The Relationship Between the Effects of a Wife’s Education on her Husband’s Earnings and her Labor Participation: Japan in the period 2000 -2003

Eiji Yamamura

25. June 2010

Online at http://mpra.ub.uni-muenchen.de/23609/
MPRA Paper No. 23609, posted 4. July 2010 17:54 UTC
The Relationship Between the Effects of a Wife’s Education on her Husband’s Earnings and her Labor Participation: Japan in the period 2000 -2003

Eiji Yamamura

Department of Economics, Seinan Gakuin University, 6-2-92 Nishijin, Sawara-ku, Fukuoka 815-0075, Japan

Yukichi Mano

Foundation for Advanced Studies on International Development (FASID) and National Graduate Institute for Policy Studies (GRIPS), 7-22-1 Roppongi, Minato-ku, Tokyo 106-8677, Japan

1 Correspondence should be addressed to the author at the Department of Economics, Seinan Gakuin University, 6-2-92 Nishijin, Sawara-ku, Fukuoka 814-8511, Fukuoka. Japan. E-mail address: yamaei@seinan-gu.ac.jp.
Highest degree: Ph.D. (Economics)
Expertise: Development economics and socio-economics.

2 Highest degree: Ph.D. (Economics)
Expertise: Development economics, growth theory, and industrial organization.
Abstract

We analyze the effect of a wife’s human capital on her husband’s earnings, using individual-level data for Japan in the period 2000–2003. We find a positive association between a wife’s education and her husband’s earnings, which can be attributed to the assortative mating effect as well as the positive effect of an educated wife on her husband’s productivity. We divide the sample into those couples with non-working wives and those with working wives, and also employ an estimation strategy proposed by Jepsen (2005), attempting to control for the assortative mating effect. Our regression analysis provides suggestive evidence that educated wives increase their husbands’ productivity and earnings only when they are non-workers and have sufficient time to support their husbands. (120 words)

Key words: earnings, human capital, marriage, the family, assortative mating, cross-productivity effect within marriage.
1. **Introduction**

 It is widely recognized that human capital is accumulated through costly investment, such as formal education and working experience (Becker 1964). Human capital is also highly influenced by interaction with surrounding people through sophisticated conversations and the like, and thus economic outcomes such as one’s earnings are often associated with family and community backgrounds (e.g., Behrman and Wolf 1984; Boulier and Rosenzweig 1984; Hauser and Sewell 1986; Corcoran et al., 1990, 1992). Specifically, Benham (1974) was the first to argue that an educated wife improves her husband’s productivity and thus increases his earnings; the so-called “cross-productivity effect within marriage.”

 Using U.S. census data from 1960 to 2000, Jepsen (2005) finds that a wife’s education is positively associated with her husband’s earnings, but the magnitude of the effect declines over time. Jepsen conjectured that the rapid increase in a wife’s labor participation reduced her time to improve husband’s productivity, but no direct evidence was provided. Loh (1996) and Gray (1997) find that a wife’s labor participation is negatively associated with her husband’s earnings, but they do not pay direct attention to the wife’s educational level.

3 As an example of social learning, Yamamura (2008) reports a case study from Japan in which people learned how to use computers from neighbors that already owned one.

4 Their parents’ schooling is also found to be positively associated with his earnings (e.g., Heckman and Holtz 1986; Lam and Shoeni, 1993, 1994).

5 It is widely observed that a wife’s human capital positively influences a husband’s earnings; for instance, in Israel (Neuman and Ziderman 1992), Iran (Scully 1979), the Philippines (Boulier and Rosenzweig 1984), Malaysia (Amin and Jepsen, L., 2005), and Brazil (Lam and Shoeni, 1993, 1994; Tiefenthaler, 1997).
Therefore, little is known about how much a wife’s labor participation reduces the positive effect of her education on her husband’s productivity and earnings.

This paper uses individual level data from Japan from 2000 to 2003 to examine whether and how much a wife’s labor participation influences the effect of her education on her husband’s productivity and earnings. We found that an educated wife improves her husband’s productivity and earnings only when she is a non-working wife and has sufficient time to support her husband.

2. Empirical strategy

This paper uses Japanese General Social Survey (hereafter, JGSS) data. JGSSs adopt a two-step stratified sampling method and were conducted throughout Japan between 2000 and 2003. The surveys included standard questions about an individual’s and his/her family characteristics through face-to-face interviews. These data cover information related to marital and demographic (age and gender) status, annual income, years of schooling, age, and size of residential area. Spouses’ demographics (age and gender) status, job categories, and years of schooling were also obtained.

Table 1 presents the definitions of the variables we use below and their mean values. All the observations in our sample (n=5,200) were of married couples. The sample was divided into two groups by the wife’s labor participation status; working in

6 Data for this secondary analysis, "Japanese General Social Surveys (JGSS), Ichiro Tanioka," were provided by the Social Science Japan Data Archive, Information Center for Social Science Research on Japan, Institute of Social Science, The University of Tokyo.
one group and not working in the other group. There was no statistical difference in
the mean values of any observed characteristics between the two groups. A husband’s
annual income (HINCOM) in the working-wife group (around 5.6 million yen) was
almost the same as that of the non-working-wife group. On average, husbands were
50 years old and had 13 years of schooling. Wives were around 47 years old and had
12 years of education.

From Table 2, we can see that not only HEDU (husband’s years of schooling) but
also WEDU (wife’s years of schooling) is positively correlated with HINCOM, which is
consistent with the cross-productivity effect within marriage (Benham 1974). We also
find that the correlation between HEDU and WEDU is 0.65, and that between HAGE
(husband’s age) and WAGE (wife’s age) is 0.95, suggesting that people tend to marry
partners of a similar age and educational level. This finding is congruent to the
assortative mating in education and age (Becker 1975). That is, productive males tend
to marry well educated females, leading to a wife’s education being positively
associated with her husband’s earnings.

In line with Benham (1974) and Jepsen (2005), the regression model takes the
following form:

\[
\ln(\text{HINCOM})_i = \alpha_0 + \alpha_1 \text{HEDU}_i + \alpha_2 \text{WEDU}_i + \alpha_3 \text{HAGE}_i + \alpha_4 \text{WAGE}_i + Z_i \beta + u_i ,
\]

where subscript \(i\) denotes married couple \(i\), and the logarithm of HINCOM\(_i\) is the
dependent variable. Regression parameter \(\alpha\)'s are to be estimated, and \(u_i\) is the error
term. Since the data on years of work experience is not available, husband’s age is
incorporated to capture his work experience. In addition, to control for general market
conditions and macro-level shocks, large city and medium size city dummies (size of residential area) and year dummies are incorporated in \(Z\), the vector of control variables, with \(\beta\) as the vector of corresponding coefficients.

Our major focus in this paper is to find out whether the cross-productivity effect is at work; that is, whether an educated wife improves her husband’s productivity and earnings (see, e.g., Benham, 1974; Scully, 1979; Kenny, 1983; Wong, 1986; Lam and Schoeni, 1993; Lefgren and McIntyre, 2006; Huang et al., 2009). If an educated non-working wife spends a certain amount of time to support her husband and consequently raises her husband’s productivity whereas a working wife does not have enough time to do so, the coefficient on \(WEDU\) is expected to take a positive sign only in a sub-sample of couples with non-working wives but not in a sub-sample of couples with working wives. The assortative mating hypothesis, however, also predicts a positive association between a wife’s human capital and her husband’s earnings, regardless of the wife’s labor participation status (Welch, 1974; Liu and Zhang, 1999; Lefgren and McIntyre, 2006; Huang et al., 2009). We are concerned that this assortative mating effect could be sufficiently strong, and the cross-productivity effect might be masked and our hypothesis testing may not work.

In order to alleviate this identification problem between the cross-productivity effect within marriage and the assortative mating effect, we will make our best effort to control for the assortative mating effect. Including husband’s own education as a covariate in the regression function is considered as a good way to at least partially control for the mating effect (Huang et al., 2009). Furthermore, Jepsen (2005) proposes controlling for the assortative mating effect by using a sub-sample containing only husbands and wives who have an age difference of more than 5 years, while he
claims that “this sample represents couples who are less likely to have met each other either in high school or college” (Jepsen 2005, p.204).\footnote{Admittedly, this argument is not entirely convincing, as one does not have to meet in school to mate assortatively.} Importantly, as the main aim of this paper is to further our understanding on the mechanism in which a wife’s human capital improves her husband’s productivity, and this estimation strategy suffices for our purpose so long as it helps us find a significantly positive coefficient on $WEDU$ in a sub-sample of couples with non-working wives but not in a sub-sample of couples with working wives.\footnote{Precisely speaking, the decision making process of a wife’s labor participation should be considered to control for self-selection. This is, however, beyond the scope of this note and is an issue to be addressed in a future study.} Such an estimation result would imply that it takes a certain amount of time of an educated wife for her human capital to improve her husband’s productivity and earnings. By contrast, a working wife does not have sufficient time to do so, and this newly-discovered foregone increase in husband’s earnings should be considered as an additional component of opportunity cost to a working wife, though it has never been explicitly taken into account in the existing literature.

3. **Estimation results**

Table 3 presents our estimation results. The results in Columns (1)-(3) are based on the original sample of married couples, whereas the results in columns (4)-(6) are of the sample that excludes couples with an age difference of less than 5 years. The results using the sample of non-working wives are in columns (2) and (5), while the
results using the sample of working wives are in columns (3) and (6). As shown in the first row, the coefficient on $HEDU$ takes a positive sign with 1% statistical significance in all estimations, consistent with the standard theory of human capital. In Columns (1) to (3) the estimated coefficient on $WEDU$ is positive and statistically significant; its magnitude indicates that an additional year of a wife’s education increases her husband’s annual earnings by 4 to 6 percentage points, which is slightly below the effect of a husband’s education but economically significant. This estimation result that the coefficient on $WEDU$ is significantly positive irrespective of the wife’s labor participation status implies the assortative mating. When this assortative mating effect is controlled for (Columns 4 to 6), the coefficient on $WEDU$ still remains significantly positive in the sub-sample of the non-working wives (Column 5), whereas the coefficient on $WEDU$ becomes insignificant in the sub-sample of the working wives (Column 6). This estimation result suggests that an educated non-working wife supports her husband and raises his productivity, whereas a working wife does not have sufficient time to support her husband as much. In other words, the cross-productivity effect works only when the wife devotes sufficient time to support her husband.

4. Conclusion

Jepsen (2005) finds that, using data from 1960 to 2000 in the U. S., an educated non-working wife increases her husband’s earnings, but this effect declined over time, and she conjectures that this is likely due to the secular increase in labor participation by married women.

The current paper directly examined whether and how much a wife’s labor
participation changes the effect of her education on her husband’s earnings, using individual-level data from Japan. We found that a wife’s human capital has a positive association with her husband’s earnings, for both working and non-working wives. After restricting the sample to married couples with an age difference greater than 5 years to partly control for the assortative mating effect, however, the positive effect of a wife’s education continues to be observed only in the sub-sample of non-working wives whereas the effect becomes insignificant in the sub-sample of working wives.

Our statistical analysis, therefore, provide the suggestive evidence for both the assortative mating effect and the cross-productivity effect within marriage. Moreover, the cross-productivity mechanism is time-consuming, as Jepsen (2005) rightly conjectured. To our best knowledge, this has a new and important implication in considering the labor participation of married women, since the existing literature has not explicitly taken into account this cross-productivity effect within marriage as one component of the opportunity cost to working women.
References

Liu, Pak-Wai., & Zhang, J. (1999). Assortative mating versus the
cross-productivity effect. Applied Economics Letters, 6 (8), 523-525.

Table 1. Variable definitions and means.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Definition</th>
<th>Non-working wife</th>
<th>Working wife</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>HINCOM</td>
<td>Husband’s annual income (in ten thousand yen)</td>
<td>565</td>
<td>561</td>
<td>563</td>
</tr>
<tr>
<td>HEDU</td>
<td>Husband’s years of schooling</td>
<td>12.9</td>
<td>12.7</td>
<td>12.8</td>
</tr>
<tr>
<td>WEDU</td>
<td>Wife’s years of schooling</td>
<td>12.2</td>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td>HAGE</td>
<td>Husband’s age</td>
<td>49.5</td>
<td>49.6</td>
<td>49.5</td>
</tr>
<tr>
<td>WAGE</td>
<td>Wife’s age</td>
<td>46.7</td>
<td>47.0</td>
<td>46.9</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>2283</td>
<td>2659</td>
<td>5200</td>
</tr>
</tbody>
</table>

Notes: Values are simple averages of yearly values over the period 2000-2003. The total sample of “non-working wife” and “working wife” is 4942, which is smaller than the “all” sample, 5200. Observations without data about a wife’s work status lead to this difference.
Table 2. Correlation matrix.

<table>
<thead>
<tr>
<th>Variables</th>
<th>HINCOM</th>
<th>HEDU</th>
<th>WEDU</th>
<th>HAGE</th>
<th>WAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HINCOM</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HEDU</td>
<td>0.35</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WEDU</td>
<td>0.31</td>
<td>0.65</td>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HAGE</td>
<td>-0.05</td>
<td>-0.31</td>
<td>-0.39</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>WAGE</td>
<td>-0.06</td>
<td>-0.31</td>
<td>-0.40</td>
<td>0.95</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: As the correlation matrix is symmetric, --- indicates the omitted elements to avoid redundancies.
Table 3. Regression results on husband's annual income.

<table>
<thead>
<tr>
<th>Variables</th>
<th>All currently married.</th>
<th>Difference in age between husband and wife > 5 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2) Non-worker wife</td>
</tr>
<tr>
<td>HEDU</td>
<td>0.06***</td>
<td>0.08***</td>
</tr>
<tr>
<td></td>
<td>(13.9)</td>
<td>(12.2)</td>
</tr>
<tr>
<td>WEDU</td>
<td>0.05***</td>
<td>0.06***</td>
</tr>
<tr>
<td></td>
<td>(8.57)</td>
<td>(6.70)</td>
</tr>
<tr>
<td>HAGE</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(-0.85)</td>
<td>(-0.64)</td>
</tr>
<tr>
<td>WAGE</td>
<td>-0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(-1.15)</td>
<td>(-0.91)</td>
</tr>
<tr>
<td>Constant</td>
<td>4.97***</td>
<td>4.68***</td>
</tr>
<tr>
<td></td>
<td>(50.1)</td>
<td>(34.6)</td>
</tr>
<tr>
<td>Obs.</td>
<td>5200</td>
<td>2283</td>
</tr>
<tr>
<td>Adj R²</td>
<td>0.16</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the logarithm of the husband’s annual income. Numbers in parentheses are t-statistics obtained by robust standard errors. *, **, and *** indicate statistical significance at the 10, 5, and 1 per cent levels, respectively. Although not reported here, large and medium-sized city, and year dummies are also controlled for.