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Abstract 
 
This paper analyzes the relationship between R&D expenditures, innovation and productivity 

growth, taking into account the possibility of persistence in firms’ behaviour. We study this 

relationship for a sample of Spanish manufacturing firms between 1990 and 2005, estimating 

a model with four equations: participation in technological activities, R&D intensity, the 

generation of innovations and the impact of these technological outputs on total factor 

productivity growth. Our results reflect the existence of true state dependence both in the 

decision of R&D investment and in the production of innovations. The omission of this 

persistence leads to an overestimation of the current impact of innovations on productivity 

growth. However, the presence of persistence in technological inputs and outputs entails 

current R&D activities having long–run effects on a firm’s productivity. 
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1. Introduction 

 

The analysis of productivity growth and its determinants is a classic topic in Industrial 

Economics. There is a large number of papers that study this question from an empirical point 

of view, pointing out the performance of technological activities as an essential source of 

firms’ growth. Following the method proposed by Griliches (1979), some authors include a 

stock of knowledge capital as an additional input in the firm’s production function. Recently, 

the idea that the growth of firms is more related to the results of technological activities than 

to the inputs used in them has generated some studies that directly analyze the impact of 

technological outputs (process and/or product innovations, patents…) on firms’ productivity. 

Specifically, Crepon, Duguet and Mairesse (1998) developed a multi-equational model 

(hereafter the CDM model) that explains productivity growth by technological outputs and the 

latter by technological effort. Since the appearance of this seminal paper, many researchers 

have applied the same methodology to different European countries using essentially cross-

sectional data from the Community Innovation Surveys (CIS Data)
1
.  

 

However, only a few studies have used panel data to perform the analysis, mainly due to 

information availability, and therefore there is little evidence about these decisions that take 

into account the dynamics in a firm’s behaviour. Some exceptions are the papers by Cefis and 

Orsenigo (2001), Cefis (2003), Raymond et al. (2009), Mañez-Castillejo et al. (2009) and 

Peters (2009), which empirically analyze the persistence of R&D activities or technological 

outputs with different methodologies and results.  

 

In this line, the objective and the main contribution of the present paper is to consider the 

existence of persistence both in the R&D investment decision and in the achievement of 

innovations when estimating the recursive model that reflects the relationship between R&D, 

innovations and productivity. With this aim, we adapt the CDM model to analyze this 

relationship for a panel of Spanish manufacturing firms between 1990 and 2005. Our 

econometric results suggest the existence of true state dependence both in the decision of 

                                                 
1
 See, for example, Mairesse and Mohnen (2002, 2005) and Mohnen et al. (2006) using French CIS1 and CIS3 

data, Parisi et al. (2006) for Italian manufacturing firms, Lööf and Heshmati (2006) using Swedish 

manufacturing data, Van Leeuwen and Klomp (2006) and Van Leeuven et al. (2009) for Dutch manufacturing 

firms, and Griffith et al. (2006) using firm-level data from the internationally harmonized CIS3 for France, 

Germany, Spain and the UK. Two examples for non-European countries are Benavente (2006) for Chile and 

Jefferson et al. (2006) about China.  
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R&D investment and in the production of innovations. The omission of this persistence in the 

analysis leads to an overestimation of the current impact of innovations on productivity 

growth. However, the existence of true state dependence in technological inputs and outputs 

entails current innovation activities having long–run effects on a firm’s productivity. This is 

especially important when analyzing the relevance of technological policy as an instrument to 

induce productivity increases. 

 

Following this introduction, the next section presents the theoretical framework and the 

empirical multi-equational model. Section 3 describes the database and the variables included 

in the specification. The results of the estimation of the model are presented in Section 4 and, 

finally, Section 5 summarizes the main conclusions.  

 

2. Theoretical framework and empirical model 

 

As we explain in the introduction, the model to be estimated is an adaptation of the CDM 

model, which reflects the sequence of a firm’s decision. The first equation describes the 

firm’s decision to engage in technological activities or not. The second one refers to the 

intensity of technological inputs (measured basically by the intensity of the R&D 

expenditure). The third equation deals with the generation of innovations on the basis of both 

internal and external technological inputs and, finally, the fourth equation shows the impact of 

these innovations on productivity growth, measured by the Solow residual.  

 

Unlike the CDM model, which circumscribes the analysis of innovative firms, in this paper 

we also take into account those firms that do not declare R&D expenditures. Following the 

approach of Griffith et al. (2006), we consider that to some extent all firms make some 

innovative effort. However, below a certain threshold, the firm is not capable of picking up 

explicit information about this effort and will not report on it. Thus, we estimate a selection 

model for the observed R&D intensity.  

 

Additionally, instead of considering a static framework, we model the firm’s decision to 

engage in R&D activities and the equation for the generation of innovations taking into 

account the possible persistence in these stages. As Heckman (1981) points out, there are two 

explanations for persistent behavior: the true state dependence and the spurious dependence. 
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The first one implies a real causal effect: the probability of investing in t-1 increases the 

probability of investing in t. There are some theoretical explanations for this real true 

dependence in the case of innovation activities (Peters, 2009): the sunk cost associated with 

the performance of R&D activities, the “success breeds success” hypothesis and the existence 

of dynamic increasing returns. Alternatively, some firm characteristics can positively affect 

the decision to engage in R&D activities or the generation of innovations and, if they are 

correlated over time, could also create a spurious relation between current and future status 

(spurious dependence). Some of them can be observables, like size, and it is possible to 

control them in the empirical analysis. However, there are other characteristics, like 

managerial ability, technological opportunities and risk attitudes that are unobservable. If 

these characteristics are persistent over time and they are not properly treated in the 

estimation, they can generate a spurious state dependence in R&D activities. 

 

According to these theoretical explanations for real state dependence, it is not clear whether 

persistence is more related to technological inputs or outputs. Under the sunk cost hypothesis, 

R&D decisions are modeled in a long-term horizon, given that sunk costs could represent not 

only a barrier to entry for new firms, but also a barrier to exiting for incumbent firms that 

have not recovered their investments. In this case, an input measure would be desirable. 

However, the “success breeds success” and the “learning by doing” hypotheses are more 

associated with technological results. Additionally, if we assume that innovation outputs are 

basically determined by innovation inputs, input persistence should be translated partially into 

output persistence.  

 

The empirical evidence about this question is mixed. Mañez et al. (2009) study the persistence 

in the firm R&D status, i.e., in the decision to engage in R&D activities, while Peters (2009) 

analyzes whether firms innovate persistently, defining an innovator as a firm which exhibits 

positive innovation expenditure in a given year. In contrast to these studies, Duguet and 

Monjon (2004) and Raymond et al. (2010) examine the persistence in innovation outputs, 

although, as they use CIS data, their indicators as to whether a firm has introduced an 

innovation are related to a 3–year period, which could induce an artificial persistence due to 

overlapping time periods and double counting (Peters, 2009). However, Raymond et al. 

(2010) find that there is only true persistence of innovation in high-technology industries. For 

low-technology industries, past process and product innovations and past shares of innovative 
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sales do not affect current process and product innovations and innovative sales
2
.  In a later 

paper, Raymond et al. (2009) study the dynamics in innovation inputs and outputs, estimating 

a dynamic panel data bivariate Tobit model. They obtain persistence in both a lagged effect of 

innovation input on innovation output in the high-tech industry and a feedback effect of 

innovation output on innovation input in all industries. 

 

Our paper differs from previous ones in the sense that we analyze the persistence in both input 

and output R&D activities in a recursive model
3
. Nevertheless, we do not consider the 

dynamics of the R&D intensity (R&D expenditures over employment), but only in the 

decision to engage in R&D activities.  

 

In particular, our empirical model is as follows. The first equation describes the R&D effort 

of firm i in year t in terms of the latent variable *

itid :   

ititit ezid += β´*  [1] 

, where itz  is a vector of determinants of the innovation effort. We consider that we can 

measure the R&D effort *

itid  by the intensity of the R&D expenditure itid  only if the firm 

makes and reports that expenditure. To represent this decision to perform and report R&D 

expenditures, we assume the following selection equation:  

*

1

*

1

1 si ´ 0

0 si ´ 0

−

−

 = ⋅ + + + >
=  = ⋅ + + + ≤

it it it i it

it

it it it i it

r r x
r

r r x

γ β µ ε
γ β µ ε

  [2] 

, where itr  is a binary variable that takes the value 1 when the firm invests in (and reports) 

R&D, and 0 otherwise. If the latent variable *

itr  is bigger than a constant threshold (which can 

be zero), we then observe that the firm engages in (and reports) R&D activities. In this 

equation, 1−itr  captures the previous innovation experience (true state dependence), itx  is a 

vector of observable explanatory variables (time-variant and time-invariant variables which 

can differ from those that explain the R&D effort) and the permanent unobserved 

heterogeneity is captured by iµ . Finally, itε  is an idiosyncratic error (which refers to other 

unobservable time-variant determinants). 

                                                 
2
 Although their objective is not properly the analysis of persistence, Piva and Vivarelli (2007) also consider 

lagged R&D expenditures as an explanatory variable when studying the effect of demand evolution on R&D 

expenditures according to different groups of firms.  
3
 With the aim to jointly analyze the dynamics of trade and innovation, Esteve and Rodríguez (2009) present 

estimations for R&D performance, product and process innovations as “alternative" measures of the innovation 

status. Their results indicate the existence of true state dependence in both export and innovation.  
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To estimate this dynamic equation, we have to solve two theoretical and empirical problems: 

how to treat the unobservable heterogeneity ( iµ ) and the treatment of initial conditions ( 0ir ). 

With respect to the first problem, a fixed effects (FE) or a random effects (RE) model can be 

used to model iµ . However, the problem with the FE model is that there is no transformation 

to eliminate the unobserved effects in non-linear models. For this reason, we use a random 

effects model. The second problem arises because the first observation of each firm (initial 

condition) is affected by the same generation process and for this reason is endogenous. There 

are three different ways to solve this problem. The first one is to assume that the initial 

condition is a non-random constant and therefore is uncorrelated with the unobservable 

heterogeneity. However, this assumption is very unrealistic. The second solution considers  

0ir  to be random and tries to estimate the joint density for 0ir  and for all itr  conditioned to the 

strictly exogenous variables. Although Heckman (1981) proposes a method for approximating 

the conditional distribution, this function can only be found in some special cases. The third 

solution also assumes that 0ir  is random, but in this case a distribution of iµ  conditional on 0ir  

and itx  is specified. This method was suggested by Wooldridge (2005), who develops an 

estimator for dynamic non-linear RE models where it is necessary to model the unobservable 

heterogeneity
4
.  

 

We follow this last methodology. Specifically, we assume that this unobserved individual 

heterogeneity depends on the initial conditions and the strictly exogenous variables:  

1 2 0 3´= + ⋅ + +i i i ir x aµ α α α   [3] 

, where ix  is the time-average of itx  and where 0ir  is the initial value. The assumptions about 

ia  are ),0(... 2

ai Ndiia σ≅  and 0( , )i i ia r x⊥ . In this context, 
a

ρ  is 
2

21

a

a

σ
σ+

 and shows the 

percentage of total variance explained by the unobserved heterogeneity. 

 

In the original estimator proposed by Wooldridge (2005), instead of the average of the 

exogenous variables, he uses all the time observations of the variables. However, he shows 

that time-averages can be used to reduce the number of explanatory variables.  

 

                                                 
4
 This method was proposed by Chamberlin (1980) for a linear AR(1) model without covariates.  
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Therefore, under this parameterization, the probability of being a firm which engages in (and 

reports) R&D activities is: 

         

*

1 1 2 0 3

*

1 1 2 0 3

1 si ´ ´ 0

0 si ´ ´ 0

it it it i i i it

it

it it it i i i it

r r x r x a
r

r r x r x a

γ β α α α ε
γ β α α α ε

−

−

 = ⋅ + + + ⋅ + + + >
=  = ⋅ + + + ⋅ + + + ≤

 [2’] 

 

Conditional on the performance (and reporting) of R&D activities, we can observe the 

quantity of resources allocated to this purpose; that is,   

* si 1

0 si 0

it it it it

it

it

id z e r
id

r

β′ = + =
=  =

 [4] 

 

Therefore, to capture the true impact of R&D intensity on knowledge production, we estimate 

a selection model for the observed intensity and to use the predicted value as a proxy of the 

innovation effort in the production function of knowledge or innovations. However, to our 

knowledge, there is not any accepted econometric procedure that integrates the intensity 

equation [4] and Wooldridge’s (2005) approach for estimating a dynamic RE model for 

equation [2’] in a selection model.  

 

For this reason, we start with the estimation of a Heckman model where a static pooled model 

for the first decision is considered. That is, we implicitly assume that there is not state 

dependence ( 0γ = ) and the unobservable individual heterogeneity is not parameterized. 

Secondly, we consider a dynamic pooled Probit for the decision whether to engage in R&D 

activities or not, where the individual heterogeneity is parameterized as in Wooldridge (2005). 

In both cases, we assume that the error terms ie  and iε  follow a bivariate normal distribution 

with a mean equal to 0, variances 2 1εσ =  and 2

eσ , and correlation coefficient eερ  (Rho). 

Finally, as a robustness check, we compare the results for the selection equation in the second 

case with the estimation of a dynamic RE Probit model where individual heterogeneity is 

parameterized following Wooldridge (2005). 

 

The third equation of the model corresponds to the estimation of the new knowledge 

production function, ig , generated from firms’ technological effort. This new knowledge is 

measured alternatively by three dummy variables that capture, respectively, the achievement 
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of product innovations, process innovations, and any of them
5
. Given that the investment 

intensity is a public good within the firm, it can be used to produce different outputs without 

depletion. Therefore, we can model itg  as a vector of technological outputs:  

                            *

1 'it it it it i itg g id y uγ λ δ ζ−= ⋅ + ⋅ + + +     [5] 

, where the latent investment intensity *

itid  appears as an explanatory variable joint with the 

vector ity , which includes other determinants of the knowledge production (time-variant and 

time-invariant variables). We also add the dependent variable lagged one period, 1itg − , in the 

specification to reflect whether the firm has previously generated new knowledge capturing 

the innovation output experience.   

 

As in equation [3], following Wooldridge (2005), we model the unobserved heterogeneity iζ  

as dependent on the initial conditions and the average of the explanatory variables:  

1 2 0 3´i i i ig yζ π π π υ= + ⋅ + +  [6] 

 

We assume that ),0(... 2

νσν Ndiii ≅  and 0( , )i i ig yυ ⊥ . In this context, υρ  is  
2

21

υ

υ

σ
σ+

 and shows 

the percentage of total variance explained by the unobserved heterogeneity.   Therefore, the 

new knowledge production function can be expressed as: 

         *

1 1 2 0 3' ´it it it it i i i itg g id y g y uγ λ δ π π π υ−= ⋅ + ⋅ + + + ⋅ + + +  [5’] 

 

Given that our measures of new knowledge generation are binary variables for process or 

product innovation, the last equation will be estimated by a dynamic RE Probit model.  

 

Finally, firms produce goods using the following production function (in growth rates): 

, , ,( )
it it y l it y k it y m it it

y a g l k m vε ε ε= + + + +     [7] 

where  y, l, k and m stand respectively for the logarithmic differences in production and in the 

quantities of labor, physical capital and intermediated inputs, , , ,, yε ε ε
y l y k y m

 are the output 

                                                 
5
 Other measures of innovation outputs have been used in complementary estimates of the knowledge production 

function. Specifically, we have considered dummy variables for the joint generation of product and process 

innovations, for only process and for only product innovators. The results confirm those presented in this paper 

and are available from the authors upon request.  
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elasticities with respect to the above inputs, and a is the productivity growth, which in part 

will be determined by the technological output g.  

 

Rearranging terms, it is possible to explain the last expression as a total factor productivity 

equation: 

( )
it it l it k it m it it g it it

y s l s k s m g vϖθ π ϖ π= − + + = + +    [8] 

, where 
it

θ  is the well-known Solow residual and itϖ  is a vector that includes the variables 

reflecting the non-fulfillment of the assumptions associated with this kind of model (constant 

returns to scale, instant adjustment of the inputs), along with other control variables. In the 

estimation of this last equation, we will take into account the potential endogeneity of the 

technological output g. 

 

To summarize, our model consists of equations [2], [4], [5] and [8]. Following the CDM 

methodology, we assume a recursive model where feedback from productivity growth to 

technological effort is not allowed, and therefore we apply a three-stage estimation procedure. 

 

3. Data and variables definition 

 

Estimations are carried out with an unbalanced panel of Spanish manufacturing firms for the 

period 1990-2005. The variables are obtained from the Encuesta Sobre Estrategias 

Empresariales (ESEE), a survey that is sponsored by the Spanish Ministry of Industry and 

carried out by the Fundación SEPI
6
. The sampling scheme of this survey is conducted for 

each manufacturing NACE class (two-digit) level. Companies employing between 10 and 200 

employees are chosen by a random sampling scheme and the rate of participation is around 

4%. For firms employing more than 200 employees, the rate of participation is about 60%. 

The sample considered is about 2000 manufacturing firms that have ten or more employees 

each year. 

 

Table 1 shows the main characteristics of the database distinguishing between small and 

medium-sized firms (SME) (with fewer than 200 workers) and large firms (more than 200 

employees). To analyze the dynamics of R&D activities, it is required that the firms answer 

                                                 
6
 See a more detailed description of the database in http://www.funep.es/esee/en/einfo_que_es.asp  
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consecutively. In this sense, only those firms that have at least eight consecutive observations, 

which is the average period of our sample, have been taken into account. As can be seen in 

Table 1, in our unbalanced panel the average number of consecutive years per firm is around 

12. We could restrict the analysis to the balanced panel, but due to attrition in this case we 

lose two thirds of the observations.      

 
Table 1 

Characteristics of the sample  

     

 Firms with at least eight  

consecutive observations  

 SME Large Firms All Firms 

No. of observations  8052 4251 12303 

No. of firms  709 363 1072 

Average no. of consecutive 

observations by firm 
12.0 12.3 12.1 

 

 

Although the ESEE is not specifically designed to analyze technological activities, it includes a 

relevant set of indexes about this subject and has information not only for firms engaged in 

technological activities but also for firms without R&D expenditures. In fact, for the analysis we 

have 12,303 observations and 7,548 of them correspond to firms that do not perform formal 

R&D. This is especially suitable in this case, given that we assume that all firms make some 

innovative effort, although not all reflect this effort in their answer to the survey. That’s why we 

estimate the model for the whole sample, and not only for firms with positive R&D 

expenditures. As a measure of the R&D investment intensity, we use the total R&D 

expenditure per employee (in logs), assuming that a firm decides to perform technological 

activities if its expenditures are positive.  

 

Table 2 presents the transition probabilities of engaging in R&D activities or not over the 

period 1990-2005. Notice that the status in t-1 is positively correlated with the status in t. 

Almost 90% of firms which perform R&D activities in one year persist in the following year. 

Additionally, more than 93% of non-performing firms in t-1 are also non-performers in t, 

while 7.3% engaged in R&D activities. This implies that the probability of undertaking R&D 

in t is 82 percentage points higher for performers than for non-performers in t-1
7
.  

                                                 
7
 When the balanced panel is considered, the transition probabilities of the R&D status are almost the same.   
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Following theoretical models (Arvanities and Hollenstein, 1994, Klepper, 1996), the variables 

to be included in the participation and the intensity equations relate basically to the 

technological environment, demand and market conditions, appropriability of the benefits 

derived for technological investments
8
, financial restrictions and size (to capture the existence 

of economies of scale in R&D). 

 
Table 2 

Transition probabilities of the R&D status  

     

  Performer in t 

 Performer in t-1 Yes No 

Yes 83.2 16.8 
SME 

No 5.0 95.1 

Yes 92.7 7.3 
Large Firms 

No 15.5 84.5 

Yes 89.1 11.0 
All Firms 

No 6.9 93.2 

 

 

In this line, given the available information in the database, to capture environmental and 

demand conditions, we have introduced, as explanatory variables, one indicator of the firm’s 

export character and a variable reflecting whether the market evolution perceived by the firm 

each year was expansive or recessive with respect to the previous year. 

 

Following Schumpeterian tradition, we include a qualitative measure of the number of a 

firm’s rivals to capture the degree of market competition.
9
 A negative impact of this variable 

on the participation decision would be coherent with the hypothesis that the more competitive 

the market, the less capacity firms have for appropriating the benefits of their investments, 

and therefore have fewer incentives to make these investments. To indicate appropriability 

conditions, we have also used the proportion of engineers and graduate employees in the firm. 

We can think that those firms with more qualified personnel are more capable of assimilating 

new knowledge, whether it is developed internally or externally. Piva and Vivarelli (2009) 

provide evidence that supports this hypothesis for a panel of Italian firms.   

 

                                                 
8
 See, in Cohen and Levin (1989), a discussion about the effect of technological opportunities, appropriability 

conditions and market evolution on R&D activities. 
9
 The concentration ratio CR4 is also available in the database, but with a very low response.  
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With respect to financial restrictions, we use a categorical variable that shows whether the 

firm obtained public support during the year. The evidence about the impact of financial 

restrictions on investment effort is mixed. Hall et al. (1999) find that during the period 1978-

1989, R&D in the American high-tech sector was sensitive to cash flow, while the results are 

not so clear in the case of France and Japan. Bond, Harhoff and Van Reenen (1999) find that 

the cash flow affects the decision to perform R&D more than the levels of expenditure. 

Previous works for Spanish economy point out that, irrespective of firm size, the investment 

effort since 2000 has been superior in firms that won public support than in those who apply 

for it without success, and greater in the latter than in firms that did not apply  for it.  

 

Along with the above variables, the model includes indicators to capture differences in the 

firms’ investment behavior in terms of the time of permanence in the market. International 

evidence suggests that entrants are among the most innovative and that the growth rate post-

entry depends on their innovative behavior, the probability of survival being tied to the 

existence of technological opportunities.
10

 Therefore, we introduce the firm’s age and two 

dummies reflecting whether the firm was an entrant or an exiting firm during the period. The 

set of mobility indicators is fulfilled with two event dummies for mergers and scissions. 

 

Finally, we include sets of time, size, and industry dummies as control variables in both 

equations, and two factors related to firms’ organizational aspects: belonging to a society and 

the degree of services subcontracting. As Raymond et al. (2009) point out, firms that are part 

of a group can be more innovative because they benefit from internal financing, knowledge 

spillovers and marketing synergies.   

 

As for the knowledge production function, the ESEE provides qualitative information about 

the achievement of process and product innovations. In particular, a product innovation is 

assumed to have occurred when the firm answers the following request in the affirmative: 

“Please indicate if during the year 199x your firm obtained product innovations (completely 

new products or products with such important modifications which made them different from 

the old ones)”. In a similar way, a process innovation is assumed to have occurred when the 

firm answers the following request positively: “Please indicate if during the year 199x your 

firm introduced some significant modification in the production process (process innovation). 

                                                 
10

 See, for example, Audretsch (1995) and, for Spanish industry, Huergo and Jaumandreu (2004). 
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If the answer is yes, please indicate the way: a) introduction of new machines; b) introduction 

of new methods of organization; c) both.”    

 

Table 3 shows the transition probabilities for the generation of product or process innovations 

during the sample period. In both cases, the status in t-1 is positively correlated with the status 

in t, although the persistence seems to be slightly higher for product innovations. Almost 70% 

of firms which innovate in one year persist in innovating the following year, while more than 

82% of non-innovative firms in t-1 are also non-innovators in t. This confirms the interest in 

taking persistence into account when analyzing the generation of new knowledge.  

 
Table 3 

Transition probabilities of the innovator status    

 

  Innovator in t 

  Process Innovator Product Innovator 

 Innovator in t-1 Yes  No Yes  No 

Yes 60.3 39.7 65.9 34.1 Small and 

medium firms No 14.8 85.2 8.5 91.5 

Yes 75.6 24.4 73.7 26.3 
Large Firms 

No 23.7 76.3 15.9 84.1 

Yes 67.6 32.4 69.7 30.3 
All Firms 

No 17.2 82.8 10.7 89.3 

 

 

With respect to the explanatory variables in the knowledge production function, in the case of 

process innovations, given that these can be obtained by buying new machines, along with 

investment effort we include physical capital intensity (in logs). In addition, irrespective of 

the type of innovation, the set of variables also comprises specific industry characteristics. 

Notice that, along with internal inputs, it is also necessary to take into account other elements 

that do not depend completely on the firms’ decision but can affect their generation of 

innovations. In particular, the incentives to allocate resources can change depending on 

demand price elasticity. In markets where the product supplied by the firm is highly 

standardized, product innovations are a better mechanism for reducing competitive pressure. 

In the estimations, we use a binary variable reflecting the degree of product homogeneity as a 

“naive” proxy of demand price elasticity. This index takes the value one if the product sold by 

the firm is highly standardized. The specification also includes industry dummies to capture 

the possibility of technological spillovers and different life cycles and technological regimes 

(Klepper, 1996, and Utterback, 1994).  
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As for productivity growth (the dependent variable in equation [8]), the available information 

allows us to compute a cost-based Solow residual in terms of a Tornqvist index
11

. In this 

equation, together with the control variables (mobility, time, size and industry dummies), we 

introduce the change in the capacity utilization to pick up the impact in the degree of inputs 

used in the presence of quasi-fixed factors. In addition, we include the weighted input 

variation to capture the potential bias by the non-fulfillment of the constant returns to scale 

assumption
12

.  

 

Table 4 shows the descriptive statistics of the main variables in our model. Except the degree 

of services subcontracting
13

, all of them can vary across firms and time.  

 
Table 4 

Descriptive Statistics 

 

 Mean Standard deviation Min Max 

  Overall Between Within   

Age  24.781 12.297 12.077 3.038 1 40 

Belonging to a group 1.324 0.468 0.427 0.197 1 2 

Capacity utilization variation (%) 0.077 15.739 2.591 15.539 -230.259 289.037 

Demand evolution   2.113 0.689 0.367 0.588 1 3 

Degree of product homogeneity 0.636 0.481 0.429 0.226 0 1 

Degree of services subcontracting  47.013 11.215 11.345 0.000 0 93.4 

Proportion of engineers and graduates  4.165 6.512 6.308 2.244 0 78.9 

Exporter in t-1 0.640 0.480 0.425 0.227 0 1 

Export intensity in t-1 (in logs.) 6.226 4.861 4.473 1.933 0 13.637 

Physical capital intensity (in logs.) 9.746 0.948 0.885 0.367 7.118 12.644 

Process innovation 0.352 0.478 0.295 0.377 0 1 

Product innovation 0.266 0.442 0.300 0.325 0 1 

Public support in t-1   0.100 0.300 0.217 0.205 0 1 

Number of competitors  1.787 1.113 0.884 0.692 1 4 

R&D intensity 2.683 3.509 3.059 1.720 0 11.142 

R&D performer 0.387 0.487 0.414 0.255 0 1 

Size (number of employees) 216.2 463.5 463.5 103.9 3 9043 

Total factor productivity growth (%) 0.810 14.435 2.907 14.154 -208.197 170.461 

Weighted inputs variation (%) 2.873 21.327 6.355 20.427 -161.171 310.349 

Notes: The period used is 1991-2005. For lagged variables the reference period is 1990-2004.   

 

Note that, for almost all explanatory variables to be used in the selection equation, the 

variation across firms (“between” variation) is bigger than the time variation (“within”). See, 

for example, the age, the degree of services subcontracting, the proportion of engineers and 

                                                 
11

 In the ESEE, firms report the price changes on their output and inputs, which makes it possible to construct 

Paasche-type firm individual indices to deflate output and intermediate consumption real changes. 
12

 See the Appendix for a more detailed explanation of the variable definitions. 
13

 In the survey, firms only answer the question referring to this information every four years.  
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graduates and the number of competitors. For this reason, we are going to treat them as time 

constant in equation [2’].  

 

 

4. Econometric results  

 

In this section, we present the results of the estimation of the model depicted in Section 2. As 

equations [2], [4], [5] and [8] point out, we assume a recursive model where feedback from 

productivity growth to technological effort is not allowed. Taking this into account, we apply 

a three-stage estimation procedure.  

 

In the first stage, the decision to engage in R&D activities is jointly estimated with the R&D 

intensity (equations [2] and [4]) using the Generalized Tobit model. We investigate the 

possibility of persistence in the selection equation but we do not consider any dynamics in the 

R&D effort. In particular, we use Wooldridge’s (2005) approach to parameterize the 

unobserved individual heterogeneity. 

 

In the second stage, we estimate the knowledge production function [5], introducing the 

predicted value of the R&D intensity as an explanatory variable. As we indicate in Section 2, 

the technological effort can be used to obtain new products and/or processes. Therefore, we 

consider both types of innovations to be technological outputs. Additionally, we study 

whether the probability of obtaining a process or product innovation is positively affected by 

previous success in the generation of innovations. Given the binary character of our 

innovation indexes, we estimate this equation as dynamic RE Probit models. As in the first 

stage, Wooldridge’s approach is used to parameterize the unobserved individual 

heterogeneity.  

 

Finally, in the last stage, the productivity growth equation [8] is estimated taking into account 

the potential endogeneity of the technological factor in the production function.  

 

R&D investment intensity 

 

Table 5 shows the results of the estimation associated with equations [2] and [4] explained in 

Section 2. We start with the estimation of a pooled and static RE Probit model, implicitly 
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assuming no state dependence in the selection equation ( 0γ = ). In columns (1) and (4), we 

present the results of the Generalized Tobit model where the participation and the intensity 

equations are estimated consistently by maximum likelihood.  . 

 

Secondly, in column (2), we investigate the persistence of the decision whether to engage in 

R&D activities or not by estimating this equation as a dynamic RE Probit model (equation 

[2’]), following Wooldridge’s approach for taking into account the unobservable individual 

heterogeneity. Finally, given that we confirm the existence of true state dependence in the 

selection equation, a Generalized Tobit model is estimated, parameterizing the individual 

unobserved heterogeneity in terms of the initial conditions and the exogenous variables 

(columns (3) and (5)) as in the dynamic RE Probit model.   

 

The three first columns exhibit the marginal effects of the Probit model for the participation 

decision, while the coefficients showed in columns 4 and 5 correspond to the R&D intensity 

for the static and dynamic pooled model, respectively. Notice that the correlation term rho 

( eερ ) is significant in both estimations, pointing out the necessity of estimating a selection 

model for the observed intensity.  

 

We tried almost the same set of explanatory variables for both equations (
it it

x z= ), but 

eventually we included only those variables that turn out to be statistically significant in each 

equation in the specification. There are four variables, the proportion of engineers and 

graduates, the firms’ age, the degree of services subcontracting and the number of 

competitors, which present a very small within-firm variation. For these reason, we consider 

them to be time-constant specific variables in the estimation for the participation equation. 

This implies that these variables cannot be included in the parameterization of the individual 

effects
14

.  

                                                 
14

 Due to the high collinearity between them and their time-averages, when we introduce the last ones in the 

parameterization of the individual heterogeneity, all are not significant. Specifically, we have tried with the age 

and the proportion of engineers and graduates. We find the same result when we introduce each variable 

separately.  
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Table 5 
R&D intensity 

 

 Propensity to engage in R&D (0/1)  R&D Intensity 

  (1)  (2)  (3)   (4) (5) 

Estimation method Pooled 

Probit 

Dynamic RE 

Probit 

Dynamic 

Pooled Probit 

 

 

Generalized Tobit 
(selection from (1)) 

Generalized Tobit  
(selection from (2)) 

R&D performer in t-1   0.586*** 

(0.016) 

0.638*** 

(0.012) 

   

Exporter in t-1 0.196*** 

(0.012) 

0.039 

(0.029) 

0.032 

(0.028) 

   

Export intensity in t-1     

 

0.031*** 

(0.006) 

0.016*** 

(0.006) 

Public support in t-1   0.534*** 

(0.018) 

-0.022 

(0.032) 

-0.066** 

(0.029) 

 

 

0.685*** 

(0.048) 

0.624*** 

(0.050) 

Demand evolution   0.048*** 

(0.008) 

0.040*** 

(0.012) 

0.037*** 

(0.011) 

 

 

0.067*** 

(0.028) 

  0.083*** 

(0.028) 

Proportion of engineers and 

graduates  

0.012*** 

(0.001) 

0.004*** 

(0.002) 

0.004*** 

(0.001) 

 

 

0.050*** 

(0.003) 

0.047*** 

(0.003) 

Degree of services 

subcontracting  

0.001*** 

(0.000) 

0.000 

(0.001) 

0.000 

(0.001) 

   

Number of competitors  -0.046*** 

(0.007) 

-0.018 

(0.011) 

-0.016* 

(0.009) 

   

Age  0.002*** 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

 

 

-0.004*** 

(0.002) 

-0.007*** 

(0.002) 

Belonging to a group     

 

 0.061 

(0.042) 

 0.016 

(0.041) 

Initial conditions       

M_Exporter in t-1  0.067* 

(0.039) 

0.063* 

(0.035) 

   

M_Public support in t-1  0.618*** 

(0.075) 

0.617*** 

(0.063) 

   

M_Demand evolution  0.037 

(0.028) 

0.032 

(0.023) 

   

R&D performer in 0  0.390*** 

(0.023) 

0.317*** 

(0.015) 

   

Rho      

 

0.104*** 

(0.044) 

-0.203*** 

(0.031) 

Wald test – Industry dummies 0.000 0.001 0.000  0.000 0.000 

Wald test – Time dummies 0.059 0.000 0.000  0.000 0.000 

Wald test – Size dummies 0.000 0.000 0.000    

aρ   0.119 (0.025)     

lnL -5155.8 -2773.8 -2789.5  -13069.2 -10684.1 

Observed Probability 38.6 38.6 38.6    

Predicted Probability 38.6 38.4 38.6    

Correct predictions  79.9 91.5 91.6    

Correct predictions: 1 / 0 82.0/ 78.7 91.1 / 91.7 90.7 / 92.2    

No. observations 12303 12303 12303  4755 4755 

Notes: Marginal effects (standards errors in brackets) are showed. ***, ** and * indicate significance on a 1%, 

5% and 10% level, respectively. All regressions include a constant and 19 industry and 14 time dummies. 

Regressions (1) to (3) also include 5 size dummies. To avoid multicolinearity, the dummy variables 

corresponding to year 1991, industry 1 and size up to 20 employees are excluded. The estimates also include 

four dummies to capture the firm’s mobility (merger, scission, entry and exit). Rho is the correlation coefficient, 

eερ , and aρ  is the percentage of total variance explained by the unobserved heterogeneity. 
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Additionally, the dynamic RE Probit model requires the strict exogeneity of the explanatory 

variables. Although it is possible to assume that most variables are exogenous, the indicators 

for being an exporter and for the winning of public support are introduced with a lag in the 

decision equation to control for endogeneity.   

 

With respect to the decision to engage in (and report) R&D activities, the estimation in 

column (2) confirms that it is relevant to consider the existence of persistence. Even after 

controlling for individual unobserved heterogeneity, previous behavior as an R&D performer 

has a positive effect on the probability of engaging in R&D activities at present. That is, 

conditional on other firms’ characteristics, a firm which performs R&D in t-1 is almost 60 

percentage points more probable to undertake R&D activities in the next period.  

 

The initial conditions are also significant, which suggests the existence of a high correlation 

between the initial value and the unobserved heterogeneity. In particular, the achievement of 

public support and being an exporter in the previous period have a positive impact on the 

probability of innovating. Additionally, the coefficient of correlation 
a

ρ  at the bottom of 

column (2) indicates that the unobserved heterogeneity explains 12% of the total variance of 

the dependent variable
15

.  

 

Comparing the first and the second columns, the results show that, when the persistence in the 

decision to perform R&D activities is taken into account, some explanatory variables which 

are strongly significant in the pooled Probit estimation lose their effect. For example, the 

number of rivals that exhibits a negative coefficient in column (1) - which is coherent with the 

Schumpeterian hypothesis - is non-significant in column (2). The same result occurs with the 

degree of services subcontracting and the firms’ age.  All of them are variables with a small 

time variation and their effect is probably captured by the lagged dependent variable. 

 

However, there are some explanatory variables which still are significant and increase the 

probability of carrying out R&D expenditures. Specifically, the proportion of engineers and 

graduates (as a proxy of skilled employees) confirms the relevance of having qualified 

workers in the firm to more easily assimilate new knowledge. In addition, firms which operate 

                                                 
15

 When estimating the equation through a Static RE Probit model, unobserved heterogeneity is relatively more 

important: almost 75% of the variance is explained by it.  
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in markets with an expansive demand present a higher probability of engaging in R&D 

activities.  

 

As can be seen at the bottom of Table 5, the Wald tests confirm that the control variables are 

jointly significant. From the coefficients of the size dummies
16

, a positive relationship 

between a firm’s size and the decision of carrying out R&D is established. This is consistent 

with the hypothesis that large firms are more capable of exploiting economies of scale or 

scope in technological activities, but also with the idea that these firms have advantages in 

appropriating the results of them and obtaining external funding. 

 

Due to the fact that estimation in column (2) confirms the existence of true state dependence 

in the innovation activity and that we are interested in the prediction of the R&D intensity for 

the second step of the CMD model, we proceed to estimate a Generalized Tobit model with 

dynamic in the participation equation. Again we parameterize the unobservable heterogeneity 

following Wooldridge (2005). The results in column (3) are quite similar to the ones in 

column (2), although the coefficient of the lagged dependent variable is slightly bigger and 

the number of competitors as a proxy of market competition is now significant as in the 

pooled Probit.  

 

As can be seen in columns (4) and (5), once the firm has decided to invest, the proportion of 

engineers and graduates, the winning of public support in the previous period, and the export 

intensity stimulate the intensity of R&D investment, while the firm’s age has the opposite 

effect. These results are in accordance with Hall et al. (2009) and Griffith et al. (2006). 

However, unlike this last paper, we find that the demand evolution has a positive effect not 

only on the participation decision but also on the R&D intensity. Additionally, belonging to a 

group of companies does not affect the amount of R&D expenditures.  

 

The knowledge production function 

 

The second stage of the model corresponds to the estimation of the new knowledge 

production function (equation [5]) generated from the firm’s technological efforts. In Table 6, 

we show the results of this estimation for three alternative measures of innovation outputs, 

                                                 
16

 The coefficients are available from the authors upon request. 
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using the predicted value of R&D intensity (obtained from the estimations in columns (3) and 

(5) in Table 5) as an explanatory variable. Notice that the R&D intensity equation can be 

interpreted as an instrumental variables equation, in which innovation effort is presumably 

endogenous to the innovation production function – that is, there can be unobservable (to the 

econometrician) firm characteristics that make firms invest more in R&D and, at the same 

time, make them more productive in the use of this effort. This could generate spurious 

correlation and upward bias in the coefficients of the knowledge generation equation. 

 

Both for product and process innovation equations, the estimations in columns (2) and (4) 

also confirm in this case the existence of true state dependence. Conditional on other firm 

characteristics, a firm which innovates in t-1 is around 35 percentage points more likely to 

innovate in the next period. The last two columns in Table 6 show the results when we do not 

distinguish between product and process innovation. That is, we consider that a firm obtains a 

technological result independently of the kind of innovation
17

. As can be seen, the coefficient 

of the lagged dependent in column (6) is quite similar to those obtained in columns (2) and 

(4), supporting the existence of persistence. 

 

As we expected, the predicted investment intensity has a significant positive impact on the 

generation of process and product innovations, even when we consider the dynamics in the 

generation of innovations. Nevertheless, its impact is smaller when persistence is taken into 

account. The quantitative effect of this variable is quite similar for process and product 

innovations. In addition, physical capital intensity is also positively related to the achievement 

of process innovation, which is coherent with the fact that part of these innovations are 

attained through the purchase of new machinery. This variable is also significant when the 

dependent variable does not distinguish between process and product innovations.  

 

The degree of product homogeneity, used as a proxy of demand price elasticity, presents the 

correct sign according to theoretical predictions, positive for product innovations and negative 

for process innovations. However, it loses its significance as a determinant of any type of 

technological innovation (columns (5) and (6) of Table 6), which can be explained by its 

opposite effect on product and process innovations. 

                                                 
17

 According to this variable, almost 50% of firms have obtained technological results over the period.  
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Table 6 
The knowledge production function 

   

 
Process innovation Product innovation 

Process or Product 

innovation 

 (1) (2) (3) (4) (5) (6) 

Estimation method Static  

RE Probit 

Dynamic  

RE Probit 

Static 

RE Probit 

Dynamic 

RE Probit 

Static 

RE Probit 

Dynamic 

RE Probit 

R&D intensity
a
  0.098*** 

(0.017) 

0.047*** 

(0.016) 

0.110*** 

(0.016) 

0.055*** 

(0.013) 

0.139*** 

(0.024) 

0.068*** 

(0.019) 

Process Innovation in t-1  0.350*** 

(0.012) 

 

 

 

 

  

Product Innovation in t-1    0.371*** 

(0.014) 

  

Process or Product Innovation in t-1      0.374*** 

(0.012) 

Physical capital intensity  0.110*** 

(0.011) 

0.077*** 

(0.015) 

 

 

 

 

0.107*** 

(0.012) 

0.076*** 

(0.017) 

Demand evolution   0.050*** 

(0.008) 

0.043*** 

(0.008) 

0.009 

(0.006) 

0.008 

(0.007) 

0.043*** 

(0.009) 

0.035*** 

(0.009) 

Degree of product homogeneity    -0.034** 

(0.017) 

-0.018 

(0.013) 

0.040*** 

(0.013) 

0.042** 

(0.011) 

-0.014 

(0.019) 

0.003 

(0.016) 

Initial conditions       

M_Physical capital intensity  -0.031* 

(0.017) 

 

 

 

 

 -0.038* 

(0.020) 

M_Demand evolution  0.061*** 

(0.021) 

 

 

0.050*** 

(0.018) 

 0.076*** 

(0.024) 

Process Innovation in 0  0.241*** 

(0.015) 

 

 

 

 

  

Product Innovation in 0    0.293*** 

(0.018) 

  

Process or Product Innovation in 0      0.304*** 

(0.016) 

Wald test – Industry dummies 0.006 0.439 0.000 0.007 0.000 0.359 

Wald test – Time dummies 0.000 0.000 0.000 0.000 0.000 0.000 

Wald test – Size dummies 0.000 0.000 0.000 0.000 0.000 0.001 

vρ  0.412 

(0.017) 

0.122 

(0.015) 

0.538 

(0.018) 

0.155 

(0.018) 

0.467 

(0.016) 

0.151 

(0.016) 

lnL -6392.9 -5825.7 -5196.1 -4536.5 -6559.2 -5934.6 

Observed Probability 35.2 35.2 26.6 26.6 45.5 45.5 

Predicted Probability 31.6 34.2 19.6 25.1 43.8 45.0 

Correct predictions  66.5 76.5 70.6 81.4 65.0 76.7 

Correct predictions: 1 / 0 57.0 / 71.6 74.7 / 77.5 48.1 / 78.7 79.0 / 82.2 61.5 / 68.0 76.7 / 76.7 

Number of observations 12303 12303 12303 12303 12303 12303 

 
a 
- The prediction of the R&D intensity is obtained from estimations (3) and (5) in Table 5.  

Notes: Marginal effects (standards errors in brackets) are showed. ***, ** and * indicate significance on a 1%, 

5% and 10% level, respectively. All regressions include a constant and 19 industry and 5 size and 14 time 

dummies. To avoid multicolinearity, the dummy variables corresponding to year 1991, industry 1 and size up to 

20 employees are excluded. The estimates also include four dummies to capture the firm’s mobility (merger, 

scission, entry and exit). vρ  is the percentage of total variance explained by the unobserved heterogeneity.  
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The Wald tests show that, when persistence is taken into account, there are no significant 

differences between the probabilities of obtaining process innovations among industries. The 

size dummies again reflect the advantages of large firms to innovate, and the time dummies 

denote an increase in the achievement of both types of innovations until 2003, but stagnation 

during the last two years of the period. 

 
 

The Total Factor Productivity growth 

 

Finally, in Table 7 we present the results of estimating productivity equation [8]. All estimates 

are carried out considering the information to be a pool. To control for unobserved 

heterogeneity, we also made complementary estimations, taking into account the panel 

structure of the data. However, the test for the null hypothesis that all fixed effects are equal 

to zero cannot be rejected, as is showed at the bottom of the table.  

 

To take into account the potential endogeneity of the technological factor in the production 

function, instead of observed technological outputs, we include the predicted values for the 

generation of innovations obtained from the estimations in Table 6 in the specification. The 

results show that the omission of the persistence in the analysis of the generation of 

knowledge leads to an overestimation of the impact of innovations on productivity growth. 

Specifically, when the predictions from the static RE Probit model are considered (columns 

(1) and (3) in Table 7), the impact of innovations on the PTF growth is clearly significant, and 

the quantitative effect is quite similar for both types of innovations. However, when the 

persistence of innovations is taken into account - columns (2) and (4) - the effect of process 

innovations on productivity growth is reduced more than fifty percent and the effect of 

product innovations disappears. Firms which obtain process innovations during the period 

show a TFP growth significantly higher than non-innovators. In this sense, it seems relevant 

to consider the true state dependence in the generation of knowledge if we want to capture the 

real effect of technological outputs on growth.  
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Table 7 
Total Factor Productivity Growth 

     

  (1)  (2)  (3)  (4)  (5)  (6)  (7) 

Estimation method IV regression IV regression IV regression IV regression IV regression
c
 IV regression IV regression 

Process innovation
a
  7.251*** 

(1.275) 

2.663*** 

(0.573)   

2.825*** 

(0.605) 

  

Product innovation
b
 

  

6.686*** 

(1.842) 

0.380 

(0.526) 

-0.460 

(0.556) 

  

Process or Product innovation
d
      6.866*** 

(1.303) 

1.722*** 

(0.519) 

Weighted inputs variation  -0.196*** 

(0.006) 

-0.195*** 

(0.006) 

-0.194*** 

(0.006) 

-0.193*** 

(0.006) 

-0.195** 

(0.006) 

-0.196*** 

(0.006) 

-0.195*** 

(0.006) 

Capacity utilization variation  0.082*** 

(0.008) 

0.082*** 

(0.008) 

0.082*** 

(0.008) 

0.082*** 

(0.008) 

0.082*** 

(0.008) 

0.082*** 

(0.008) 

0.082*** 

(0.008) 

Merger 5.462*** 

(1.151) 

5.921*** 

(1.146) 

5.854*** 

(1.148) 

6.081*** 

(1.147) 

5.922*** 

(1.146) 

5.715*** 

(1.148) 

6.030*** 

(1.146) 

Scission -7.559*** 

(1.657) 

-7.373*** 

(1.657) 

-7.296*** 

(1.658) 

-7.356*** 

(1.659) 

-7.379*** 

(1.658) 

-7.364*** 

(1.657) 

-7.339*** 

(1.658) 

Entry 0.242 

(0.359) 

0.407 

(0.357) 

0.517 

(0.357) 

0.479 

(0.358) 

0.394 

(0.358) 

0.382 

(0.357) 

0.461 

(0.357) 

Exit -0.384 

(0.574) 

-0.706 

(0.569) 

-0.150 

(0.602) 

-0.839 

(0.570) 

-0.745 

(0.571) 

-0.066 

(0.588) 

-0.696 

(0.570) 

Wald test – Industry dummies 0.188 0.069 0.001 0.012 0.080 0.006 0.022 

Wald test – Time dummies 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Wald test – Size dummies 0.002 0.236 0.030 0.378 0.276 0.002 0.351 

Fixed effects test: F(1071,11212) 0.53 0.52 0.54 0.53 0.51 0.53 0.52 

Number of observations 12303 12303 12303 12303 12303 12303 12303 
a 
- Predictions used in columns (1) and (2) are obtained from estimations (1) and (2) in Table 6, respectively. 

b 
- Predictions used in columns (3) and (4) are obtained from estimations (3) and (4) in Table 6, respectively. 

c 
– Predictions of process/product innovation used in column (5) are obtained from estimations (2)/(4) in Table 6. 

d 
- Predictions used in columns (6) and (7) are obtained from estimations (5) and (6) in Table 6, respectively. 

Notes: All estimates include a constant, 19 industry dummies and 14 time dummies. To avoid multicolinearity, the dummy variables corresponding to year 1991 and industry 

1 are excluded. Standards errors (in brackets) are showed. ***, ** and * indicate significance on a 1%, 5% and 10% level, respectively. The estimates also include four 

dummies to capture the firm’s mobility (merger, scission, entry and exit). 
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These results are confirmed when we jointly introduce the predictions for process and product 

innovations as explanatory variables, as can be seen in column (5) of Table 7. In addition, 

when we use the prediction for innovation, irrespective of its type, as the only measure of 

technological output –columns (6) and (7)-, the impact is lower than in columns (1) and (2), in 

which we consider only process innovations. Unlike most previous empirical papers, which 

obtain a significant effect of product innovations on the growth of labor productivity, the PTF 

growth seems to be affected only by process innovations. In that respect, our findings show 

that the choice of the productivity measure is relevant to properly studying the effect of 

knowledge generation on growth.  

 

The rest of the variables are included in the estimations to control for the non-fulfillment of 

the assumptions associated with the Solow residual models (constant returns to scale, 

instantaneous adjustment of the inputs) and the firm’s mobility (entry, exit, merger, scission) 

during the period. In this sense, the capacity utilization variation is positively related to 

growth and the negative sign of the weighted inputs variation supports the existence of 

decreasing returns to scale. In addition, all the mobility dummies show the expected signs but 

only merger and scission are statistically significant. They have a similar quantitative impact 

on productivity growth, positive (negative) for mergers (scissions). Although the signs of the 

dummies for entrants and exiters support the predictions of industry dynamic models, the 

coefficients are non-significant. Notice that this result can be affected by the fact that we have 

restricted the sample to firms with more than 7 consecutive observations and therefore we are 

not capturing all the entries and exits during the period in a suitable way.     

 

5. Conclusions  

 

 

Since the mid-1990s, productivity in Spanish manufacturing industry has greatly decelerated. 

This phenomenon, shared with the majority of EU members, keeps European countries away 

from American firms that have been able to use the new telecommunication and information 

technologies to improve the efficiency in sectors not directly related to them.  

 

With the objective of clarifying the relationship between technological activities and 

productivity growth, many researchers have empirically tested, with data from different 

European countries, the recursive CDM model that explains productivity growth by 
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technological outputs and these outputs by R&D effort. In this line, we estimate an adaptation 

of the CDM model for a panel of Spanish manufacturing firms during the period 1990-2005. 

Our main contribution consists of the consideration of persistence both in the R&D 

investment decision and in the achievement of innovations when estimating the model that 

reflects the relationship between R&D, innovations and productivity. 

 

The results reflect that the R&D investment status and the production of innovations in one 

period strongly influence these variables in the next period. The omission of this persistence 

leads to an overestimation of the effect of the current impact of innovations on productivity 

growth. Additionally, our paper shows that the choice of the productivity measure is relevant 

to studying the effect of knowledge generation on growth. Specifically, unlike most previous 

empirical evidence that finds a positive effect of product innovation on labor productivity 

growth, in our analysis, only firms which obtain process innovations increase their TFP 

growth.  

 

These empirical regularities hide important differences in firms’ behavior according to their 

size. Large firms present advantages in exploiting economies of scope and scale in R&D 

activities. However, they have more difficulties improving their productivity.    

 

Furthermore, the paper shows that the evolution of markets plays a relevant role not only for 

the probability of engaging in R&D expenditures but also for the effectiveness in obtaining 

process innovations. Both of them rise when firms perceive their market as expansive.  

 

The estimations also point out the relevance of technological policy as an instrument for 

increasing productivity. In particular, public funding seems to stimulate R&D investment 

intensity and improvements in workers’ level of education increase both the probability of 

carrying out R&D activities and the technological effort. In that respect, public support and 

private R&D investment seem to be complementary rather than substitute activities. In 

addition, the evidence of persistence in R&D inputs and innovation outputs suggests that the 

effects of technological policy can also persist in the long term.  
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Appendix: Variable definitions 

 

Belonging to a group: Dummy variable which takes the value 1 if the firm belongs to a group 

of companies. 

 

Capacity utilization variation: Variation in the percentage of utilization of installed capacity 

reported by the firm.  

 

Capital intensity: Ratio of capital stock in equipment goods to employees.   

 

Capital stock of equipment goods: Net stock of capital for equipment goods in real terms. It is 

calculated by using the perpetual inventory formula: 1 1(1 ) ( / )− −= − +
t t t t t

K d K P P I , where P is 

the price index for equipment, d is the depreciation rate, and I is the investment in equipment. 

 

Degree of product homogeneity: Dummy variable which takes the value 1 if the product 

supplied by the firm is highly standardized.   

 

Degree of services subcontracting: Variable which indicates the degree of the subcontracted 

services by the firm not related to its productive activity like legal and fiscal advice, auditing, 

administration, personal selection and training, computer programming, installing of software 

packages, courier service, machinery hire, security, cleaning and packing and labeling.  

 

Effective hours of work: Normal hours plus overtime hours minus lost hours.  

 

Demand evolution: Each firm identifies the behavior of market demand in its main market 

during the year with respect to previous years according to three different categories: 

recession, stability and expansion. A value of 1, 2 and 3 is assigned respectively to each 

category.  

 

Export intensity: Ratio of exports over total employment. 

 

Exporter: Dummy variable which takes the value 1 if the firm has exported during the year.    

 

Firm’s age: Difference between the current year and the constituent year reported by the firm. 

We have assigned 40 to firms older than forty years old.  

 

Foreign capital participation: Percentage of foreign capital in the social capital of the firm.  

 

Number of competitors: Discrete variable which takes the values 1, 2, 3 and 4 when the 

number of competitors reported by the firm is up to 10, from 11 to 25, more than 25, and in an 

atomized market, respectively. 

 

Process Innovation: Dummy variable which takes the value one if the firm has obtained a 

process innovation during the year.  

 

Product Innovation: Dummy variable which takes the value one if the firm has obtained a 

product innovation during the year.  
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Proportion of engineers and graduates: Ratio of engineers and graduates over total 

employment. 

 

Public support: Dummy variable which takes the value 1 if the firm has obtained public 

funding during the year. 

 

R&D expenditures per employee: Ratio of total expenditures in R&D (including technology 

imports) over total employment. 

 

Total factor productivity (Solow residual): It is calculated using the Tornqvist index: 

= − − −
L K M

TFP y s l s k s m , where the output and the inputs are in logarithmic differences  and 

the weights s in t are the cost shares of each input in the year t. Intermediate consumption 

variation (m) includes raw materials, services purchases and energy and fuel cost. Output and 

intermediate consumption are deflated using Paasche-type firm individual indices, constructed 

starting from the price changes in output and inputs reported by firms. Labor input variations 

(l) are the changes in total effective hours of work. The user cost of capital is calculated as the 

long-run debt interest rate paid by the firm plus equipment good depreciation minus the rate 

of change of a capital goods price index.  

 

 
 


