7) yields tititi LZY ,,, = , 

where the level of technology in sector i is defined as  

(14) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡ ∫∫

t

ititi zdzdjjnZ
0

,

1

0

,, lnexpln)(exp τλ τ . 

The second equality of (14) is based on the law of large numbers, which implies that the average 

number of innovations across a continuum of industries equals its expected value. Differentiating 

the log of (14) with respect to time yields the growth rate of total factor productivity (TFP) in 

sector i given by  

(15) zZZg titititi ln/ ,,,, λ=≡ & , 

where tiititi H ,,,

~ ϕλλ ==  in equilibrium. 

 

3. Decentralized equilibrium 

The equilibrium is a time path of allocations ∞
=0,,,, },),(,,{ ttitititit HLjXYC , a time path of prices 

∞
=0,,, },,,),(,,{ ttittttitit VVRWjPPP  and a time path of polices ∞

=0, }{ ttiμ . Also, at each instant of time,  

(a) households choose }{ tC  to maximize utility taking },,{ ttt RWP  as given; 

(b) competitive firms produce }{ tC  using }{ ,tiY  as inputs to maximize profit taking ,{ tP },tiP  

as given; 

                                                 
13 The sector with a larger φi attracts more R&D and hence has a higher rate of creative destruction that reduces Vi,t. 
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(c) competitive firms in sector i produce }{ ,tiY  using )}({ , jX ti  as inputs to maximize profit 

taking )}(,{ ,, jPP titi  as given; 

(d) the leader of intermediate goods j of sector i produces )}({ , jX ti  and chooses )}({ , jP ti  

subject to Bertrand competition to maximize profit taking }{ tW  as given; 

(e) competitive R&D entrepreneurs in sector i choose }{ ,tiH  to maximize expected profit 

taking },{ ,tit VW  as given; 

(f) the labor market clears such that 1,2,1,2,1 =+++ tttt HHLL ; 

(g) the market value of inventions adds up to the value of assets owned by households such 

that ttt VVV =+ ,2,1 . 

 

3.1 Balanced-growth path 

In this section, we firstly derive the equilibrium labor allocations for an arbitrary path of patent 

breadth ∞
=0,2,1 },{ ttt μμ . Then, we show that given a stationary path of patent breadth ∞

=021 },{ tμμ , 

the economy is always on a unique and stable balanced-growth path.
14

 

 

Lemma 1: Given an arbitrary path of patent breadth ∞
=0,2,1 },{ ttt μμ , the equilibrium labor 

allocations at time t are  

(16) 
t

tL
,121

,1

1
1

μϕ
ρ

ϕ
ρα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= , 

                                                 
14 As in Grossman and Helpman (1991), the implicit assumptions behind this result are (a) at any point in time, each 

industry has an existing leader with a competitor one step down the quality ladder and (b) R&D entrepreneurs 

always implement their inventions immediately (i.e., ruling out endogenous implementation cycles). 
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(17) 
t

tL
,221

,2

1
1)1(

μϕ
ρ

ϕ
ρα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−= , 

(18) 
1,1

,1

21

,1

1
1

ϕ
ρ

μ
μ

ϕ
ρ

ϕ
ρα −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

t

t

tH , 

(19) 
2,2

,2

21

,2

1
1)1(

ϕ
ρ

μ
μ

ϕ
ρ

ϕ
ρα −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

t

t

tH . 

The equilibrium labor allocations at time t only depend on the level of patent breadth at time t. 

Furthermore, given a stationary path of patent breadth ∞
=021 },{ tμμ , the economy is always on a 

unique and stable balanced-growth path. 

Proof: See Appendix A.■ 

 

Equations (16) to (19) reveal an important property of the Grossman-Helpman model that 

the equilibrium labor allocations are independent of future patent policies. This property implies 

that an increase in patent breath ti,μ  at any time t is accompanied by an increase in tiiti H ,, ϕλ =  

in such a way that tiV ,  remains unchanged,
15

 and this useful property gives rise to time-consistent 

optimal patent policies. In the next section, we also show that the optimal path of patent breadth 

is stationary. 

Given a stationary path of patent breadth, the economy is on a balanced-growth path, and 

the steady-state equilibrium allocations are quite intuitive. A larger α  increases both 1L  and 1H . 

Intuitively, as the market size of final goods 1 increases, the economy devotes more labor to 

production and R&D in sector 1. A larger 1μ  decreases 1L  and increases 1H . A larger patent 

breadth in sector 1 leads to a reallocation of labor from production to R&D within the sector. 

                                                 
15 See the proof of Lemma 1. 
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However, note that the sum of 1L  and 1H  is independent of 1μ . In other words, a change in the 

relative level of patent breadth does not lead to a reallocation of labor across sectors. Similar to 

an increase in 1μ , a larger 1ϕ  decreases 1L  and increases 1H . Interestingly, in this case, 2L  and 

2H  also decrease. In other words, as the technological opportunity of sector 1 improves, the 

economy not only reallocates labor from production to R&D within the sector but also across 

sectors. Finally, the consumption growth rate ttt CCg /&≡  along the balanced-growth path is 

(20) zHHggg ln))1(()1( 221121 .. ϕαϕααα −+=−+= . 

 

4. Optimal patent breadth 

The previous section shows that given a constant level of patent breadth, the economy is always 

on a balanced-growth path. This section shows that the optimal path of patent breadth under each 

policy regime is indeed stationary. We firstly derive sector-specific optimal patent breadth and 

then uniform optimal patent breadth. Finally, we derive the first-best allocation and compare it 

with the equilibrium allocations under the two patent regimes. 

 

4.1 Sector-specific optimal patent breadth 

This section derives the optimal path of sector-specific patent breadth denoted by ∞
=0

*

,2

*

,1 },{ ttt μμ . 

Technically, we are solving a Stackelberg differential game,
16

 in which policymakers move first 

by choosing a time path of ∞
=0,2,1 },{ ttt μμ  and then households respond by choosing a time path of 

consumption. It is well known that this Ramsey approach usually gives rise to time-inconsistent 

policies (i.e., after households make their best response, policymakers have incentives to deviate 

                                                 
16 See, for example, Xie (1997) and Karp and Lee (2003) for a discussion. 
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from their chosen policies ex post). Time inconsistency does not arise in this model because the 

equilibrium allocation at any time t depends only on the current level of patent breadth and hence 

is independent of future patent policies. Therefore, policymakers have no incentive to manipulate 

future policies for the purposing of influencing current allocations. 

 

Proposition 1: The optimal path of sector-specific patent breadth is stationary, time-consistent, 

subgame perfect and given by 

(21) 
ρ

ϕ
ϕ
ρ

ϕ
ραμμ z

t

ln
1 1

21

*

1

*

,1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++== , 

(22) 
ρ

ϕ
ϕ
ρ

ϕ
ραμμ z

t

ln
1)1( 2

21

*

2

*

,2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−== . 

Proof: See Appendix A.■ 

 

 We impose a parameter restriction z≤},max{ *

2

*

1 μμ  to ensure that the breadth parameter 

ib  is between zero and one for }2,1{∈i . Equations (21) and (22) show that a larger discount rate 

reduces the optimal level of patent breadth in both sectors. This is because the benefit of a higher 

growth rate on households’ welfare becomes smaller as ρ  increases. The quality step size z  has 

a positive externality effect on the growth rate as shown in (15); therefore, a larger z  increases 

optimal patent breadth in both sectors. An improvement in sector 1’s technological opportunity 

1ϕ  increases optimal patent breadth in sector 1 and decreases that of sector 2. Similarly, a larger 

α  (i.e., sector 1’s market size) increases optimal patent breadth in sector 1 and decreases that of 

sector 2.  
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To have a better understanding of these results, we express social welfare as a function of 

1μ  and 2μ . Given the balanced-growth behavior of the model under a stationary path of patent 

breadth, households’ lifetime utility in (1) can be re-expressed as 

(1a) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝
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⎠

⎞
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⎝
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⎠

⎞
⎜⎜
⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
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⎝

⎛
+= 2

2
21

1
10

ln
ln)1(

ln
ln

1
ln

1
H

z
LH

z
L

g
CU

ρ
ϕα

ρ
ϕα

ρρρ
, 

where the second equality is obtained by dropping the exogenous terms 0,1Z  and 0,2Z . Inserting 

(16) – (19) into (1a) and then dropping the terms that are independent of 1μ  and 2μ  yield 

(1b)   
⎥
⎥
⎦

⎤
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⎢
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1
ln
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~

μ
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ϕαμα
μ

μαϕμα
ρ

μμ ,
17

 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡Γ

21

1
ln

ϕ
ρ

ϕ
ρ

ρ
z

 is a composite parameter. Equation (1b) yields some interesting 

insights. On the one hand, an increase in 1μ  has a negative effect on welfare by decreasing final 

goods produced in sector 1, and this effect is captured by 1lnμ− . On the other hand, an increase 

in 1μ  has a positive effect on welfare by increasing the growth rate of technology in sector 1, and 

this effect is captured by 111 /)1( μμαϕ −Γ . Therefore, the optimal *

1μ  simply balances between 

the social cost and the social benefit. The marginal benefit depends on Γ1αϕ , which is increasing 

in α , 1ϕ  and z  and decreasing in ρ  and 2ϕ . This reasoning explains the comparative statics of 

*

1μ . A similar reasoning also explains the comparative statics of *

2μ . Finally, substituting (21) 

and (22) into (16) – (19) yields  

(23) 
z

L
ln

)(
1

*

11 ϕ
ρμ = , 

                                                 
17 Here we use U

~
 because some exogenous terms in U  have been dropped. 
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(24) 
z

L
ln

)(
2

*

22 ϕ
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(26) 
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*
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1
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z
H . 

We will compare (23) – (26) to the first-best labor allocations in Section 4.3. 

 

4.2 Uniform optimal patent breadth 

This section considers the policy regime under uniform patent breadth denoted by ttt ,2,1 μμμ =≡  

and derives the optimal path of uniform patent breadth ∞
=0

*}{ ttμ . As before, we are solving a 

Stackelberg differential game, in which policymakers move first by choosing a time path of 

∞
=0}{ ttμ  and then households respond by choosing a time path of consumption. 

 

Proposition 2: The optimal path of uniform patent breadth is stationary, time-consistent, 

subgame perfect and given by 

(27) 
ρϕ

ρ
ϕ
ρϕαϕαμαμαμμ z

t

ln
1))1(()1(

21

2

2

1

2*

2

*

1

**
. ⎟⎟

⎠

⎞
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⎝

⎛
++−+=−+== . 

Proof: See Appendix A.■ 

 

Proposition 2 shows that uniform optimal patent breadth is a weighted average of sector-

specific optimal patent breadth, and the optimal weights are α  and α−1 . The effects of ρ  and 

z  on optimal patent breadth are the same as before. As for an increase in α , it has a positive 
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(negative) effect on *μ  if 1αϕ  is greater (less) than 2)1( ϕα− . Intuitively, a larger α  increases 

optimal patent breadth of sector 1 and decreases that of sector 2. Therefore, when the level of 

patent breadth is constrained to be the same across sectors, whether a larger α  increases or 

decreases *μ  depends on the relative magnitude of the above two forces. At a large (small) α , 

the effect from sector 1 (sector 2) dominates, so that *μ  is an U-shape function in α . Similarly, 

iϕ  has an U-shape effect on *μ , which is initially decreasing in iϕ  and subsequently increasing 

in iϕ , because a larger iϕ  also has opposing effects on optimal patent breadth in the two sectors. 

To have a better understanding of these results, we express social welfare as a function of 

μ . For the case of uniform patent breadth μ , (1b) becomes  

(1c) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
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μ
μϕαϕαμ

ρ
μ 1

))1((ln
1

)(
~

2

2

1

2U . 

where Γ  is defined as before. Equation (1c) yields the following insights. On the one hand, an 

increase in μ  has a negative effect on welfare by decreasing final goods produced in both 

sectors, and this effect is captured by μln− . On the other hand, an increase in μ  has a positive 

effect on welfare by increasing the growth rate of technology in both sectors, and this effect is 

captured by μμϕαϕα /)1())1(( 2

2

1

2 −Γ−+ . Once again, the optimal μ  balances between the 

social cost and the social benefit. The marginal benefit depends on Γ−+ ))1(( 2

2

1

2 ϕαϕα , which 

is increasing in z , decreasing in ρ , and non-monotonic in α , 1ϕ  and 2ϕ . This explains the 

comparative statics of *μ . Substituting (27) into (16) – (19) yields  
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⎠
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(29) ⎟
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We will also compare (28) – (31) to the first-best labor allocations in Section 4.3. 

 

4.3 First-best allocation 

In this section, we drive the first-best labor allocations by having the social planner chooses a 

time path of ∞
=0,2,1,2,1 },,,{ ttttt HHLL  to maximize (1). The optimization yields a corner solution in 

which either tH ,1  or tH ,2  is equal to zero for all t depending on whether 1αϕ  is greater or less 

than 2)1( ϕα− . For illustrative purposes, we consider 21 )1( ϕααϕ −> , so that 0,2 =tH  for all t. 

 

Lemma 2: The optimal path ∞
=0

*

,2

*

,1

*

,2

*

,1 },,,{ ttttt HHLL  is stationary and given by 

(32) 
z
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(34) 
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(35) 0*

2

*

,2 == HH t . 

Proof: See Appendix A.■ 
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Comparing (23) – (26) and (32) – (35) shows that *

1

*

11 )( LL =μ   and *

2

*

22 )( LL >μ . In other 

words, compared to the first-best allocations, the equilibrium under },{ *

2

*

1 μμ  devotes too much 

labor to production in sector 2 and too little labor to R&D (i.e., *

2

*

1

*

22

*

11 )()( HHHH +<+ μμ ). 

Also, the first-best allocations (34) and (35) are efficient in terms of allocating R&D labor to the 

sector that has a larger effect on welfare (recall that 21 )1( ϕααϕ −> ). As for the allocation of 

R&D labor under },{ *

2

*

1 μμ , we see that *

1

*

11 )( HH <μ  and 0)( *

2

*

22 => HH μ . Therefore, the first-

best optimal growth rate is strictly higher than the equilibrium growth rate under sector-specific 

optimal patent breadth unless 21 )1( ϕααϕ −= , in which case the growth rates are equal. 

Comparing (28) – (31) and (32) – (35) shows that *

1

*

1 )( LL >μ   and *

2

*

2 )( LL >μ . In other 

words, the equilibrium under uniform patent breadth allocates too much labor to production in 

both sectors and too little labor to R&D (i.e., *

2

*

1

*

2

*

1 )()( HHHH +<+ μμ ). As for the allocation 

of R&D labor, we see that *

1

*

1 )( HH <μ  and 0)( *

2

*

2 => HH μ . In this case, the first-best growth 

rate is also strictly higher than the equilibrium growth rate under uniform patent breadth unless 

21 )1( ϕααϕ −= , in which case the growth rates are equal. 

 To have a better understanding of the above results, we follow Grossman and Helpman 

(1991) to compare the equilibrium allocation with the optimal allocation. To do this, we firstly 

rewrite the R&D zero-expected-profit condition iii WHV =λ  as
18

 

(36) ⎟⎟
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⎞
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i

L

H

λρ
μλ 1

 

                                                 
18 See the proof of Lemma 1 for derivations. 
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for any arbitrary iμ . Equation (36) gives the ratio of equilibrium R&D and production labors in 

sector i  as a function of ρ , iμ  and iii Hϕλ = . We can also express the ratio of optimal R&D 

and production labors as 

(37) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
λ z

L

H ln*

1*

1

*

1 , 

and 0/ *

2

*

2 =LH  because 21 )1( ϕααϕ −> . Comparing 11 / LH  and *

1

*

1 / LH  yields the following 

insights. First, ρ/ln z  in (37) captures the consumer-surplus and intertemporal-spillover effects 

discussed in Grossman and Helpman (1991). These effects are positive externalities meaning that 

the larger are the effects, the more likely that *

1

*

111 // LHLH < . Second, )/()1( 11 λρμ +−  in (36) 

captures the business-stealing effect that is a negative externality. Thus, whether *

1

*

1 / LH  is below 

or above 11 / LH  depends on the relative magnitude of these three externalities that are the same 

as the ones in the Grossman-Helpman model. What is different in this two-sector model is that 

*

2

*

222 // LHLH >   because 0*

2 =H  given that 21 )1( ϕααϕ −> . In other words, there is always an 

overinvestment in R&D in sector 2. As a result of the externalities, the decentralized equilibrium 

deviates from the optimal allocation. Therefore, patent policy serves as a partial remedy for this 

market failure. However, even with sector-specific patent breadth, there are only two policy 

instruments, and hence, they are insufficient to eliminate all the distortion wedges in 1L , 2L , 1H  

and 2H . 

 

5. Growth and welfare effects of sector-specific patent protection 

In this section, we consider the growth and welfare differences between the two patent regimes. 

The results can be summarized as follows. We find that the growth difference is zero. However, 
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the welfare difference depends on an interaction between α  and 21 /ϕϕ , and the welfare cost of 

uniform patent protection is generally non-negligible. 

 

5.1 Growth difference between the two patent regimes 

To compare the difference in growth across regimes, we firstly substitute (25) and (26) into (20) 

to derive the equilibrium growth rate under sector-specific optimal patent breadth ),( *

2

*

1 μμg  and 

substitute (30) and (31) into (20) to derive the equilibrium growth rate under uniform optimal 

patent breadth )( *μg . In both cases, we find that the equilibrium growth rate is  
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Therefore, the growth difference between sector-specific and uniform optimal patent breadth is 

zero in this model. 

To have a better understanding of the result that the two regimes yield the same growth 

rate, we substitute (18) and (19) into (20) to derive  
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for any arbitrary 1μ  and 2μ . Equation (39) shows that the two patent regimes yield the same 

growth rate if and only if  
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From Proposition 2, we know that uniform optimal patent breadth is a weighted average of 

sector-specific optimal patent breadth. Substituting 21 )1(. μαμαμ −+=  into (40) and applying a 

few steps of mathematical manipulation yield 
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(41) 
2

1

2

1

1 ϕ
ϕ
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α

μ
μ
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⎜
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⎛
−

= . 

Comparing (21) and (22) shows that (41) is satisfied under sector-specific optimal patent breadth. 

This analysis enables us to highlight the key equations that give rise to the finding of zero growth 

difference. The first important equation is 21 )1(. ggg αα −+= , and this expression is a result of 

the Cobb-Douglas specification in (4). Secondly, the growth rate of technology in sector i  is 

iii Hzg )ln(ϕ= , which has constant returns to scale in R&D labor. Consequently, iH  has a 

closed-form solution given by (18) and (19). Furthermore, the assumption of log utility implies 

that households’ lifetime utility in (1) can be expressed as ρρ /ln 0. gCU += . Given this welfare 

function, optimal patent breadth under the two patent regimes satisfies 21 )1(. μαμαμ −+=  and 

(41). In other words, the finding that the two regimes yield the same growth rate is a model-

specific result based on a number of functional-form assumptions. Although many of the 

functional forms that we use are standard in the literature, we do not want to claim that this result 

is realistic. Nonetheless, this hypothetical result is a useful finding when it is considered along 

with our next result of a potentially sizable welfare gain. These two results together imply that 

even if empirical studies do not find any improvement in innovation upon implementing sector-

specific patent protection, the welfare gain can still be significant because the benefit of sector-

specific patent protection can be reflected in social welfare but not in economic growth. 

 

5.2 Welfare difference between the two patent regimes 

Despite the finding of zero growth difference between sector-specific and uniform patent breadth, 

the following results show that the welfare difference is generally non-negligible. Intuitively, 

uniform patent breadth achieves the same growth rate as sector-specific patent breadth but with a 
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less efficient allocation of R&D labor (i.e., )()()()( *

2

*

1

*

22

*

11 μμμμ HHHH +<+ ).
19

 Therefore, 

under uniform patent breadth, there is less labor available for production resulting into lower 

levels of consumption and welfare relative to the equilibrium under sector-specific patent breadth. 

Given (1a) as a measure of welfare, we substitute (23) – (26) into (1a) to compute social 

welfare under sector-specific optimal patent breadth denoted by ),( *

2

*

1 μμU  and substitute (28) – 

(31) into (1a) to compute social welfare under uniform optimal patent breadth denoted by )( *μU . 

 

Proposition 3: The welfare difference )(),( **

2

*

1 μμμ UUU −≡Δ  can be expressed as 
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which becomes a strict inequality if 21 )1( ϕααϕ −≠ . 

Proof: See Appendix A.■ 

 

 Given that UΔ.ρ  depends on only two parameters )1,0(∈α  and ]1,0(/ 21 ∈ϕϕ , we can 

numerically evaluate (42) to examine the properties of UΔ.ρ  without loss of generality. Figure 1 

plots the welfare difference against )1,0(∈α  and ]1,2.0[/ .21 ∈ϕϕ .
20

 For the ease of interpretation, 

the welfare difference is re-expressed as δ  denoting the equivalent variation in consumption per 

year defined as )](),()1[()],(),,([ **

0

*

2

*

1

*

2

*

10 μμδμμμμ gCUgCU += . 

[Insert Figure 1 here] 

                                                 
19 This inequality can be shown by using (25), (26), (30), (31) and a few steps of mathematical manipulation. 
20 The welfare difference can be very large when )2.0,0(/

21
∈ϕϕ ; thus, we report the results for ]1,2.0[/ .

21
∈ϕϕ  

only. However, the properties of UΔ.ρ  are the same as in the rest of the parameter space. 
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Figure 1 shows that for a given 21 /ϕϕ , the welfare difference δ  is an M-shape function 

in α . Suppose we consider 1/ 21 =ϕϕ . In this case, the two sectors are symmetric when 5.0=α . 

Under symmetry, the welfare loss from imposing uniform patent breadth is zero. As α  deviates 

from 0.5 in either direction, the welfare loss becomes positive. This explains the U-shape pattern 

around 0.5 for 1/ 21 =ϕϕ . As 1→α , the model becomes a one-sector model in which only 

sector 1 matters. In this case, *

1

* μμ → ; therefore, the welfare loss δ  approaches zero. The same 

is true for 0→α . This explains the M-shape pattern of δ  for 1/ 21 =ϕϕ . As 21 /ϕϕ  decreases, 

optimal patent breadth of sector 2 increases while that of sector 1 decreases. Thus, households 

benefit from differentiated patent breadth even when 5.0=α . When 1/ 21 <ϕϕ , uniform patent 

breadth is optimal only if α  increases above 0.5 to diminish the importance of sector 2. This 

explains why the interior minimum of δ  in Figure 1 shifts towards larger α  as 21 /ϕϕ  decreases. 

Next we consider the welfare difference with respect to changes in 21 /ϕϕ  for a given α . 

When 5.0≤α , the welfare loss δ  is always decreasing in 21 /ϕϕ . Intuitively, when 5.0≤α , 

optimal patent breadth of sector 1 is smaller than that of sector 2 (i.e., *

2

*

1 μμ < ), but this gap 

shrinks as 21 /ϕϕ  increases. Consequently, the welfare loss δ  from imposing uniform patent 

breadth diminishes as 21 /ϕϕ  increases when 5.0≤α . However, when )1,5.0(∈α , the welfare 

loss δ  can be non-monotonic in 21 /ϕϕ . When )1,5.0(∈α , *

2

*

1 μμ <  only if 21 /ϕϕ  is sufficiently 

small, in which case, a larger 21 /ϕϕ  continues to reduce the gap between *

1μ  and *

2μ  giving rise 

to a smaller welfare loss δ . However, if 21 /ϕϕ  becomes sufficiently large, then *

2

*

1 μμ > . In this 

case, any further increase in 21 /ϕϕ  widens the gap between *

1μ  and *

2μ  giving rise to a larger 

welfare loss δ . In other words, whenever α  is sufficiently large (small) such that *

1μ  is above 
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(below) *

2μ  for a given 21 /ϕϕ , an increase (a decrease) in 21 /ϕϕ  would widen the gap between 

*

1μ  and *

2μ  resulting into a larger welfare loss δ . 

 Having understood the qualitative pattern of δ  that depends on a nontrivial interaction 

between α  and 21 /ϕϕ , we now consider the magnitude of the welfare loss. Figure 1 shows that 

the welfare loss ranges from zero to as large as 50% of consumption per year. To focus on the 

effect of asymmetry in technological opportunity across sectors, Table 1 summarizes the welfare 

costs of uniform patent protection for 5.0=α  from Figure 1. 

φ1/φ2 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

δ 34.2% 18.7% 10.7% 6.1% 3.3% 1.6% 0.6% 0.1% 0.0%

Table 1: Welfare costs of uniform patent breadth for α = 0.5

 

The policy implication from this illustrative numerical exercise is that even a moderate 

degree of asymmetry in technological opportunity across sectors can generate a non-negligible 

welfare cost of one-size-fits-all patent policy. Also, empirical evidence suggests that iϕ  varies 

significantly across sectors. For example, Klenow (1996) finds that although R&D intensity and 

TFP growth at the industry level are positively correlated, R&D can only explain a small fraction 

of the variation in industry-level TFP growth implying that technological opportunities differ 

significantly across industries. Furthermore, (14) implies that the log level of TFP in sector i can 

be expressed as tiiti SzZ ,, )ln(ln ϕ= , where ∫≡
t

iti dHS
0

,, ττ  denotes the stock of R&D in sector i. 

Some empirical studies, such as Verspagen (1995), Los and Verspagen (2000) and Cameron 

(2000), have estimated the effects of R&D stock on the level of TFP/output at the industry level, 

and they find that the effects of R&D stock vary substantially across industries. 
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6. Conclusion 

In this study, we have developed a two-sector R&D-based growth model and applied the growth-

theoretic framework to analyze the welfare implications of sector-specific patent protection. In 

summary, we find that sector-specific optimal patent breadth is larger in the sector that has a 

larger market size and more technological opportunities. If policymakers are constrained to 

implement uniform patent breadth, then they should set the uniform patent breadth to a weighted 

average of sector-specific optimal patent breadth. To derive the optimal path of patent breadth, 

we solve a Stackelberg differential game to show that optimal patent policy is not necessarily 

time inconsistent. Moreover, we find that the welfare gain from sector-specific patent protection 

can be substantial. Therefore, policymakers should take into consideration the heterogeneity 

across industries when designing the optimal system of patent protection. Also, this implication 

provides another reason as to why the harmonization of global patent protection may not be 

optimal given that the industrial structure differs significantly across some countries.
21

 As for the 

issue of scale effects, it is set aside by normalizing the supply of labor to unity so that it is the 

share of labor devoted to R&D that determines growth as in the second-generation R&D-based 

growth model.
22

 

Finally, we provide some caveats on the finding of a potentially sizable welfare gain from 

sector-specific patent protection. First, our analysis is based on the assumption that policymakers 

are well-informed about the different characteristics across industries. In reality, it could be quite 

costly to acquire this kind of information. Therefore, for real-world policy applications, the 

welfare gain from industry-specific patent protection should be evaluated in conjunction with the 

information-acquisition costs, and the magnitude of these costs remains as an empirical question. 

                                                 
21 See, for example, Grossman and Lai (2004) for an interesting analysis on the welfare implications of harmonizing 

patent protection across countries. 
22 See Jones (1999) for an excellent discussion on scale effects in R&D-based growth models. 



 - 28 -

A second caveat is that if the patent authority has the ability to differentiate the level of patent 

protection across industries, then special interest groups would have incentives to lobby the 

government for special treatments in favor of their industries at the expense of consumers and 

other industries.
23

 Angell (2005) argues that this kind of lobbying activities is at work in the 

pharmaceutical industry.
24

 This problem is especially serious when special interest groups are the 

ones who provide industry-specific information to policymakers because any misinformation 

could result in a serious distortion of resource allocations. 
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Appendix A 

Proof of Lemma 1: Households’ current-value Hamiltonian is 

(A1) )(ln tttttttt CPWVRC −++=Ω ω . 

The first-order conditions are 

(A2) 0
1

=−=
∂
Ω∂

tt

tt

t P
CC

ω , 

(A3) tttt

t

t R
V

ωρωω &−==
∂
Ω∂

, 

(A4) tttttt

t

t VCPWVR &=−+=
∂
Ω∂
ω

. 

The transversality condition is 0lim . =−

∞→ tt

t

t
Ve ωρ . Combining (A3) and (A4) yields  

(A5) ttttttttttt CPWVVV ωωρωωω −+=+ && . 

Given households’ first-order conditions, we use the market equilibrium conditions to solve (A5). 

From (13), ttt VVW ,22,11 ϕϕ == . Combining this condition with ttt VVV =+ ,2,1  yields  

(A6) tt WV ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

21

11

ϕϕ
. 

Substituting (A2) and (A6) into (A5) yields  

(A7) 1
21

21 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=+
ϕϕ
ϕϕρωωω tttttt VVV && . 

(A7) is a one-dimensional differential equation in ttVω , and the dynamic system is characterized 

by saddle-point stability. Therefore, ttVω  must jump to its unique steady state; otherwise, the 

transversality condition would be violated. To see this result, integrating (A7) with respect to 

time yields  
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where β  is an integration constant. The transversality condition implies that 0=β . Therefore, 

1
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ρω ttV  for all t. Substituting (A6) and 1=tW  into this condition yields  
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for all t. Because tω  is stationary, (A3) implies that ρ=tR  for all t. Also, (A2) implies that  

(A10) ⎟⎟
⎠

⎞
⎜⎜
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⎛
++=

21

1
ϕ
ρ

ϕ
ρ

ttCP . 

In other words, nominal expenditure on consumption and the nominal interest rate are constant 

regardless of whether the path of patent breadth ∞
=0,2,1 },{ ttt μμ  is stationary or not. 

 The rest of this proof derives the equilibrium labor allocations for an arbitrary path of 

patent breadth. From (5), (6) and (10), the factor payments to production workers in the two 

sectors are respectively 

(A11) tttttttt CPYPLW ,1,1,1,1,1 // . μαμ == , 

(A12) tttttttt CPYPLW ,2,2,2,2,2 /)1(/ μαμ −== . 

Combining (A11) and (A12) yields  
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The monopolistic profits in the two sectors are respectively 
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(13) implies that 0, =tiV& . Imposing 0, =tiV&  on (11) yields  

(A16) tititi V ,,, )( λρπ += ,  

where we have applied the previously derived result ( ρ=tR  for all t). Substituting (A11), (A14) 

and (A16) into (13) yields  

(A17) 1,1,1,1 /)1( ϕρμ −−= ttt LH . 

Similarly, substituting (A12), (A15) and (A16) into (13) yields  

(A18) 2,2,2,2 /)1( ϕρμ −−= ttt LH . 

To close the model, we use the labor-market clearing condition given by 

(A19) 1,2,1,2,1 =+++ tttt HHLL . 

Solving the four equations (A13), (A17) – (A19) yields (16) – (19).■  

 

Proof of Proposition 1: In general, the households’ Hamiltonian co-state variable tω  should be 

treated as a state variable in the policymakers’ dynamic optimization problem. However, (A9) 

shows that tω  is constant; therefore, we can directly substitute (4) and tititi LZY ,,, =  for }2,1{∈i  

into (1) to derive the policymakers’ current-value Hamiltonian given by 

(A20) tttttttt ZZC ,2,2,1,1,2,1 ln),( && φφμμ ++=Φ , 

where )](ln)[ln1()](ln[lnln ,2,2,2,1,1,1 ttttttt LZLZC μαμα +−++= , )()ln( ,1,11,1,1 tttt HzZZ μϕ=&  and 

)()ln( ,2,22,2,2 tttt HzZZ μϕ=& . The labor allocations )( ,1,1 ttL μ , )( ,2,2 ttL μ , )( ,1,1 ttH μ  and )( ,2,2 ttH μ  

are given by (16) – (19). The first-order conditions are 
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Manipulating (A23) yields αρφφφ −=+ tttttt ZZZ ,1,1,1,1,1,1
&& . As before, this differential equation is 

characterized by saddle-point stability, so that tt Z ,1,1φ  must jump to its unique steady-state value 

given by  

(A25) ραφ /,1,1 =ttZ  

for all t. Substituting (A25) into (A21) yields  
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for all t. Manipulating (A24) yields )1(,2,2,2,2,2,2 αρφφφ −−=+ tttttt ZZZ && , and this differential 

equation is also characterized by saddle-point stability. Therefore, tt Z ,2,2φ  must also jump to its 

unique steady-state value given by  

(A27) ραφ /)1(,2,2 −=ttZ  

for all t. Substituting (A27) into (A22) yields  

(A28) 
ρ

ϕ
ϕ
ρ

ϕ
ραμ z

t

ln
1)1( 2

21

,2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=  



 - 35 -

for all t. (A26) and (A28) show that the optimal path of sector-specific patent breadth is 

stationary. Given that the equilibrium labor allocations (16) – (19) are independent of future 

policies, the policymakers have no incentive to deviate from their chosen path of patent breadth 

at any point in time along the equilibrium path (i.e., time consistency). Furthermore, given that 

(A26) and (A28) are stationary and independent of the state variables, they are optimal under any 

realization of the state variables along and off the equilibrium path (i.e., subgame perfectness).■ 

 

Proof of Proposition 2: The policymakers’ current-value Hamiltonian in the case of uniform 

patent breadth is 

(A29) ttttttt ZZC ,2,2,1,1ln)( && φφμ ++=Φ , 

where tZ ,1
& , tZ ,2

&  and tCln  can be re-expressed as in Proposition 1. The labor allocations )(,1 ttL μ , 

)(,2 ttL μ , )(,1 ttH μ  and )(,2 ttH μ  are given by (16) – (19) as before. The first-order conditions are 
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Manipulating (A31) and (A32) yields (A25) and (A27). Substituting them into (A30) yields  
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for all t. (A33) shows that the optimal path of uniform patent breadth is stationary. (A33) is time-

consistent and subgame perfect for the same reasons as in Proposition 1.■ 
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Proof of Lemma 2: The social planner’s current-value Hamiltonian is 
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As before, integrating (A39) and (A40) with respect to time and setting the integration constants 

to zero as implied by the transversality conditions yields ραψ /,1,1 =ttZ  and ραψ /)1(,2,2 −=ttZ . 

Substituting these conditions into (A37) and (A38) yields  
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which follows from 21 )1( ϕααϕ −> . Substituting (A41) into (A35) and (A36) yields (32) and 

(33). Combining (32), (33), 0,2 =tH  from (A38) and 1,2,1,2,1 =+++ tttt HHLL  yields (34).■ 
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Proof of Proposition 3: We already know from (38) that the growth difference is zero across the 

two regimes. Therefore, the welfare difference is given by the difference in initial consumption.  
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Substituting (23), (24), (28) and (29) into (A42) yields  
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Applying a few steps of mathematical manipulation to (A43) yields  
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Finally, given that ln(.)  is a concave function, Jensen’s inequality implies that (A44) is weakly 

positive, and a strict inequality emerges if 21 )1( ϕααϕ −≠ .■ 
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Figure 1: Welfare differences between sector-specific and uniform patent breadth

 

 

 


