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Risk-bearing in a winner-take-all contest 

 

Dimitry Rtischev 

Gakushuin University 

 

A parsimonious model is used to explore the risk-bearing decision under a payoff 

structure that emphasizes relative performance.  Equilibrium betting amounts are 

derived for players who start with unequal endowments and face a lottery that offers 

either a positive or negative expected return.  If the lottery offers negative expected 

return, disadvantaged players are willing to risk a portion of their endowment, and this 

induces advantaged players to also gamble, defensively.  Although there are 

equilibria in which the advantaged preemptively gamble more than the disadvantaged, 

in the robust equilibrium it is the disadvantaged who make the larger bets.  If the 

lottery offers positive expected return, there are equilibria in which the advantaged 

invest less than the disadvantaged, but full investment by all players is a more robust 

equilibrium. 

 

JEL classification: D81; D03; O31 

Keywords: contest, tournament, relative evaluation, risk 

 

 

1. Introduction 

 The logic of the risk-bearing decision under a payoff structure that emphasizes 

relative performance combines stochastic and strategic considerations in a complex way.  

The complication was lucidly illustrated by Aron and Lazear’s (1990) discussion of a 

sailing race as a metaphor for competition among firms developing new products.  In a 

sailing race, because all nearby boats are affected by the same wind, the leader 

maximizes probability of winning by imitating the follower’s course, even if the leader 

believes another course has shorter expected time to the finish.  Conversely, the 

follower increases its winning probability by differentiating its course from the leader’s, 

even if it believes the different course has longer expected finish time than the course 

the leader is on.  Applying this insight from sailing, Aron and Lazear study equilibria 

in which a firm that is behind in a given product market leaves it to develop a substitute 

product, and thereby induces the current market leader to also switch to pursuing the 

risky substitute.  Other contests in which strategic risk-bearing has been studied 

include research portfolio selection by scientists and firms racing to be first (Dasgupta 

and Maskin, 1987), managers competing for relative performance compensation (Hvide, 

2002), gambling by individuals struggling for socioeconomic status (Gregory, 1980; 

Robson, 1992; Rosen, 1997), and contests embedded in evolutionary settings (Robson, 

1996; Dekel and Scotchmer, 1999).  The common thread among these different 
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contexts is that the logic of the risk-bearing decision under a relative payoff structure 

may drastically depart from standard risk/return considerations that prevail when only 

absolute performance matters.  In this paper, we abstract away from applied contexts to 

explore the essence of this phenomenon in a parsimonious setting. 

 We begin in the next section by describing a model in which two 

unequally-endowed risk-neutral agents choose a portion of their endowments to risk in a 

lottery, knowing that top-rank in post-lottery wealth distribution will be allocated a prize.  

We derive best responses (Section 3) and equilibria (Section 4) for two types of 

lotteries: positive expected return lotteries (representing investing) and negative 

expected return lotteries (representing gambling).  In Section 5 we generalize the 

findings to an arbitrary number of players and prizes.  Like Aron and Lazear (1990), 

we find that the worse-endowed agents proactively engage in risk-taking, and this 

induces the better-endowed agents to also take on risk.  Unlike Aron and Lazear, we 

find this without assuming any correlation in lottery outcomes across agents.  We also 

extend the inquiry to consider the extent of risk-bearing under various timing structures 

and distinguish between positive and negative expected return cases. 

 

2. The model 

 Two players indexed by i =1,2 have initial monetary endowments Ai such that 

A1 > A2 > 0.  We will denote the endowment disparity by DA ª A1 – A2 and refer to 

player 1 as “rich” and player 2 as “poor.”  Each player may bet any portion of his 

endowment zi œ [0, Ai] on a single independent draw of a binary lottery.  After both 

players have placed their bets, two independent draws of the lottery are performed.  If 

a player wins the lottery, he gets back his bet plus wzi where w>0; if he loses he gets 

back nothing.  Probability of a player winning the lottery is p œ [0, 1].   Ai, p, and w 

are exogenously fixed parameters and are common knowledge. 

       The lottery maps players’ endowment vector A ª (A1, A2) and action vector z ª 

(z1, z2) to an “achieved wealth” random variable vector m ª (m1, m2), where mi œ {Ai + 

wzi , Ai – zi }.  The expected value of achieved wealth is E[mi] = Ai + q zi , where q ª 

p(w + 1) – 1 is the expected rate of return offered by the lottery.  We will consider both 

negative and positive expected returns, referring to the former as “gambling” and the 

latter as “investing”.  We will assume that (w+1)A2 > A1, which ensures that it is 

possible for the poor player to leapfrog the rich in the achieved wealth distribution. 

 The utility function U:R
2→R

2
 maps achieved wealth to utility.  The baseline 

case is absolute wealth maximization, represented by utility function  
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We assume that V > (w+1)A1 is a prize whose utility value exceeds that of any 

achievable wealth.  Under both specifications of utility, higher achieved wealth 

corresponds to higher utility.  However, under (2) achieved wealth can also impact 

utility through its role in allocating the prize to the relatively rich player.   

 

3. Best-response analysis 

3.1 Contest success probabilities 

 Following the conventional approach to analyzing contests, we first 

characterize contest success probability p ª (Pr(m1 ¥ m2), Pr(m2 > m1)) as a function of 

players’ actions z.  The two players’ lottery draws can result in four distinct events: 

WW, LL, LW, or WL, where each event is a two-letter combination with player 1 listed 

first and “W” and “L” representing each player’s “win” or “loss” in the lottery.  

Regardless of the amounts bet, the outcome WL necessarily results in m1 > m2.  Which 

player achieves more wealth in the other three cases depends on the bets as well as 

parameters A and w.  Figure 1 depicts one possible geometry relating lottery outcomes 

to relative wealth.  Figure 2 and Table 1 show the four possible distinct geometries, 

enumerated as Cases I through IV, and the contest success probability corresponding to 

each case.  Since there are only 4 distinct contest success probabilities, the contest 

success function (CSF) in our model is a discrete-valued many-to-one function: 

 

p : [0, A1] ä [0, A2] ö { (1,0),  (1-p(1-p), p(1-p)),  (1-p, p),  (p, 1-p) } 

 

                                                  
1 We do not analyze the special case of θ = 0. 
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Figure 1.  The geometry of the contest with A1=5, A2=3, w=2, z1=2, z2=0.5.  The four 

possible outcomes are the vertices of the rectangle.  Outcome LW lies above the 45± line, 

which implies m2 > m1 and player 2 obtains the prize.  Outcomes LL, WW, and WL lie below 

the 45± line, which implies m1 > m2 and player 1 obtains the prize. 

 

 

 

Figure 2.  The four possible geometries relating lottery outcomes and relative wealth. 

 

 

Table 1.  The four possible cases of how lottery outcomes relate to relative wealth. 

Case Lottery outcomes  

resulting in m1 ¥ m2 

p1 Lottery outcomes 

 resulting in m2 > m1 

p2 

I WL, LL, LW, WW 1  0 

II WL, LL, WW 1-p(1-p) LW p(1-p) 

III WL, LL 1-p LW, WW p 

IV WL, WW p LL, LW 1-p 
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Figure 3 illustrates how the CSF partitions the domain into the four regions 

corresponding to four cases in Table 1.  Our CSF differs markedly from those in 

conventional contest models (cf. Skaperdas 1996, Hirshleifer 1989).  In a conventional 

contest model, players compete for a prize by choosing effort level ei whose cost is 

given by an increasing function C(ei).  The effort levels of all the players jointly 

determine how the probability of winning the prize is distributed among the players.  

CSF is continuous and satisfies 0>
∂
∂

i

i

e

π
  (increasing own effort raises own probability 

of winning) and 0<
∂
∂

j

i

e

π
 ji ≠  (increase in effort by a player reduces the other 

player’s probability of winning).  In contrast, our CSF is discrete-valued and 

decreasing at some points in its domain.  The possibility that pi may fall as player i 

raises zi or may rise as another player j ∫ i increases zj is a consequence of the 

downward exposure inherent to risking money in the lottery.  For instance, if player 1 

increases z1 by a large enough amount, he may risk losing so much that the situation 

shifts from Case II to Case IV, reducing his success probability from 1-p(1-p) to p. 

 

                     

     DA < A°      DA ¥ A°   

 

Figure 3.  The CSF partitions its domain into four regions, which it maps to distinct success 

probabilities, corresponding to the four cases in Table 1.   Some best responses and equilibria 

depend on the relative sizes of DA and A° , where A° ≡ A2 – DA/w. 

 

3.2 Maximization of expected utility 

 To maximize expected utility (2), player 1 solves: 

)),((maxarg 21
],0[

*

1
1

zxVxz
Ax

πθ +=
∈

 

Player 2’s maximization problem is analogous.  Since pi œ {1, 1-p(1-p), 1-p, p}, for V 

large enough, the second summand dominates.  If θ < 0, maximum expected utility for 

player 1 occurs at the smallest x that yields the highest p1.  Thus, assuming the prize 
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carries sufficient utility value, the problem of maximizing expected utility facing each 

player boils down to the following: bet the least amount that maximizes the probability 

of achieving more wealth than the other player.
2
  Formally, for player 1: 

 

}],0[),(),(:inf{0 12121

*

1 Axzxzyyzif ∈∀≥=< ππθ  

 

 If the lottery offers positive expected return, a player maximizes expected 

utility by risking the largest amount that maximizes the probability of achieving more 

wealth than the other player.  Formally, 

 

}],0[),(),(:sup{0 12121

*

1 Axzxzyyzif ∈∀≥=> ππθ  

 

 Regardless of whether expected returns are positive or negative, the 

preferences of player 1 over the four possible outcomes in listed in Table I and depicted 

in Figure 2 are: 
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Since the competition for success probability is a zero-sum game, player 2 holds the 

opposite preferences. 

 

3.3 Best responses 

3.3.1 Negative expected return case 

 The rich player’s best response depends on whether the poor player gambles 

more or less than DA/w.  If z2 § DA/w, then even if the poor wins the lottery he will not 

leapfrog the rich in the achieved wealth distribution.  The rich is not threatened and his 

best response is to abstain.  However, if the poor gambles z2 > DA/w and the rich 

abstains, then with probability p the poor will leapfrog the rich.  Although the rich 

cannot completely defend against this possibility, he can reduce its probability from p 

down to p(1–p) by gambling enough to establish Case II.  The smallest such defensive 

gamble is z1 = z2 – DA/w.  Thus, rich player’s best response is (see Figure 4a): 

                                                  
2 Geometrically, in Figure 1 player 1 maximizes expected utility by finding the narrowest rectangle that 

includes the largest possible number of vertices below the 45± line whereas player 2 seeks the shortest 

rectangle that includes the largest possible number of vertices above the 45± line. 
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 We next turn to poor player’s best response when p < 1/2.  If the rich abstains, 

the poor is best-off gambling z2 = DA/w + a, where a is an arbitrarily small positive 

constant.  If z1 > DA, then the poor is best-off abstaining, hoping that the rich will lose 

his endowment advantage in his own gamble.  If the rich gambles 0 < z1 § DA, then the 

poor is best-off matching z1 and betting an additional DA/w + a to obtain Case III.  

However, if the poor cannot afford this bet, then he is best-off aiming for Case II by 

gambling as if the endowment gap has been reduced by the potential loss z1 of the rich. 

Specifically, the poor player’s best response function is (see Figure 4b): 
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where A° ≡ A2 – DA/w. 

 

If p>1/2, the poor player’s best response is given by (see Figure 4c) 
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Figure 4a.  Rich player’s best-response (θ<0) 
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             DA < A°                             DA ¥ A° 
Figure 4b.  Poor player’s best-response (θ<0, p<1/2) 

 

   

             DA < A°                             DA ¥ A° 
Figure 4c.  Poor player’s best-response (θ<0, p>1/2) 

 

3.3.2 Positive expected return case 

 Although he is risk-neutral and is facing a positive-expected-return investment 

opportunity, the possibility of losing his investment and thereby losing relative position 

in the wealth distribution limits how much the rich player invests.  Specifically, if the 

poor invests less than DA/w, then the rich can guarantee keeping top wealth rank (Case 

I) by investing no more that DA – z2.  If the poor invests more than DA/w, then the rich 

cannot obtain Case I and must settle for the next-best Case II.   The rich player’s 

best-response function is (see Figure 5a) 
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 The poor player may also under-invest in a positive-expected-return 

opportunity in order to maximize probability of achieving top wealth rank.  

Specifically, if the rich invests an amount large enough that losing it would change 

relative wealth standing, the poor prefers to limit his investment.  But if the rich 
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invests an amount so small that losing it will not change relative wealth standing, then 

the poor player’s only hope of leapfrogging the rich is through investing himself, and 

then he might as well invest his entire endowment.  Specifically, the poor player’s best 

response function is (see Figure 5b-c) 

If p<1/2 
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 If p>1/2 
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4. Equilibria  

 The reaction curves derived in the previous section do not intersect.  

Therefore the game in which players place bets simultaneously has no Nash equilibrium 

in pure strategies.  In this section, we examine equilibria of games in which players 

place bets sequentially. 

 

 

Figure 5a.  Rich player’s best-response (θ>0) 

 

 

    

             DA < A°                             DA ¥ A° 
Figure 5b.  Poor player’s best-response (θ>0, p<1/2) 
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             DA < A°                             DA ¥ A° 
Figure 5c.  Poor player’s best-response (θ>0, p>1/2) 

 

 

4.1 Exogenous order of betting 

In the poor-first game, player 2 chooses z2, player 1 observes it and then 

chooses z1, and finally the two lottery draws are made, winnings (if any) paid out, and 

the prize awarded.  In the rich-first game, the order of betting is reversed.  Each game 

has a unique subgame perfect equilibrium.  As shown in Figure 6a, when expected 

return is negative, the poor-first game has one equilibrium and the rich-first game has 

one of three possible equilibria, depending on exogenous parameter values.  

Analogously, Figure 6b shows the four equilibria in the case of positive expected return.   

 

Figure 6a.  Summary of equilibria in the negative returns case (q<0).  Each box represents an 

equilibrium and corresponds to one of cases I through IV in Table 1, as indicated on the top line 

within the box.  The bottom two lines within each box indicate equibrium bets z1 and z2. 

II 
----------- 

α 

ΔA/w + α 

III 
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0 

ΔA/w + α 

IV 
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A
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II 
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Figure 6b.  Summary of equilibria in the positive returns case (q>0)    

 

In every equilibrium, there is a positive probability that the poor leapfrogs the 

rich and thereby obtains the prize.  Equilibria in the poor-first game make intuitive 

sense.  When expected return is negative, the poor player gambles a substantial portion 

of his endowment but the rich only a nominal amount.  When expected return is 

positive, both players invest their entire endowments.  Equilibria in the rich-first game, 

however, are counter-intuitive under some parameter values.  Specifically, the rich may 

gamble more than the poor on a negative expected return lottery and invest less than the 

poor in a positive expected return lottery.  We next show that endogenizing the betting 

order eliminates the rich-first equilibria and retains only the poor-first equilibria. 

 

4.2. Endogenous order of betting 

 Endogenizing betting order is problematic for two reasons.  First, comparing 

equilibrium outcomes in poor-first and rich-first games reveals that each player prefers 

to be the follower.  This is because, given any parameter values, in the equilibrium of 

the game in which he is the follower, as compared to the equilibrium of the game in 

which he is the leader, a player either obtains a higher success probability or the same 

success probability but with higher expected absolute wealth (due to less gambling 
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when q < 0 or more investing when q > 0).
3
  For this reason we cannot follow Baik 

and Shogren’s (1992) approach to endogenizing the sequence of effort choices in a 

contest by letting each player pre-commit to a time at which he will announce his bet.  

The second difficulty is that if players are allowed to respond to each others’ bets an 

unlimited number of times they will cycle endlessly raising and lowering their bets. 

A straightforward way endogenize betting order in spite of these difficulties is 

the following.  Players take turns observing the other’s latest bet and adjusting one’s 

own bet.  A player may increase his bet or keep it unchanged; decreasing a bet is 

disallowed.  Thus, on the r
th

 round of bet-setting, player i observes 1−r

jz , the bet 

announced by player j ≠  i on the previous round, and announces his bet 

],[ 1

i

r

i

r

i Azz
−∈ .  Initially all bets are zero: 00

2

0

1 == zz .  The first time a round is 

completed in which neither player increases his bet, i.e., 1

11

−= rr
zz  and 1

22

−= rr
zz , the 

bets are considered final and the game proceeds to the lottery drawings. 

 First consider the case of negative expected return.  On the first round, the 

rich player does not bet because he is satisfied with the status quo and has no reason to 

bet preemptively since another round of betting is guaranteed if the poor player bets 

something.  The poor player follows his best-response and bets α+Δ
=

w

A
z

1

2 .  On the 

second round, the rich player follows his best response by betting α=2

1z , thereby 

establishing Case II.  Player 2 then considers following his best response function to 

raise his bet to α22

2 +
Δ

=
w

A
z  and thereby establish Case III.  However, he knows 

that player 1 would then respond according by betting α23

1 =z  and thereby 

re-establishing Case II.  Such escalation could continue until z2 = A2 and z1 = A2 – 

DA/w, at which point the poor player would reach his budget constraint and the rich 

player would succeed in re-establishing Case II.  Thus, by escalating beyond z2 = 

DA/w + a, the poor player gains no increase in success probability but shoulders more 

negative-return risk.  By backward induction, the poor player anticipates the 

inevitability of Case II and does not escalate.  By virtue of having a larger endowment, 

the rich player has the last move in the endogenous-move game and the game has the 

same equilibrium as the poor-first game. 

In the case of positive expected return, the rich player starts out betting 

],0[1

1 Az Δ∈ to establish his most-preferred Case I.  The poor player responds by 

                                                  
3 However, when q>0 and DA>A

o, player 2 is indifferent between being the leader or the follower. 
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betting ],( 2

1

11

2 A
w

zA
z

−Δ
∈  to establish Case II or Case III. The players continue to 

escalate until both have fully invested their endowments and Case II obtains.  This 

equilibrium is identical to the equilibrium in the poor-first game. 

 

5.  Negative expected return case with many players and prizes 

 It is interesting to examine the case of negative expected return with N ¥ 2 

players.  We assume that no two players have the same endowment and index the 

players such that }1,...,1{1 −∈∀> + NiAA ii .  Let the number of prizes be K, an integer 

such that 1 § K < N.  All prizes are identical.  Each player who gets a prize obtains 

additional utility V > (w+1)A1.  The “rich” players are players i = 1, …, K; each would 

obtain a prize if the lottery were not available and prizes were allocated based on 

endowed wealth rank.  The “poor” are players i = K+1, …, N.
4
  Assume (w+1)AN > 

A1, which implies that the poorest player can afford a bet that gives him a chance of 

surpassing the wealth of the richest.  V is sufficiently large in the sense of Section 3.2, 

which allows us to reduce each player’s expected utility maximization problem to the 

problem of betting the least amount to obtain the largest contest success probability.  

Bets are placed according to the same routine as described in Section 4.2.  Specifically, 

each player has his turn to maintain or increase his bet according to some particular 

order such as 1,2,…, N.  Bet-setting rounds are repeated until a full round is made 

without a single player increasing his bet.  Then all bets are considered final and an 

independent random draw of the lottery is held for each player. 

 After the lottery, prizes are allocated according to rank in the achieved wealth 

distribution, one prize per player until all K prizes are awarded.  Specifically, 

allocation begins with the player(s) who have the most post-lottery wealth and proceeds 

down one rank at a time.  If, due to ties, the lowest rank for which there is at least one 

prize still available includes more players than prizes remaining, the remaining prizes 

are allocated among these players according to their rank in the endowment distribution. 

 The simple case of N=3 and K=2 illustrates the logic of the many-player 

many-prize contest.  One strategy the single poor player 3 may consider is to aim to 

surpass the poorest rich player i = 2 by betting z3 = (A2 – A3)/w + a.  The threatened 

player 2 will then respond with z2 = a, giving the poor player a success probability of p3 

= p(1-p) (Case II).  Player 1 will not be threatened and will not gamble.  However, 

this minimal gambling is not the best strategy for the poor player.  He can obtain more 

                                                  
4 Separate from the absolute rich/poor distinction, we will refer to a player i as “richer” (or “poorer”) 

than player j if Ai >A j (or Ai <A j). 
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success probability by aiming to surpass the richest player by betting z3 = (A1 – A3)/w + 

a.  Then the rich players will respond with z1 = a and z2 = (A1 – A2)/w + a.  The poor 

player stands to obtain a prize if he wins the lottery and either one or both of the rich 

players lose in the lottery.  This gives the poor player a success probability of p3 = 

p(1-p
2
) > p(1-p).  None of the players wants to escalate betting further since each can 

deduce that the escalation will be reciprocated, potentially all the way up to the budget 

constraint, while the distribution of success probability would not change. 

 This logic generalizes to any number of players when there is only one poor 

player, i.e., K = N – 1.  The poor player will gamble zN = (A1 – AN)/w + a, threatening 

the richest player and thereby inducing every rich player i = 1, …, K to gamble 

defensively zi = (A1 – Ai)/w + a, each seeking to avoid being the one who gives up his 

prize to the poor player in case the poor player wins the lottery.  By inducing such 

defensive gambling among the rich, the poor player gets a prize if he wins the lottery 

and at least one of the rich players loses in the lottery, which implies his success 

probability is the highest achievable: pN = p(1-p
N
).  

 Adding an arbitrary number of poor players to the previous case brings us to 

the general case of 1 § K < N.   By analogous logic it can be shown that in 

equilibrium each player rich and poor bets zi = (A1 – Ai)/w + a.  Each player who wins 

the lottery joins the “winner’s circle” with A1+wa in wealth.  Let k be a random 

variable representing the number of lottery winners.  There are four mutually exclusive, 

collectively exhaustive cases: 

 

1. If k = 0, then each rich player gets a prize and each poor player goes prizeless. 

2. If k = K, then all winners get prizes and all losers go prizeless, regardless of who 

was rich and who was poor by endowment. 

3. If 1 § k < K, then all winners and the richest K – k losers get prizes; all other losers 

go prizeless. 

4. If K < k § N, then the richest K winners get prizes; the remaining k – K winners and 

all losers go prizeless. 

 

 For a poor player, it is necessary but not sufficient to win the lottery to get a 

prize.  This is because of case 4, wherein a poor player may win the lottery but 

nevertheless go prizeless if K or more richer players also win the lottery.  Specifically, 

for a poor player i, 

 

Pr(i gets prize) = Pr(i wins lottery) ä Pr(fewer than K lottery winners are richer than i) 
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which can be expressed using the binomial distribution as follows: 
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Remarkably, the probability of a poor player getting a prize is independent of the 

total number of players N.  All that matters to a poor player i is the number of players 

richer than him and the number of prizes; the number of players poorer than him is 

irrelevant.  In other words, how he ranks in terms of his endowment matters to a poor 

player only by looking up the endowment hierarchy. 

 For a rich player, it is sufficient but not necessary to win the lottery to get a 

prize.  This is because of case 3, wherein a rich player i may lose in the lottery but 

nevertheless get a prize if k < K and fewer than K – k losers are richer than i.  

Specifically, for a rich player i, 

 

Pr(i gets prize) = Pr(i wins lottery) + [Pr(i loses lottery) ä  

        Pr(k<K and number of lottery losers richer than i is less than K-k)]   

 

which can be expressed using binomial distributions as follows: 
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 Although a poor player’s success probability is unaffected if additional players 

poorer than him join the contest, a rich player’s success probability decreases with 

increasing number of poor players.  As Table 2 and Figure 7 demonstrate, for a given 

number of prizes, having more poor players corresponds to lower success probability 

for every rich player.  Each additional poor player joining the contest does not affect 

other poor players’ chances but redistributes some of the rich players’ success 

probability to himself.  In the limit as the number of poor players grows large, the 

success probability of each rich player approaches p.   
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Table 2.  Contest success probabilities in a contest with endogenous order of bets, K = 2 prizes 

and N = 3 to 10 players.  Probability of winning the negative expected return lottery is p = 0.4.  

Keeping the number of prizes constant and adding a poor player at the bottom of the 

endowment hierarchy redistributes contest success probabilities away from the two rich players 

to the newly added poor player, without affecting the success probability of the richer poor 

players. 

Players N 3 4 5 6 7 8 9 10 

Prizes K 2 2 2 2 2 2 2 2 

Rich 
1 0.904 0.789 0.685 0.602 0.540 0.495 0.464 0.442 

2 0.760 0.616 0.530 0.478 0.447 0.428 0.417 0.410 

Poor 

3 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 

4   0.259 0.259 0.259 0.259 0.259 0.259 0.259 

5    0.190 0.190 0.190 0.190 0.190 0.190 

6     0.135 0.135 0.135 0.135 0.135 

7      0.093 0.093 0.093 0.093 

8       0.063 0.063 0.063 

9        0.043 0.043 

10               0.028 
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Figure 7.  Equilibrium success probabilities of the two rich players in Table 2 as a function of 

number of players.   (K=2, N = 3, …, 10, p = 0.4) 

 

 

6. Concluding remarks 

If the lottery were to be disabled in our model, the player with the larger 

endowment would obtain the prize with probability one.  Since in every equilibrium 

both players have positive probability of obtaining the prize, the betting is not 
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mutually-offsetting and the lottery serves to narrow the opportunity gap between the 

players regardless of whether it offers positive or negative expected return.  If the 

expected return is negative, expected absolute wealth is sacrificed in all equilibria; if it 

is positive, expected absolute wealth is enhanced, but, in some equilibria, not to the full 

extent possible. 

If players are solely concerned with maximizing absolute wealth per utility 

function (1), the sign of the expected return constitutes necessary and sufficient 

information that each player must know about the lottery to determine his optimal bet.  

If players place first priority on relative wealth and second priority on absolute wealth, 

as in utility function (2), players’ best response depends not only on sign(q) but also on 

sign(p – 1/2) and on w.  In this case, the rate of return is neither necessary nor 

sufficient information for selecting the optimal bet. 

Another way to see how the logic of the risk-bearing decision differs under 

absolute and relative wealth maximization is to consider players’ preferences among 

lotteries.  If offered a choice of two lotteries, a player who maximizes absolute wealth 

per (1) would prefer the lottery with the highest positive expected rate of return or be 

indifferent if both lotteries offer negative expected return.  Rate of return is necessary 

and sufficient information for an absolute wealth maximizer to decide which lottery he 

prefers.  For a relative wealth maximizer represented by (2), however, the rate of return 

is neither necessary nor sufficient to decide which lottery he prefers be used in the 

contest.
5
  We have shown that with poor-first or endogenous sequence of bets, the 

equilibrium allocation of success probability is p1 = 1 – p(1 – p) and p2 = p(1 – p).  

Since p(1 – p) is the variance of the lottery and has a unique maximum at p = 1/2, the 

rich player prefers the lower-variance lottery with p furthest from 1/2 whereas the poor 

prefers the higher-variance lottery with p closest to p = 1/2.  Unless both lotteries have 

the same variance, the two players will prefer different lotteries.  This implies that 

even if one lottery first-order stochastically dominates the other, one of the players will 

nevertheless prefer that it be chosen for use in the contest. 
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