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Abstract

We analyze the liquidity component in a derivative transaction where
both counterparties can default, and the effect of a counterparty’s default
probability on his funding costs and benefits. The analysis shows that
the value of a transaction is influenced not by the total cost of funding of
a counterparty, but only by that component of the cost of funding corre-
sponding to his bond-CDS basis spread, and this regulates which trades are
possible in the market. Moreover, we find that the DVA can be represented
as a funding benefit for the borrower, alternatively to the market standard
that considers it a benefit coming from the borrower’s own default risk.

1 Introduction

The pricing of funding liquidity and the pricing of counterparty risk are closely
related. Companies usually compute a spread for funding costs that includes a
compensation for their own risk of default. However, interactions between the
two are still poorly understood.

Consider first the debt value adjustment (DVA), introduced for example
in [2]. The DVA term is required for the agreement on the fair price when the
counterparty computes the credit value adjustment (CVA). Ignoring DVA would
make the derivatives business of a bank less competitive. However the standard
definition of DVA has some unpleasant features. DVA is an asset, the value of
which increases the more its owner approaches default. This appears to lead to a
distortion of financial choices and of financial communications. As Algorithmics
puts it, “can you profit now from your own future default?”[1]. In fact DVA
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is an asset which is not readily realizable, as this would require the institution
that recognizes it to sell protection on itself. In this work we argue that when
funding costs are properly accounted for, an asset equivalent to DVA is obtained
without incurring in the above unpleasant features.

Funding costs can be introduced following the market standard based on
the recent breakthrough [5], which however does not consider explicitly coun-
terparty risk adjustments. In this work we argue that introducing liquidity by
a modification of the discounting rate, as in the market standard, together with
CVA and DVA, can lead to double-counting of assets that can be realized only
once.

In this work we try and provide some cornerstones of a unified consistent
framework for liquidity and credit risk adjustments. We give an explicit repre-
sentation to the funding strategy associated with any derivatives deal, including
the effect of default events on the cost of this strategy. One finding is that, con-
sistently with [5], different liquidity costs lead to an asymmetric market where
net borrowers cannot be exchanged with net lenders, although this does not
preclude the possibility to reach an agreement on price in the derivatives mar-
ket. In fact, an agreement may be struck at price that generates day-one profits
for both counterparties. A second finding is that the consistent incorporation
of liquidity and credit risk, that goes beyond [5], implies that the crucial vari-
able determining the cost of liquidity and discriminating between lenders and
borrowers is not the bond spread or the CDS spread, but the bond-CDS basis.

Finally we show that a possible solution to the DVA puzzle, recovering sym-
metry and making DVA a replicable asset, is to evaluate DVA as a funding
benefit. In fact, even if a company does not take its own risk of default explic-
itly into account, accounting for funding benefits can generate an asset equal to
DVA but more meaningful in terms of derivative replication.

2 The setting

We consider a deal in which entity B (borrower) enters at time 0 into the com-
mitment to pay a fixed amount K at time T to party L (lender) without the
exchange of collateral. This simple payoff allows us to focus on liquidity and
credit costs without unnecessary complications. Moreover, this payoff is the
derivative equivalent of a zero-coupon bond issued by B or a deposit from L

to B, so that the results of the analysis can be compared with the practice for
well-established market benchmarks.

We assume that party X, with X ∈ {B, L}, has a recovery rate RX and that
the risk free interest rate that applies to maturity T has a deterministic value
r. As usual, r represents the time-value of money on which the market agrees,
excluding considerations on liquidity costs or credit risk (it is an approximation
for the OIS rate).

In our setting, X makes funding in the bond market and is a reference entity
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in the CDS market. We have the following information:

1. instantaneous deterministic CDS spread πX . This can be written

πX = λX LGDX (1)

where λX is the deterministic default intensity and LGDX = 1 − RX is the
loss given default of entity X. If recovery is null, we have LGDX = 1 and
the CDS spread coincides with λX , so that Pr (τX > T ) = e−πX T . Clearly
πX ≥ 0.

2. instantaneous deterministic bond-CDS basis spread γX . The sum sX =
πX + γX is the cost of funding for X as measured in the bond market.
The spread γX is associated with the marketability of the bonds of X,
creating a link between funding liquidity, which is the focus of this work,
and market liquidity. The spread γX can in some cases be negative, but
this is recorded mainly for certain sovereigns, so we assume for now γX ≥ 0.

Our aim is to describe the net present value VX (at time zero) of all cash-
flows generated by the transaction for the party X, by consistently accounting
for liquidity and counterparty risk. We proceed as follows: we first consider the
current standard approach to DVA, then we attempt to introduce liquidity costs
by adjusting the discount rate, and show that this path would lead to double
accounting of the funding benefit associated with the DVA. Then we introduce
our approach that includes risky funding and discuss some interesting implica-
tions. We start with the assumption RX = 0, but in Section 5.4 we extend the
results to the case of positive recovery.

3 Standard DVA: Something is missing?

Let’s start from the market standard for CVA and DVA, presented for example
in [2]. The above transaction has a net present value for party L equal to

VL = e−rT K − CVAL − P (2)

VL = 0 ⇒ P = e−rT K − CVAL

where P is the premium paid by the lender at time 0 and

CVAL = E[e−rT K1{τB≤T}] = e−rT K Q[τB ≤ T ]

= e−rT K
[

1 − e−πBT
]

At the same time party B sees a value

VB = −e−rT K + DVAB + P (3)

VB = 0 ⇒ P = e−rT K − DVAB
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with
CVAL = DVAB

This guarantees the symmetry VB = VL = 0 and the possibility for the parties
to agree on the premium P of the deal.

This approach does not consider explicitly the value of liquidity. In fact, in
exchange for the claim, at time 0 party B receives a cash flow from party L

equal to P , so while party L has to finance the amount until the maturity of the
deal at its funding spread sL, party B can reduce its funding by P . So party B

should see a funding benefit, and party L should see the fair value of its claim
reduced by the financing costs.

The absence of the liquidity term for L can be explained by assuming sL = 0.
This implies πL = 0. Can we explain the absence of the liquidity term for B by
assuming sB = 0? No, because this implies πB = 0, which in turn would cancel
the DVA term. Thus B has a funding cost above r by at least sB = πB > 0,
that seems to be missing in the above formula. In the next sections we analyze
if it is really missing.

4 Standard DVA plus liquidity: Something is dupli-

cated?

We introduce liquidity costs along the lines of [5] but applied to the above
defaultable payoff:

VL = E

[

e−(r+sL)T K1{τB>T}

]

− P (4)

= E
[

e−rT e−γLT e−πLT K1{τB>T}

]

− P

= e−rT e−γLT e−πLT Ke−πBT − P

And analogously

VB = −E

[

e−(r+sB)T K1{τB>T}

]

+ P (5)

= −E
[

e−rT e−πB T e−γB T K1{τB>T}

]

+ P

= −e−r T e−πB T e−γB T Ke−πB T + P

= −e−r T e−2πB T e−γB T K + P

To compare this result, including CVA, DVA and liquidity from discounting,
with results on DVA obtained in the previous section 3, it is convenient to reduce
ourselves to the above situation where L is default free and with no liquidity
spread, while B is defaultable and has the minimum liquidity spread allowed in
this case: sL = 0, sB = πB > 0.

We have

VL = e−rT Ke−πBT − P

VB = −e−r T e−2πB T K + P
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There are two bizarre aspects in this representation. First, even in a situation
where we have assumed no bond-CDS basis, two counterparties do not agree on
the simplest transaction with default risk. A day-one profit should be accounted
by borrowers in all transactions with CVA. This belies years of market reality.

Secondly, the explicit inclusion of the DVA term results in the duplication
of the funding benefit for the party that assumes the liability. The formula
implies against all evidence that the funding benefit is remunerated twice. If
this were correct then a consistent accounting of liabilities at fair value would
require pricing zero-coupon bonds by multiplying twice their risk-free present
value by their survival probabilities. This also belies years of market reality.

5 Solving the puzzle

In order to solve the puzzle, we do not compute liquidity by the adjusted dis-
counting of (4) and (5), but generate liquidity costs and benefits by modelling
explicitly the funding strategy. The approach we take is that companies capi-
talize and discount money with the risk-free rate r. Then they add or subtract
the adjustments for credit risk and liquidity costs. This allows us to investigate
more precisely where credit/liquidity gains and losses are financially generated.

We now take into account that the above deal has two legs. If we consider
for example the lender L, one leg is the “deal leg”, with net present value

E
[

−P + e−rT Π
]

where Π is the payoff at T , including a potential default indicator; the other leg
is the “funding leg” with net present value

E
[

+P − e−rT F
]

where F is the funding payback at T , including a potential default indicator.
When there is no default risk or liquidity cost involved, this funding leg can be
overlooked because it has a value

E
[

+P − e−rT erT P
]

= 0.

Instead, in the general case the total net present value is

VL = E
[

−P + e−rT Π + P − e−rT F
]

= E
[

e−rT Π − e−rT F
]

.

Thus the premium at time 0 cancels out with its funding, and we are left with
the discounting of a total payoff including the deal’s payoff and the liquidity
payback. An analogous relationship applies to the borrower, as detailed in the
next section.
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5.1 Risky Funding with DVA for the borrower

The borrower B has a liquidity advantage from receiving the premium P at time
zero, as it allows him to reduce its funding requirement by an equivalent amount
P . The amount P of funding would have generated a negative cashflow at T ,
when funding must be paid back, equal to

− P erT esBT 1{τB>T} (6)

The outflow equals P capitalized at the cost of funding, times a default indicator
1{τB>T}. Why do we need to include a default indicator 1{τB>T}? Because in
case of default, under the assumption of zero recovery, the borrower does not
pay back the borrowed funding and there is no outflow.

Thus reducing the funding by P corresponds to receiving at T a positive
amount equal to (6) in absolute value,

P erT esBT 1{τB>T} (7)

= P erT eπBT eγBT 1{τB>T}

to be added to what B has to pay in the deal:

−K 1{τB>T}.

Thus the total payoff at T is

1{τB>T}P erT eπBT eγBT − 1{τB>T}K

Taking discounted expectation,

VB = e−πBT P eπBT eγBT − K e−πB e−rT

= P eγBT − K e−πB e−rT (8)

Compare with (5). Now we have no unrealistic double accounting of default
probability. Notice that

VB = 0 ⇒ P = K e−πBe−γBT e−rT .

Assume, as in (3), that γB = 0 so that

P = K e−πB e−rT . (9)

and compare with (3). We can conclude that in this case the standard compu-
tation from Section 3 is correct, as taking into account the probability of default
in the valuation of the funding benefit removes any liquidity advantage for the
borrower. On the other hand, charging liquidity costs by an adjusted funding
spread as in Section 4 cannot properly account for the funding benefits that
accrue to a defaultable company.
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We observe that in writing the payoff for the borrower we have not explicitly
considered the case in which the deal is interrupted by the default of L, that
is τL < min(τB, T ). According to standard derivative agreements this event
forces the solvent borrower to settle the value of the claim at the close-out
date. The subject of mathematically representing the close-out value of defaulted
claims inside the payoff of a derivative with liquidity and counterparty risk is
still wanting a deep treatment. However, again based on standard derivative
documentation, B would normally be able to deduct from the close-out amount
any costs incurred in replacing the transaction with an identical one with a
new counterparty, letting the deal value VB unaltered. Omitting in the above
the case τL < min(τB, T ) is equivalent to assuming that, in a close-out for the
default of L, B can replace the transaction at no cost in the market. Thanks
to this VB does not contain any terms that depend on the default risk of the
lender, consistently with the reality of bond and deposit markets.

5.2 Risky funding with CVA for the Lender, and the conditions

for market agreement

If the lender pays P at time 0, he incurs in a liquidity cost. In fact he needs to
borrow P until T . At T , L will give back the borrowed money with interest, but
only if he has not defaulted. Otherwise he gives back nothing, so the outflow is

P erT esLT 1{τL>T} (10)

= P erT eγLT eπLT 1{τL>T}

while he receives in the deal
K 1{τB>T}

The total payoff at T is therefore

−P erT eγLT eπLT 1{τL>T} + K 1{τB>T}.

Taking discounted expectation

VL = −P eγLT e−πLT eπLT + K e−rT e−πBT

= −P eγLT + K e−rT e−πBT (11)

If we impose the matching condition

VL ≥ 0,

then
P ≤ K e−rT e−γLT e−πBT

It is interesting to note that the lender does not charge the borrower for the
component of the cost of funding, namely πL, which is associated with its own
risk of default, because this is cancelled by the fact that funding is not given back
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in case of default. This is exactly symmetric to the fact that for the borrower
the inclusion of the DVA eliminates the liquidity advantage associated with πB.

For reaching an agreement in the market we need

VL ≥ 0, VB ≥ 0

which, recalling (8), implies

K e−rT e−γLT e−πBT ≥ P ≥ K e−πB e−rT e−γBT

e−γLT ≥ P ≥ e−γBT

An agreement can be found whenever

e−γLT ≥ e−γBT

γB ≥ γL

This solves the puzzle, and shows that the liquidity cost that must be charged to
the counterparty of an uncollateralized derivative transaction is just the bond-
CDS basis, rather than the bond spread or the CDS spread. This is in line with
what happened during the liquidity crisis in 2007-2009, when the bond-CDS
basis exploded.

5.3 The accounting view for the borrower: risk-free funding

without DVA

One of the most controversial aspects of DVA relates to its application in the
context of fair value accounting, in the sense that allowing a borrower to con-
dition future liabilities on survival may create a distorted perspective in which
our default is our lucky day. On the other hand, companies recognize a profit
when their cash obligations trade at a discount in the bond market, thus the
same must apply to derivatives that generate an obligation.

In the above we have seen that, when we include the risk of default, the cost
of funding is associated with the bond-CDS basis γX rather than with the full
bond spread sX . In this section we show that, if the borrower does not condition
its liabilities upon survival, namely he does not recogniza a DV A, but accounts
for the funding benefit at the full bond spread sB, then an alternative DVA term
emerges. Accordingly, let B pretend, for accounting purposes, to be default free,
and modify the payoff accordingly. The premium P paid by the lender gives B

a reduction of the funding payback at T corresponding to a cashflow at T

PerT esBT ,

where there is no default indicator because B is treating itself as default-free.
This cashflow must be compared with the payout of the deal at T , which is

−K
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again without indicator, ie without DVA. Thus the total payoff at T is

PerT esBT − K

By discounting to zero we obtain

VB = P esBT − K e−rT = P eπBT eγBT − K e−rT

So the borrower B recognizes on its liability a funding benefit that actually takes
into account its own risk of default πB, plus additional liquidity costs γB. If we
set γB = 0 like in (3) and (9), we obtain the same equilibrium premium as in
(3) and (9),

P = e−rT e−πBT K,

thereby matching the premium computed by the lender that includes the CVA/
DVA term. But now this term is accounted for as a funding benefit and not
as a benefit coming from the reduction of future expected liabilities thanks to
default.

5.4 Positive recovery extension

In this section we look at what happens if we relax the assumption of zero
recovery. The discounted payoff for the borrower is now

1{τB>T}e
−rT P eπBT eγBT erT

+1{τB≤T}e
−r τB RB e−r (T−τB) P eπBT eγBT erT

−1{τB>T}e
−rT K

−1{τB≤T}e
−r τB RB e−r (T−τB) K

where the recovery is a fraction RX of the present value of the claims at the time
of default of the borrower, consistently with standard derivative documentation.
Notice that B acts as a borrower both in the deal and in the funding leg, since
we represented the latter as a reduction of the existing funding of B. Simplifying
the terms and taking the expectation at 0 we obtain

VB = Q {τB > T}P eπBT eγBT + Q {τB ≤ T} e−r T
RB P eπBT eγBT erT

−Q {τB > T} e−rT K − Q {τB ≤ T}RB e−r T K

= P eπBT eγBT [SB(T ) + RB (1 − SB(T ))]

−e−r T K [SB(T ) + RB (1 − SB(T ))]

= [1 − LGDB (1 − SB(T ))]
(

P eπBT eγBT − e−r T K
)

(12)

where SB(T ) = Q {τB > T} is the survival probability of the borrower. Using
(1), we can write the first order approximation

1 − e−πB T ≈ LGDB

(

1 − e−λB T
)

9



which allows us to approximate (12) as

VB ≈ e−πBT
(

P eπBT eγBT − e−r T K
)

= P eγBT − e−πBT e−r T K

We have thus shown that (8) is recovered as a first order approximation in the
general case of positive recovery rate.

Similar arguments apply to the value of the claim for L, that acts a lender
in the deal and as a borrower in the funding leg. For L, (11) is recovered as a
first order approximation of

VL = − [1 − LGDL (1 − SL(T ))] P eπLT eγLT

+ [1 − LGDB (1 − SB(T ))] e−r T K

6 Conclusions

In this article we have laid the groundwork of a consistent framework for the
joint pricing of liquidity costs and counterparty risk. By explictly modelling the
funding components of a simplified derivative where both counterparties can
default, we have shown how bilateral counterparty risk adjustments (CVA and
DVA) can be combined with liquidity/funding costs avoiding unrealistic double
counting effects. We have shown that DVA has a meaningful representation
in terms of funding benefit for the borrower, but also that default probability
affects the funding cost of the lender in a similar way. The lender’s cost of funding
includes a component that is associated with his own risk of default, but this
component cancels out with the default benefit, so that only the liquidity cost
represented by his own bond-CDS basis spread contributes as a net funding cost
to the value of a transaction for the lender. We have shown that the comparison
between the bond-CDS basis of lender and borrower is crucial to assess if a
trade is convenient for both counterparties. The extension of these results to
more general derivative payoffs, where a counterparty can shift between a net
borrower position or a net lender position depending on market movements, is
a crucial topic for future research.
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