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Abstract

We propose simulation based estimation for discrete sequential move games of perfect

information which relies on the simulated moments and importance sampling. We use

importance sampling techniques not only to reduce computational burden and simulation

error, but also to overcome non-smoothness problems. The model is identified with only

weak scale and location normalizations, monte Carlo evidence demonstrates that the

estimator can perform well in moderately-sized samples.
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1 INTRODUCTION

Nash equilibrium is one of the cornerstones of modern economic theory, with substantive

application in all major fields in economics, particularly industrial organization. It is

the benchmark theoretical model for analyzing strategic interactions among a handful of

players. Given the importance of gaming in economic theory, the empirical analysis of

games has been the focus of a recent literature in econometrics and industrial organization,

such as Tamer (2003), Berry & Tamer (2007), Aguirregabiria & Mira (2007), Aradillas-

Lopez (2007, 2008), Ciliberto & Tamer (2009), Bajari, Hong, Krainer & Nekipelov (2010)

and Bajari, Hong & Ryan (2010) (hereafter BHR).

Econometrically, a discrete game is a generalization of a standard discrete choice

model, such as the conditional logit or multinomial probit. An agent’s utility is often

assumed to be a linear function of covariates and a random preference shock. However,

unlike a discrete choice model, utility is also allowed to depend on the actions of other

agents. Such modeling strategy was first suggested by the seminal work of Bresnahan

& Reiss (1990, 1991). Although there are numerous studies on both methodology and

empirical applications of game-theoretic models, the most widely studies is the class of

incomplete information simultaneous-move games (normal form) and dynamic games, see

Tamer (2003), Bajari, Hong, Krainer & Nekipelov (2010) and Aguirregabiria & Mira

(2007). The complete information games received fewer studies due to its computa-

tional complexity, since it involves multidimensional integrals. More recently, Ciliberto

& Tamer (2009) and BHR (2010) provide simulation-based estimators for static complete

information discrete games. Furthermore, estimation of sequential-move (extensive form)

games has been quite limited, especially on its’ general form, Berry (1992), Mazzeo (2002)

and Schmidt-Dengler (2006) estimate some simplified sequential-move games with special

game structure. The estimation of the general class of sequential move games has suffered

from its computational complications, Maruyama (2009) provides a simulation-based es-
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timator for the general class of discrete-choice perfect information sequential move games

with a modified version of the GHK simulator (Geweke (1989, 1991), Hajivassiliou &

McFadden (1998) and Keane (1990, 1994)), which he called as ”sequential GHK”. The

estimator provided by Maruyama (2009) essentially is a maximum simulated likelihood

(MSL) estimator, As is well known, MSL is biased for any fixed number of simulations,

in order to obtain
√
T consistent estimators, one needs to increase the number of draws

NS so that NS√
T
→ ∞. Wang & Graham (2009) provides a generalized maximum entropy

(GME) estimator for this class of games which avoids the usual multidimensional inte-

grals by using the data constraints instead of the moment constraints, they reformulate

the estimation problem as a mixed-integer nonlinear optimization problem since there

are logical connections between endogenous variables among the equilibrium conditions,

although the computational burden is acceptable for most applications, it is hard to con-

struct large sample properties for this GME estimator, since essentially it is a nonsmooth

estimation1.

In this paper, we propose a simulation based estimator for discrete sequential move

games of perfect information which relies on the simulated moments and importance

sampling. As noted by Maruyama (2009), the estimation of sequential games has some

distinctive features and advantages over simultaneous games, the most advantage is that

perfect information sequential games can utilize the notion of subgame perfection, which

guarantees the existence of unique equilibria, however, in simultaneous games of complete

information, the existence of multiple equilibria is sometimes considered problematic or

at least an issue to deal with (see for example, Ciliberto & Tamer, 2007; BHR, 2010).

The moment conditions implied by the model equilibrium conditions in discrete se-

quential move games of perfect information contain multidimensional integrals, in princi-

ple, one can use straightforward monte Carlo simulations to get unbiased estimators for

1One can use the bootstrap or other resampling methods to do the inference with this GME estima-
tion, but little is known about the ability of such methods to provide asymptotic refinements or even the
consistent approximation to the asymptotic distribution.
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such multidimensional integrals, but there are several problems that can arise with estima-

tors based on such simulations. First, there are discrete parts of the model, the objective

function in the estimation procedure is typically discontinuous in the parameter vector,

making it hard to minimize (maximize) correctly; Second, the straightforward monte

carlo simulations need to solve the game numerous times, typically once for every draw,

for every observation, for every parameter vector that is ever evaluated in an optimization

procedure. If we have T observations, performs NS simulation draws, and optimization

requires R function evaluations, estimation requires solving the model NS ∗ T ∗R times,

this can be computationally time consuming since R can be quite large. In spirit of Acker-

berg (2009) and BHR (2010), we make use of importance sampling to overcome both of

the problems, by finding the right change of variables to do the importance sampling over,

the simulated approximation of the multidimensional integral (expectation) will generally

be continuous in the parameter vector, and also one reduce the times of solving the game

from NS ∗T ∗R to NS ∗T .2 In order to make use of importance sampling, it is important

to make sure that the tails of the importance density are not too thin in a neighborhood

of the parameter that minimizes (maximizes) the objective function in the estimation

procedure, the GME estimator proposed by Wang & Graham (2009) can be used to con-

struct the importance density, or one can make use of the MSL estimator proposed by

Maruyama (2009). Based on such simulated moments, we propose two estimators for the

discrete sequential move games of perfect information, one is the method of simulated

moments (MSM), which is same as the usual GMM estimation but use the simulated mo-

ments instead of the true moments. Given that the equilibrium conditions are conditional

moment restrictions, same as the GMM estimation, MSM estimation may induce incon-

sistent estimates due to the number of arbitrarily chosen instruments is finite, we make

use of the always consistent estimation procedure that is directly based on the definition

2One can even reduce this computation times to NS by using the same simulation draws for different
observations, see Ackerberg (2009).

4



of the conditional moments proposed by Dominguez & Lobato (2004). Our monte Carlo

experiments show that the always consistent estimator performs better than the MSM

estimator, especially in the small sample size.

The paper is organized as follows. In section 2 we outline the general discrete

sequential-move games to be estimated and formulate its equilibrium conditions, the as-

sumptions for the identification and estimation also are presented. Section 3 formalizes

our simulation and estimation approach. Monte Carlo simulations are conducted in sec-

tion 4. Section 5 concludes, and provides limitations and future work.

2 THE MODEL

In the model, there are T independent repetitions of a sequential move game of perfect

information (extensive form game). In each game there are i = 1, ..., Nt players, each

with the finite set of actions Ait. Define At = ×iAit and let at = (a1t, ..., ait, ...aNt) denote

a generic element of At. Without loss of generality, the order of subscripts for players

(1, ..., Nt) also represents the decision order of the sequential move game in each repetition,

that means player 1 makes decision first and playerNt at the end. Player i’s von Neumann-

Morgenstern (vNM) utility is a map uit : At → R, where R is the real line. Since we

study the sequential move game, the corresponding equilibrium concept is the subgame

perfect equilibria (SPE), this can be achieved when every player expects no gain from

individually deviating from its equilibrium strategy in its every subgame, the standard

technique for solving the SPE is backward induction, furthermore, the finite sequential

move game of perfect information where there is no player is indifference between any two

outcomes has a unique SPE. We will sometimes drop the subscript t for simplicity when

no ambiguity would arise.

Following Bresnahan & Reiss (1990, 1991), assume that the vNM utility of player i
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can be written as:

ui(a, x, ϵi; θ) = Πi(x, a; θ) + ϵi(a) (1)

In Equation (1), player i’s vNM utility from action a is the sum of two terms. The first

term Πi(x, a; θ) is a function which depends on a, the vector of actions taken by all of the

players, covariates x, the players’ characteristics and some other variables which influence

the utility, and parameters θ, covariates x are observed to the econometrician. The second

term is ϵi(a), a random preference shock which reflects the information about utility that

is common knowledge to the players but not observed by the econometrician. Unlike

Maruyama (2009), here the preference shocks depend on the entire vector of actions a, not

just the actions taken by player i. As argued by BHR (2010), this is a more general setting

and seems straightforward within the game framework, think about a simple entry game,

the unobserved information of one player to econometrician may be different not only

among players but also action vector dependent3. ϵi(a) are assumed to be independent,

let ϵi denote the vector of the individual ϵi(a) and ϵi denote the vector of all the shocks.

we will discuss more about the structure of ϵi in the model assumptions.

As noted above, the equilibrium concept corresponding to the sequential move game of

perfect information, SPE, is a equilibrium strategy profile which means that every player

expects no gain from individually deviating from its equilibrium in every subgame. A

strategy of player i ∈ N is a function that assigns an action in Ai to each nonterminal

history, a player’s deviation form equilibrium holding other’s decisions fixed does not mean

that all the others make the same decision, it means the others follow the same strategy.

But what can be observed is only the equilibrium actions (i.e., equilibrium outcome).

Thus, for deriving the equilibrium conditions in our econometric model, we should make

the others’ action profile when one player deviating as endogenous variable. Formally, an

3One can find that this specification of the preference shock also facilitates the use of importance
sampling, since the usual use of importance sampling in the discrete choice models requires the random
coefficients specification.
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SPE action profile, aSPE = (aSPE
1

, ...aSPE
i , ...aSPE

N ), is any solution for the decisions of the

players that satisfies:

ui(a
SPE
i , aSPE

−i , x, ϵi; θ)− ui(ai, a
SPE
<i , a∗>i(a

SPE
<i , ai), x, ϵi; θ) ≥ 0 (2)

for all i = 1, ..., N and all ai ̸= aSPE
i .

where a∗>i(a
SPE
<i , ai) is a SPE action profile for the subgame that starts from player i+ 1

given the decisions of the preceding players, a≤i. This equilibrium conditions are defined

recursively and the solution can be easily calculated by the backward induction for any

given parameters θ, observed covariates, x, and unobservable shocks ϵ. Kuhn’s theorem

ensures the existence of solutions of the inequality system (2) but makes no claim of

uniqueness, thus we can conclude that every finite sequential move game of perfect infor-

mation has a SPE. As noted by Berry & Tamer(2007), dealing with multiple equilibria

complicate the identification problem, fortunately, a modified version of Kuhn’s theorem

ensures the uniqueness of equilibria of finite sequential move games of perfect information,

which is presented in theorem 1.

Theorem 1 Every finite sequential move game with perfect information in which no

player is indifference between any two outcomes has a unique subgame perfect equilibrium.

Proof. See Osborne & Rubinstein (1994).

Obviously, the indifference case can be ignored in our econometric model since we

work with continuous latent payoffs (ϵi(a) has an atomless distribution). Given such

structure of the discrete choice sequential move game, our task is to estimate and draw

an inference about the parameters of payoff functions, θ, with the observation of action

profile ao, some covariates which have effect on the payoffs, x, and an exogenous decision

order. Note that the actual payoff levels are unobserved, since in most case, we can not

determine what they should be, i.e. they are the latent variables. Before presenting our
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estimation strategy, some assumptions about the model structure are introduced.

2.1 Assumptions

Assumption 1 (Exogenous Decision Order) The decision order of agents in the se-

quential move game is exogenous.

Although the exact decision order of agents is rarely observed, we can estimate se-

quential move games by imposing different decision order assumptions, this restriction

only excludes the endogenous decision order which may alter the uniqueness of the game

structure.

Assumption 2 (Scale and Location Normalizations) The payoff of one action for

each player are fixed at a known constant.

As argued by BHR (2010), this restriction is similar to the argument that we can

normalize the mean utility from the outside good equal to a constant, usually zero, in a

standard discrete choice model. One clearly find that from the equilibrium condition (2)

that adding a constant to all deterministic payoffs does not perturb the set of equilib-

ria, so a location normalization is necessary. A scale normalization is also necessary, as

multiplying all deterministic payoffs by a positive constant does not alter the SPE. This

restriction is subsumed in the following assumption about the distribution of the error

terms.

Assumption 3 (Regularity Conditions of Random Shocks) The joint distribution

of ϵ = (ϵi(a)), G(ϵ|β) is independent and known to all agents and the econometri-

cian.

This restriction allows G to be any known joint parametric distribution, identification

in this game with unknown G is complicated, and since our estimation is based on the
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simulation which relies on the distribution of error terms, the case with unknown G will

not be dealt with here.

3 ESTIMATION

Next, we propose computationally efficient simulation based estimators for θ and β, the

parameters governing agents’ deterministic payoffs and the error terms’ distribution, given

the observations of a sequence (at, xt) of action profiles and covariates. To form the

estimation framework, enumerate the elements of A from k = {1, ...,#A}. Denote the

observation at tth repetition of the game with yt and

yt =

























I(at = 1)

.

I(at = k)

.

I(at = #A)

























= f(xt, ϵt, θ0) (3)

where I(·) is the usual indicator function, f(xt, ϵt, θ) is an algorithm which solves the

game for any given xt, ϵt and θ, obviously, it is corresponding to the model equilibrium

conditions (2). Denote the probability that a specific action profile k is played implied by

the model as P (k|xt; θ) and collect them into a vector P (a|xt; θ), where

P (a|xt; θ, β) = E[f(xt, ϵt, θ)|xt] =

∫

f(xt, ϵt, θ)dG(ϵ, β) (4)

At the true parameters of the data-generating process the predicted probability of each

action equals its empirical probability of each action k:

E[(yt − P (a|xt; θ, β))|xt] = 0 at θ = θ0, β = β0 (5)
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Note that, because the probability of all of the elements of must sum to one, one of

these probabilities will be linearly dependent on the others, so there are effectively #A−

1 conditional moment restrictions. Obviously, the expectation of any function w(xt)

of the conditioning variables multiplied by the difference between yt and the predicted

probabilities is identically zero at the true parameters, i.e.

E[w(xt) ∗ (yt − P (a|xt; θ, β))] = 0 at θ = θ0, β = β0 (6)

In principle, the value of θ and β, say θ̂ and β̂, that set the sample analog of this moment

GT (θ, β) =
1

T

∑

t

[w(xt) ∗ (yt − P (a|xt; θ, β))]

equal to zero or as close as possible to zero is a consistent estimator of θ0 and β0. Un-

der appropriate regularity conditions, one obtains asymptotic normality of the estimators

(Hansen, 1982), and as the number of moments used increases, one can approach asymp-

totic efficiency by the right choice of instruments (i.e. the w function).

To make use of such GMM estimation, we should overcome some obstacles, the first

obstacle is that the predicted probabilities P (a|xt; θ, β) which defined by (4) is not easily

computable, since it involves a multidimensional integral, thus simulation enters the pic-

ture. As can be found below, a straightforward Monte Carlo procedure is not practical due

to the computational burden and discreteness in f(xt, ϵt, θ), we make use of importance

sampling to overcome such problems.

3.1 Simulation

The straightforward way of simulating

P (a|xt; θ, β) = E[f(xt, ϵt, θ)|xt] =

∫

f(xt, ϵt, θ)dG(ϵ, β)

10



is by averaging f(xt, ϵt, θ) over a set ofNS random draws (ϵ1, ..., ϵNS) from the distribution

of ϵt, G(ϵ|β), i.e.

P̃ (a|xt; θ, β) =
1

NS

∑

ns

f(xt, ϵt, θ) (7)

P̃ (a|xt; θ, β) is trivially an unbiased simulator of the true expectation P (a|xt; θ, β) =

E[f(xt, ϵt, θ)|xt]. McFadden (1989) and Pakes & Pollard (1989) prove statistical properties

of the MSM estimator that set the simulated moment:

G̃T (θ, β) =
1

T

∑

t

[w(xt) ∗ (yt − P̃ (a|xt; θ, β))]

=
1

T

∑

t

[w(xt) ∗ (yt −
1

NS

∑

ns

f(xt, ϵt, θ))] (8)

as close as possible to zero. The most important of these statistical properties is the

fact that these estimators are typically consistent for finite NS. The intuition behind

this is that simulation error averages out over observations as T → ∞. This consistency

property gives the estimator an advantage over alternative estimation approaches such as

maximum simulated likelihood (MSL), which typically is not consistent for a finite number

of simulation draws. Another nice property of these estimators is that the extra variance

imparted on the estimates due to the simulation is relatively small, asymptotically it is

1/NS. As noted above, an important obstacle of making use of MSM estimation procedure

in our sequential game estimation is that f(xt, ϵt, θ) typically is not continuous in θ,

since the algorithm for solving the discrete sequential move game of perfect information

essentially is a combination of several indicator functions, which is not continuous in θ.

The discreteness in f(xt, ϵt, θ) will generate the discreteness in P̃ (a|xt; θ, β), as can be

found via a simple entry game conducted in example 1. Thus the simulated moments,

G̃T (θ, β), will tend not to be continuous in θ, typically having both flats and jumps.

This can be very problematic in the numeric minimization of G̃T (θ, β), derivative based

methods are useless.
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Example 1 To illustrate the discreteness problem, consider a simple two-firm sequential

entry game, where firm 1 moves first. Each firm has the following profit function:

ui(x, a, ϵi; θ) = 1(ai = 1){xiθ1 +N(a)θ2 + ϵi(a)}

where ai ∈ {0, 1} is firm i’s action, N(a) is the number of entrants for a action profile a.

Function f maps (x, ϵ, θ) into the market structure (outcome) y,

y =



















I(0, 0)

I(0, 1)

I(1, 0)

I(1, 1)



















= f(x, ϵ, θ)

For exposition we focus on the 2nd element of y, we can write this out explicitly as:

y2 = I(0, 1) = I

























[0 > x1θ1 + θ2 + ϵ1(1, 0) ∩ 0 > x2θ1 + 2θ2 + ϵ2(1, 1)]

∪

[0 > x1θ1 + 2θ2 + ϵ1(1, 1) ∩ 0 ≤ x2θ1 + 2θ2 + ϵ2(1, 1)]

∩

x2θ1 + θ2 + ϵ2(0, 1) ≥ 0

























Obviously, function f is not continuos in θ. The straightforward simulator

P̃ ((0, 1)|xt; θ, β) =
1

NS

∑

ns

I

























[0 > x1θ1 + θ2 + ϵ1,ns(1, 0) ∩ 0 > x2θ1 + 2θ2 + ϵ2,ns(1, 1)]

∪

[0 > x1θ1 + 2θ2 + ϵ1,ns(1, 1) ∩ 0 ≤ x2θ1 + 2θ2 + ϵ2,ns(1, 1)]

∩

x2θ1 + θ2 + ϵ2,ns(0, 1) ≥ 0
























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is also not continuos in θ.

In spirit of Ackerberg (2009) and BHR (2010), we make use of importance sampling to

reduce the non-smoothness problem4. Importance sampling is most noted for its ability to

reduce simulation error and computational burden, and was first used in game-theoretic

models estimation by BHR (2010), who estimated norm form complete information games.

First, we change the variable of integration in Equation (4) from ϵ to u. Let h(u|x, θ, β)

denote the density of u, conditional on x, θ and β, and g(ϵi(a)|β) the density of ϵi(a).

Then the density h(u|x, θ, β) is:

h(u|x, θ, β) =
∏

i

∏

a∈A
g(ui(a, x, ϵi; θ)− Πi(x, a; θ)|β) (9)

If we change the variable of integration in

P (a|xt; θ, β) = E[f(xt, ϵt, θ)|xt] =

∫

f(xt, ϵt, θ)dG(ϵ, β)

=

∫

f(xt, ϵt, θ)g(ϵ|β)dϵ

from ϵ to u, then P (a|xt; θ, β) becomes:

P (a|xt; θ, β) =

∫

f(u)h(u|xt, θ, β)du (10)

In order to use importance sampling, introduce the importance density q(u), rewrite

Equation (10) as:

P (a|xt; θ, β) =

∫

f(u)
h(u|xt, θ, β)

q(u)
q(u)du (11)

4McFadden (1989) noted the ability to use importance sampling to smooth simulations which is
extended by Ackerberg (2009).
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We can then simulate P (a|xt; θ, β) by draw random variables u1, ...uNS from q(u) and

construct

P̂ (a|xt; θ, β) =
1

NS

NS
∑

ns=1

f(uns)
h(uns|xt, θ, β)

q(uns)
(12)

Note that

E[P̂ (a|xt; θ, β)] = E[f(u)
h(u|xt, θ, β)

q(u)
]

=

∫

f(u)
h(u|xt, θ, β)

q(u)
q(u)du

= E[f(xt, ϵt, θ)|xt]

≡ P (a|xt; θ, β)

So the importance sampling simulator P̂ (a|xt; θ, β) is an unbiased simulator for the true

expectation. The most important property of this simulator is that P̂ (a|xt; θ, β) will

generally be continuous in θ and β since it only depends on θ and β through h(u|xt, θ, β)

which is continuous in θ and β given that g(ϵ|β) is continuous, this can be revealed by

using this simulator in the simple two-player entry game which conducted in Example 1.

Example 2 (Ex.1 Cont’) Consider the two-player entry game conducted in Example 1.

For exposition we also only focus on the 2nd element of y:

y2 = I(0, 1) = I

























[0 > x1θ1 + θ2 + ϵ1(1, 0) ∩ 0 > x2θ1 + 2θ2 + ϵ2(1, 1)]

∪

[0 > x1θ1 + 2θ2 + ϵ1(1, 1) ∩ 0 ≤ x2θ1 + 2θ2 + ϵ2(1, 1)]

∩

x2θ1 + θ2 + ϵ2(0, 1) ≥ 0

























14



A change of variables from ϵ to u resulting in

P̂ ((0, 1)|xt; θ, β) =
1

NS

∑

ns

I

























[0 > u1,ns(1, 0) ∩ 0 > u2,ns(1, 1)]

∪

[0 > u1,ns(1, 1) ∩ 0 ≤ u2,ns(1, 1)]

∩

u2,ns(0, 1) ≥ 0

























h(uns|xt, θ, β)

q(uns)

obviously, given that g(ϵ|β) is continuous, this simulator is smooth in the underlying

parameters.

Although the theory of importance sampling proves that P̂ (a|xt; θ, β) is a smooth and

unbiased simulator for any choice of the importance density q(u) which has sufficiently

large support. However, as noted by BHR(2010), as a practical matter, it is important to

make sure that the tails of the importance density q(u) are not too thin in a neighborhood

of the parameter that minimizes the objective function in our estimator. One natural

choice of q(u) is h(u|x, θ̊, β̊) where θ̊ and β̊ are some guess or preliminary estimate of θ

and β. To ensure that the importance density q(u) are not too thin in a neighborhood

of the estimated parameters, we found that the generalized maximum entropy (GME)

estimator proposed by Wang & Graham (2009) is a good choice for θ̊ and β̊, also we can

set the importance density equals to the distribution of utilities conditional on x in the

GME estimation, this means that for each value of x we simulate the GME estimation NS

times. At the same time, since P̂ (a|xt; θ, β) only depends on θ and β through h(u|xt, θ, β)

which is continuous in θ and β given that g(ϵ|β) is continuous, in computations, the f(uns)

and q(uns) should be stored as they do not vary as the underlying parameters changes

in the estimation procedure, then as the underlying parameters changes, one only need

re-compute the density h(u|x, θ, β).
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3.2 The Estimator

Given the importance simulator P̂ (a|xt; θ, β), we can replace the moment conditions in

Equation (6) by its simulation analog:

ĜT (θ, β) =
1

T

∑

t

[w(xt) ∗ (yt − P̂ (a|xt; θ, β))]

Then for a positive definite weighting matrix WT , the MSM estimator is:

(θ̂MSM , β̂MSM) = arg min
{θ,β}

ĜT (θ, β)
′

WT ĜT (θ, β) (13)

The asymptotic theory for estimating discrete choice models using MSM is well developed

by McFadden (1989) and Pakes & Pollard (1989). Christian Gouriéoux & Alain Mon-

fort (2002) has done a formal analysis of the MSM estimation in the GMM framework,

involved the optimal choice of the weighting matrix WT and instrumental matrix w(xt).

However, this MSM estimator which relies on the conditional moment restrictions (5),

just as the GMM, can render inconsistent estimates since the number of arbitrarily cho-

sen instruments is finite. In fact, consistency of the GMM estimators relies on additional

assumptions that imply unclear restrictions on the data generating process. To avoid

such inconsistent case, we can make use of the consistent estimation of models defined by

conditional moment restrictions proposed by Dominguez & Lobato (2004)5, but use the

simulation analog instead of the usual sample analog. The always consistent estimator

can be defined as:

(θ̂AC , β̂AC) = arg min
{θ,β}

1

T 3

T
∑

l=1





(

T
∑

t=1

m̂(yt, xt)I(xt ≤ xl)

)
′
(

T
∑

t=1

m̂(yt, xt)I(xt ≤ xl)

)





(14)

5The main idea behind this estimation is that use the whole information about the parameters
contained in the conditional moments E[h(Yt, θ0)|Xt] = 0 by the fact: E[h(Yt, θ0)|Xt] = 0 ⇐⇒
E[h(Yt, θ0)I(Xt ≤ x)].
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where

m̂(yt, xt) = yt − P̂ (a|xt; θ, β) (15)

This estimator is always consistent but inefficient since it does not control the minimiza-

tion of the covariance, Dominguez & Lobato (2004) briefly discussed that by carrying

out a single Newton-Raphson step in the direction of the efficient GMM estimator, an

asymptotically efficient estimator can be constructed. Another choice of the efficient

estimation is Kitamura, Tripathi & Ahn (2004)’s local estimation, but it needs to intro-

duce a bandwidth number, although this bandwidth number allows the estimator to be

root− n asymptotically normal and efficient, statistical inference with this estimator can

be sensitive to the selection of the bandwidth number.

4 MONTE CARLO

To demonstrate the performance of our estimator in finite samples, we conducted a simple

Monte Carlo experiment using the simple sequential entry game introduced in Example

1. There are two players and each player has the following profit function:

ui(x, a, ϵi; θ) = 1(ai = 1){θ1xi1 + θ2xi2 + θ3xi3 + ϵi(a)} (16)

where player 1 moves first. We assume that

x11 ∼ N(20, 1)

x12 ∼ N(11, 3)

x21 ∼ N(26, 1)

x22 ∼ N(11, 3)

17



xi3 = N(a)

where N(a) is the number of entrants for a action profile a, and ϵit(a), the idiosyncratic

error term, are drawn from standard normal distribution. As discussed previously, our

model requires both scale and location normalizations, so we assume the variance of the

error terms is one and the payoffs of not entering are zero. Thus our game has three un-

known parameters: θ1, θ2 and θ3. We generated 1000 samples of size T = 25, 50, 100, 200

and 400 to assess the finite sample properties of our estimator, first use importance sim-

ulator (12) get P̂ (a|xt; θ, β) for each t then generate the simulated analog (15). The true

parameter vector was chosen as

θ1 = 1, θ2 = −1, θ3 = −8

the random draws in the importance sampling, NS, is 1000.

In Table I we report the mean, median, standard deviation, mean bias, median bias

and mean square error (MSE) for the MSM estimator defined in (13) for five sample sizes,

T = 25, 50, 100, 200 and 400 and Table II for the AC estimator defined in (14), which show

that both estimators can perform well in moderately-sized samples, the payoff parameters

are estimated near their true values, and as the sample size increase, the estimates become

more precisely. The comparison between the MSM estimator and AC estimator shows the

superiority of AC estimator, especially in small samples. One may find that parameters

are estimated much less precision when sample size is 400, this may due to the large scale

non-linear algorithm we’ve chosen. Actually, since the objective function of our estimate

is not globally convex, we choose the global optimization algorithm ”LGO”6 in GAMS,

a more meticulous modification on the algorithm details should increase the performance

of our estimation in large samples.

6The Lipschitz-Continuous Global Optimizer (LGO) developed by János D. Pintér.
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Table I: Monte Carlo Results for MSM

Standard Mean Median

Parameter Mean Median Deviation Bias Bias MSE

T = 25

θ1 1.0769 1.0774 0.1332 0.0769 0.0774 0.0236

θ2 −1.1254 −1.1039 0.2196 −0.1254 −0.1039 0.0639

θ3 −8.4267 −8.4045 1.0817 −0.4267 −0.4045 1.2637

T = 50

θ1 1.0721 1.0730 0.1311 0.0721 0.0730 0.0224

θ2 −1.1140 −1.0953 0.2203 −0.1140 −0.0953 0.0615

θ3 −8.3077 −8.2143 1.0196 −0.3077 −0.2143 1.2206

T = 100

θ1 1.0239 1.0242 0.1111 0.0239 0.0242 0.0129

θ2 −1.0201 −1.0133 0.1371 −0.0201 −0.0133 0.0192

θ3 −8.1938 −8.1152 0.9040 −0.1938 −0.1152 0.8539

T = 200

θ1 1.0089 1.0065 0.1070 0.0089 0.0065 0.0115

θ2 −0.9960 −0.9937 0.1239 0.0040 0.006 3 0.0154

θ3 −8.0946 −8.0422 0.8521 0.0946 0.0422 0.7343

T = 400

θ1 1.0071 1.0022 0.0886 0.0071 0.0022 0.0079

θ2 −0.9979 −0.9944 0.1011 0.0021 0.0056 0.0102

θ3 −8.0918 −8.0367 0.7070 −0.0918 −0.0367 0.5078

True value: θ1 = 1, θ2 = −1, θ3 = −8; Monte Carlo Times: 1000

19



Table II: Monte Carlo Results for AC

Standard Mean Median

Parameter Mean Median Deviation Bias Bias MSE

T = 25

θ1 1.0409 1.0325 0.1296 0.0409 0.0325 0.0184

θ2 −1.0618 −1.0385 0.2671 −0.0618 −0.0385 0.0751

θ3 −8.1269 −8.7044 0.8386 −0.1269 −0.7044 0.7186

T = 50

θ1 1.0328 1.0270 0.1299 0.0328 0.0270 0.0179

θ2 −1.0496 −1.0220 0.2027 −0.0496 −0.0220 0.0435

θ3 −8.1054 −8.1655 0.8017 −0.1054 −0.1655 0.6532

T = 100

θ1 1.0109 1.0157 0.0663 0.0109 0.0157 0.0045

θ2 −1.0050 −1.0027 0.0907 −0.0050 −0.0027 0.0082

θ3 −8.1199 −8.1546 0.6529 −0.1199 −0.1546 0.4402

T = 200

θ1 1.0038 1.0137 0.0666 0.0038 0.0137 0.0044

θ2 −1.0010 −1.0027 0.0805 −0.0010 −0.0027 0.0065

θ3 −8.0401 −8.0788 0.6129 −0.0401 −0.0788 0.3770

T = 400

θ1 1.0103 1.0164 0.0655 0.0103 0.0164 0.0043

θ2 −1.0096 −1.0089 0.0750 −0.0096 −0.0089 0.0057

θ3 −8.0817 −8.1049 0.5677 −0.0817 −0.1049 0.3287

True value: θ1 = 1, θ2 = −1, θ3 = −8; Monte Carlo Times: 1000

20



5 CONCLUSION

In this paper, we developed the simulation based estimation for the discrete sequential

move game of perfect information, which relies on the simulated moments and importance

sampling. We use importance sampling techniques not only to reduce computational

burden and simulation error, but also to overcome non-smoothness problems. Monte Carlo

evidence demonstrates that the estimator can perform well in moderately-sized samples.

The most limitation of our estimation is that it relies on the known distribution of random

preference shocks which is rarely known to researchers, working with the unknown G(ϵ|β)

is an important topic for future research. Another interesting issue concerns the efficient

estimation of the simulated conditional moments, although in a full parametric model, we

can make use of the first order condition of the likelihood function, the simulated score

may not exist since the simulated choice probability can be zero in some random draws.
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