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Abstract

This paper tests the empirical validity of the neoclassical migration model in predicting German

internal migration flows. We estimate static and dynamic migration functions for 97 Spatial Planning

Regions between 1996–2006 using key labour market signals including income and unemployment

differences among a broader set of explanatory variables. Beside an aggregate specification we also

estimate the model for age-group related subsamples. Our results give empirical support for the main

transmission channels identified by the neoclassical framework: That is, regional differences in the real

income show the expected positive effect on the net inmigration rate, while the link between regional

unemployment rate differentials and net inmigration is negative. The results remains stable if further

variables are added to the model. Net in-commuting shows a negative correlation with in-migration

underlying the substitutive nature of the two variables. Moreover an increasing level of international

competitiveness attracts further in-migration flows. We also find heterogeneity for different types of

settlement structure and the East-West macro regions by including federal state level fixed effects

or an East German dummy. The results broadly hold for age-group specific estimates. Here, the

impact of labour market signals is tested to be of greatest magnitude for workforce relevant age-

groups and especially young cohorts from 18 to 25 and 25 to 30 years. This latter result underlines

the prominent role played by labour market conditions in determining internal migration rates of the

working population in Germany.
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Zur Validität des Neoklassischen Migrationsmodells:

Aggregierte und Altersgruppen-Spezifische Schätzergebnisse

für Deutsche Raumordnungsregionen

Zusammenfassung

Diese Arbeit addressiert die empirische Validität des neoklassischen Migrationsmodells zur Vorhersage in-

terner Migrationsflüsse in Deutschland als Reaktion auf regionale Arbeitsmarktungleichgewichte. Wir schätzen

statische und dynamische Migrationsfunktionen für 97 Raumordnungsregionen zwischen 1996 und 2006 unter

Berücksichtigung zentraler Arbeitsmarktvariablen wie Unterschiede in den Lohn- und Arbeitslosenraten sowie

weiterer Einflussfaktoren. Neben einer aggregierten Spezifikation schätzen wir auch Modellvarianten für einzelne

Altergruppen. Unsere Schätzergebnisse zeigen signifikante Ergebnisse fr die auf Basis des neoklassischen Migra-

tionsmodells identifizierten Transmissionskanäle von Arbeitsmarktungleichgewichten auf Migrationsströme: Das

heit, regionale Ungleichgewichte im Realeinkommen zeigen den erwarteten positiven Einluss auf Migrationsströme,

während die Reaktion auf steigende Arbeitslosenquoten in der betrachteten Region relativ zum bundesdeutschen

Durchschnitt negativ ausfällt. Diese Ergebnisse bleiben auch dann stabil, wenn weitere erklärende Variablen in

das Modell aufgenommen werden. Dabei wird die Möglichkeit des überregionalen Pendelns als alternativer Trans-

missionskanal für Migration identifiziert. Eine Erhöhnung der regionalen Wettbewerbsfähigkeit in einer Region

führt zu höheren Netto In-Migrationsströmen. Wir finden zudem strukturelle Unterschiede in der geschätzten

Migrationsfunktion für unterschiedliche regionale Siedlungsstrukturen sowie den Ost-West Makroregionen. Letz-

terer Effekt wird sowohl fr fixe Ländereffekte als auch einer gemeinsamen Dummy-Variable für die ostdeutschen

Regionen ermittelt. Schlielich halten die Resultate auch, wenn disaggregierte Migrationsgleichungen für einzelne

Altersgruppen geschätzt werden. Hier zeigen regionalen Arkeitsmarktsignale im Sinne des neoklassischen Mi-

grationsmodells dann den höchsten Effekt, wenn junge Kohorten zwischen 18 und 25 sowie 25 und 30 Jahren

betrachtet werden. Dieses Ergebnis unterstreicht die prominente Rolle von regionalen Arbeitsmarktbedingungen

bei der Prognose von internen Migrationsströmen der Arbeitsbevölkerung in Deutschland.
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1 Introduction

There are many theories aiming to explain, why certain people migrate and others do

not. However, the neoclassical model remains still the standard workhorse specification to

analyse internal and external migration rates at the regional, national and international

level. The model puts special emphasis on the labour market dimension of migration and

basically relates migration-induced population changes as a response to relative income

(or wage) and employment situations found in the origin and destination region. Migration

then itself works as an equilibrating mechanism for balancing differences among regions

with respect to key labour market variables since higher in-migration in a region is ex-

pected to reduce the regional wage level due to an increase in labour supply. From the

perspective of economic policy making the empirical implications of the neoclassical mi-

gration model are important to assess whether labour mobility can act as an appropriate

adjustment mechanism in integrated labour markets facing asymmetric shocks. Though

the neoclassical migration model is widely used as a theoretical and didactic tool, the

international empirical evidence provides rather mixed results.

In this paper, we therefore aim to check the validity of the neoclassical migration model

using a panel of 97 German regions for the period 1996 – 2006. We are especially interested

in taking a closer look at the role played by dynamic adjustment processes driving the

internal migration patterns. We also aim toto identify likely role played by additional

factors as well as regional amenities in explaining migratory movements beside key labour

market signals and focus on the heterogeneity of adjustment processes taking place when

migration flows are disaggregated by age groups.

The remainder of the paper is therefore organised as follows: Section 2 skteches the

theoretical foundations of the neoclassical migration model leading to a functional form of

the neoclassical migration model that can be estimated for the panel of German regions.

Building on the theoretical underpinnings section 3 discusses the estimation approach

with a special focus on dynamic panel data models. Section 4 then presents a selected

literature review for empirical studies dealing with the determinants of internal migration

flows. Section 5 describes the data used and displays stylized facts for German internal

migration and labour market trends. Section 6 presents the empirical results. Apart from

an economic interpretation of the obtained estimation coefficients, we also carefully look

at any model misspecification such as cross-sectional dependence in the error terms of

our model. An augmented sensitivity analysis for disaggregated migration models by age

groups is performed in Section 7. Section 8 concludes.
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2 The neoclassical migration model

Theories of migration try to explain what drives population flows. Given the complex

nature of the decision process individuals face, there is a large variety of theoretical

models available to explain the actual migration outcome. These models may either be

classified as micro- or macroeconomic in nature. While micro behavioural models focus on

dominant factors at the individual level (such as the human capital model as outlined for

example in Sjaastad, 1962), macroeconomic models especially focus on the labour market

dimension of migratory flows.

Given the strong need for a solid microeconomic foundation of many macro relati-

onships, the neoclassical migration framework also starts from a micro-founded lifetime

expected income (utility) maximization approach as specified in the classical work done

on the human capital model of migration. The latter model in fact views the process of

migration as an investment where the returns to migration in terms of higher wages asso-

ciated with a new job exceed the costs involved in moving. Relaxing the assumption that

the potential migrant has perfect information about the wage rates and job availabilities

among all potential locations involved in his decision making process, Todaro (1969) was

among the first to propose a model where the potential migrant discounts wages by the

probability of finding a job in respective regions. From this follows that throughout the

decision making process, the individual compares the expected (rather than known) inco-

me he would obtain for the case he stays in his home region (i) with the expected income

we would obtain in the alternative region (j) and further accounts for ’transportation

costs’ of moving from region i to j.

In their seminal paper, Harris & Todaro (1970) further formalize this idea: The authors

set up a model where the expected income from staying in the region of residence Y E
ii is a

function of the wage rate or income in region i (Yi) and the probability of being employed

(Prob(EMPi)). The latter in turn is assumed to be a function of unemployment rate in

region i (Ui) and a set of potential variables related both to economic and non-economic

factors (Xi). The same set of variables - with different subscripts for region j accordingly

- is also used to model the expected income from moving to an alternative region. Thus,

taking costs of moving from region i to j into account (Cij), the individual’s decision will

be made in favour of moving to region j if

Y E
ii < Y E

ij − Cij, (1)

where Y E
ii = f(Prob(EMPi), Yi) and Y E

ij = f(Prob(EMPj), Yj). The potential mi-

grant weights the proposed wage level in the home and target regions with the individual
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probability of finding employment. Using this information, we can set up a model for

the regional net migration rate (NMij) defined as regional in-migration flows to i from j

relative to outmigration flows from i to j (possibly normalized by the regional population

level), which has the following general form:

INMij −OUTMij = NMij = f(Yi, Yj, Ui, Uj, Xi, Xj, Cij). (2)

With respect to the theoretically motivated signs of the explanatory variables we expect

that an increase in the home country wage rate (or, alternatively, the real income level)

ceteris paribus leads to higher net migration inflows, while a wage rate increase in region

j results in a decrease of the net migration rate. On the contrary, an increase in the

unemployment rate in region i (j) has negative (positive) effects on the bilateral net

migration from i to j. The costs of moving from i to j are typically expected to be an

impediment to migration and thus are negatively correlated with net migration as:1

∂NMij

∂Yi

> 0;
∂NMij

∂Yj

< 0;
∂NMij

∂Ui

> 0;
∂NMij

∂Uj
< 0;

∂NMij

∂Cij

< 0. (3)

Core labour market variables may nevertheless not be sufficient to predict regional

migration flows. Recent extensions of the model therefore include further driving forces of

migration such as human capital, the regional competitiveness, housing prices, population

density and environmental conditions, among others (see e.g. Napolitano & Bonasia, 2010,

for an overview). We refer to the neoclassical migration model focusing solely on labour

market conditions as the ’baseline’ specification, while the ’augmented’ specification also

controls for regional amenities and further driving forces such as population density and

commuting flows as a substitute for migratory movements.

Moreover, regional amenities are typically included as a proxy variable for (unobserved)

specific climatic, ecological or social conditions in a certain region. According to the

amenity approach regional differences in labour market signals then only exhibit an effect

on migration after a critical threshold has been passed. Since in empirical terms it is often

hard to operationalize amenity relevant factors, Greenwood et al. (1991) propose to test

the latter effect by the inclusion (macro-)regional dummy variables in the empirical model.

For the long run net migration equation amenity-rich regions then should have dummy

coefficients greater than zero (and vice versa), indicating that those regions exhibit higher

than average in–migration rates as we would expected after controlling for regional labour

market and macroeconomic differences.

1The migration effect of the vector of further economic variables X(i,j] is a priori not clear.
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The baseline and augmented migration equations can then either be applied at the

micro-, regional or macroeconomic level. The advantage of studies at the macro level is

that an analysis of the elasticity of migration with respect to income and unemployment

changes gives important information about the size of the adjustment process taking

place of balance cross-regional labour market difference through labour migration. In

the next section, we therefore estimate the short and long-run impact of alterations in

unemployment rates and incomes on migration. Using a flexible estimation approach

we also seek to determine whether economic disparities appear to be necessary but not

sufficient condition for observed migration processes. The latter hypothesis would give

rise to a significant role played by other factors such as local amenities besides labour

market signals.

The likely impact of these latter variables in the augmented neoclassical framework can

be sketched as follows: Taking human capital as an example, it may be quite reasonable

to relax the assumption of the Harris-Todaro model that uneducated labour has the same

chance of getting a job as educated labour. Instead, the probability of finding a job is also a

function of the (individual but also region specific) endowment with human capital (HK).

The same logic accounts for regional competitiveness (INTCOMP ): Here, we expect that

those regions with a high competitiveness are better equipped to provide job opportunities

than regions lagging behind (where regional competitiveness may e.g. be proxied by the

share of foreign turnover relative to total turnover in sectors with internationally tradeable

goods). For population density (POPDENS), we expect in general a positive impact

of agglomeration forces on net flows through an increased possibility of finding a job,

given the relevance of spillover effects e.g. from a large pooled labour market. Thus the

probability of finding employment in region i in the augmented neoclassical migration

model takes the following form:2

Prob(EMPi) = f [Ui, HKi, INTCOMPi, POPDENSi], (4)

with :
∂NMij

∂HKi

> 0;
∂NMij

∂INTCOMPi

> 0;
∂NMij

∂POPDENSi

> 0.

Finally, we also carefully account for alternative adjustment mechanisms to restore the

inter-regional labour market equilibrium such as net commuting flows as substitute to

migratory movelents. Here we expect that these flows are negatively correlated with net

inmigration.

2The opposite effect on NMij holds for an increase in HK ↑, INTCOMP ↑ and POPDENS ↑ in region j.
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3 Econometric Specification

For the empirical estimation of the neoclassical migration model we start from a core

specification as e.g. applied in Puhani (2001) and set up a model for the net migration

rate as:

(

NMij,t

POPi,t−1

)

= Ai,t

(

Uα1
i,t−1Y

α2
i,t−1

Uα3
j,t−1Y

α4
j,t−1

)

, (5)

where net migration rate between i and j is defined as regional net balance NM for

region i relative to the rest of the country j, POP is the region’s i population level, t is the

time dimension.3 A is a (cross-section specific) constant term. In the empirical literature

a log-linear stochastic form of the migration model in eq.(5) is typically chosen as (where

lower case variables denote logs) and nmrij,t = log(NMij,t/POPi,t−1):

nmrij,t = α0 + α1yi,t−1 + α2yj,t−1 (6)

+α3ui,t−1 + α4uj,t−1 + α5X+ eij,t,

where the error term eij,t = µij+νij,t has the typical error component structure. Taking

into account that migration flows typically show some time persistence, we augment eq.(6)

by the lagged value of net migration as:

nmrij,t = β0 + β1nmrij,t−1 + β2yi,t−1 + β3yj,t−1 (7)

+β4ui,t−1 + β5uj,t−1 + β6X+ uij,t,

The inclusion of a lagged dependent variable can be motivated by the existence of

social networks in determining internal migration flows over time: That is, Rainer &

Siedler (2009) for example find for German micro data that the presence of family and

friends is indeed an important predictor for migration flows in terms of communication

links, which may result in a time dependence of the adjustment path for migration flows

out of particular origin to destination regions. Finally, in applied work one typically finds

a restricted version of eq.(7) where net migration is regressed against regional differences

of explanatory variables of the form (see e.g. Puhani, 2001)

3See e.g. Maza & Villaverde (2004) for a similar definition of the dependent variable.
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nmrij,t = γ0 + γ1nmrij,t−1 + γ2ỹij,t−1 + γ3ũij,t−1 + γ4X+ uij,t, (8)

where x̃ij,t for a variable xij,t denotes x̃ij,t = xi,t − xj,t. The latter specification implies

the following testable restrictions of the unrestricted model in eq.(8), for which we will

account for in the empirical estimation:

β2 = −β3, (9)

β4 = −β5. (10)

For estimation purposes we then have to find an appropriate estimator, which accounts

for the above described empirical setup. Given the dynamic nature of the neoclassical

migration model in eq.(8) we can write the specified form in terms of a more general

dynamic panel data model as (in log-linear specification):

yi,t = α0 + α1yi,t−1 +
k
∑

j=0

β′
jXi,t−j + ui,t, with: ui,t = µi + νi,t, (11)

again i = 1, . . . , N (cross-sectional dimension) and t = 1, . . . , T (time dimension).

yi,t is the endogenous variable and yi,t−1 is one period lagged value. Xi is the vector of

explanatory time-varying and time invariant regressors, ui,t is the combined error term,

where ui,t is composed of the two error components µi as the unobservable individual

effects and νi,t is the remainder error term. Both µi and νi,t are assumed to be i.i.d.

residuals with standard normality assumptions.

There are numerous contributions in the recent literature with respect to the single

equation estimation of the dynamic model of the above type, which especially deal with

the problem introduced by the inclusion of a lagged dependent variable in the estimation

equation and its built-in correlation with the individual effect: That is, since yit is also

a function of µi, yi,t−1 is a function of µi and thus yi,t−1 as right-hand side regressor in

eq.(11) is correlated with the error term. Even in the absence of serial correlation of νit this

renders standard OLS, FEM and REM models biased and inconsistent (see e.g. Nickel,

1981, Sevestre & Trogon, 1995 or Baltagi, 2008, for an overview).

Next to various attempts to correct for the bias of the FEM (see e.g. Kiviet, 1995,

Everaert & Pozzi, 2007, and the related literature for analytically or bootstrapping-based

correction factors), the most widely applied approaches of dealing with this kind of en-

dogeneity typically applies IV and GMM based techniques. While the first generation of

models used transformations in first differences, latter extensions also account for the in-

formation in levels, when setting up proper estimators. A widely applied technique is the

8



System GMM estimator by Blundell & Bond (1998), which builds consistent instruments

based on the following orthogonality conditions:

E(yi,t−ρ∆ui,t) = 0 for all ρ = 2, . . . , t− 1, (12)

where ∆ is the difference operator defined as ∆ui,t = ui,t−ui,t−1. Eq.(12) is also called

the ’standard moment condition’ and is widely used in empirical estimation. However, one

general drawback of dynamic model estimators in first differences is their poor empirical

performance especially for a high persistence in the autoregressive component such as

growth models (see Munnel, 1992, and Holtz-Eakin, 1994, for poor empirical estimates of

a production function in FD, Bond et al. (2001) for growth equation estimates). Bond et al.

(2001) argue that first difference IV/GMM estimators can be poorly behaved, since lagged

levels of the time series provide only ’weak instruments’ for sub-sequent first-differences.

E(∆yi,t−1ui,t) = 0 for t=3,...,T. (13)

Rather than using lagged levels of variables as instruments for the equation in first

difference according to eq.(12), eq.(13) defines an orthogonality condition for the model

in level that uses instruments in first differences. Blundell & Bond (1998) propose the

system GMM estimator as combination of both orthogonality conditions.

In our estimation design we are especially interested in testing for the appropriateness

of the chosen IV approach and apply test routines that account for the problem of many

and/or weak instruments in the regression (see e.g. Roodman, 2006). Moreover, as it is

typically the case with regional data we are especially aware of the potential bias induced

by a significant cross-sectional dependence in the error term of the model. There are

different ways to account for such error cross-sectional dependences implying

Cov(νi,tνj,t) 6= 0 for some t and i 6= j (14)

(see e.g. Sarafidis & Wansbeek, 2010, for an overview). Besides the familiar spatial ap-

proach, recently the common factor structure approach has gained considerable attention.

The latter specification assumes that the disturbance term contains a finite number of

unobserved factors that influence each individual cross-section separately. In terms of the

above described combined residual term of the dynamic panel data model in eq.(11), we

are able to introduce a common factor structure for the error term in the following way:

ui,t = µi + νi,t, νi,t =
M
∑

m=1

φm,ifm,t + ǫi,t, (15)

where fm,t = (f1,t,...,fM,t)′ denotes an M × 1 vector of individual-invariant time-specific
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unobserved effects, φi = (φ1,i, . . . , φM,i)
′ is an M × 1 vector of factor loadings and ǫi,t

is a pure idiosyncratic error component with zero mean and constant variance. Cross-

sectional dependence in turn leads to inconsistent estimates if regressors are correlated

with the unspecified common variables or shocks. There are different proposals in the li-

terature to account for unobserved factors. For dynamic panel estimators with short time

dimension, Sarafidis & Robertson (2009) propose to apply time-specific demeaning which

alleviates the problem of parameter bias if the variance of the individual factor loadings

for the common factor models is small. Alternatively, if the impact of the common fac-

tor varies considerably by cross-sections, there are different estimation techniques, which

account for cross-sectional dependence by using cross-section averages of the dependent

and independent variables as additional regressors (see e.g. Pesaran, 2006).

Recently, various testing procedures have been developed to check for the presence

of cross-sectional dependence. Among the most commonly applied routines is Pesaran’s

(2007) extension to the standard Breusch & Pagan LM test. The so-called Cross-Section

Dependence (CD) test is based on the pairwise correlation coefficient of residuals from

a model specification that ignores the potential presence of cross-sectional dependence.

However, as Sarafidis & Wansbeek (2010) point out, the CD-Test has the weakness that it

may lack power to detect the alternative hypothesis under which the sign of the elements

of the error covariance matrix is alternating (thus for positive and negative correlation

in the residuals, e.g. for factor models with zero mean factor loadings). Moreover, the

test statistic requires normality of the residuals. Thus, Sarafidis et al. (2009) propose an

alternative testing procedure that does not require normality and is valid for fixed T and

large N . The testing approach designed for the Arellano-Bond (1991) and Blundell-Bond

(1998) GMM estimators is based on Sargan’s difference-test statistic for overidentifying

restrictions. The aim of the test is to examine whether there is still (heterogeneous) cross-

sectional dependence in the residuals after time-specific demeaning in the logic of Sarafidis

& Robertson (2009). The test has the following simple (C-Statistic based) form:4

CCD−GMM = (SF − SR)
d
→ χ2

hd
, (16)

where hd is the number of degrees of freedom of the test statistic as difference bet-

ween the set of instruments (number of moment conditions) in the full model (SF ) and

the restricted model (SR), where the GMM model has either the Arellano-Bond or the

Blundell-Bond form augmented by time-specific dummy variables. The corresponding null

4Where the C-statistic is defined according to Eichenbaum et al. (1988) as the difference between two Sargan/Hansen
J-statistics for an unrestricted and restricted IV/GMM-model.
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hypothesis of the Sargan’s difference-test tests is that there is homogeneous cross-section

dependence in the model versus the alternative of heterogeneous cross-section dependence

as:5

H0 : Var(φi) =
∑

φ = 0 versus: H1 :
∑

φ 6= 0. (17)

The restricted (sub-)set of moment conditions thereby only includes instruments from

regressors in the vector Xi,t (according to eq.(11)) that remain strongly exogenous in the

sense that their factor loadings are mutually uncorrelated with the cross-section specific

parameter of the the common factor. Sarafidis et al. (2009) propose to likewise test for

the exogeneity of a subset of regressors by means of the standard Sargan’s/Hansen’s test

for overidentifying restrictions in a first step.6

Before estimating the model and testing for the appropriateness of alternative specifi-

cation we first discuss recent findings in the empirical literature and present some stylized

facts of German internal migration and regional economic and social characteristics. We

also check for the time-series properties of the variables involved in order to avoid any

spurious regression problem associated with non-stationary data.

4 What does the empirical literature say?

Testing for the empirical validity of the (baseline) neoclassical migration model for inter-

nal migration in European countries yields rather mixed results:7 Regional disparities in

(un-)employment are often shown to be important factors in determining migratory flows.

On the contrary, the influence of regional wage or income levels is difficult to prove in

many empirical examinations (see e.g. Pissarides & McMaster, 1990, as well as Jackman

and Savouri (1992) for British regions; Westerlund, 1997, for inter-regional migration in

Sweden, Devillanova & Garcia-Fontes, 2004, for Spain). Only for the Italian case Daveri

& Faini (1998) show that the regional wage level corresponds to the theoretically expec-

ted signal for the gross outward migration from southern to northern regions. Similar

results are found in Fachin (2007). Napolitano & Bonasia (2010) show that although the

coefficients for Italian labour market variables in the neoclassical migration model shows

the expected sign, due to the complexity of the internal migration process, the baseline

Harris-Todaro approach neglects important variables such as agglomeration forces measu-

5If only homogeneous cross-section dependence is present the inclusion of time-specific dummies variables is sufficient to
remove any bias in the estimation approach, see e.g. Sarafidis & Robertson (2009).

6One has to note that instruments derived from transformations the lagged endogenous regressor cannot be included in
the subset of strictly exogenous moment conditions to test for the null hypothesis of homogeneous cross-section dependence.

7This section draws on Alecke et al., 2010.
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red by population density and human capital. The latter variable is also found significant

besides the standard labour market variables in an inter-regional migration model for the

Polish transition process (see Ghatak et al., 2008).

For German interregional migration, Decressin (1994) examined gross migration flows

for West German states up to 1988. His results show that a wage increase in one region

relative to others causes a disproportional rise in the gross migration levels in the first

region, while a rise in the unemployment in a region relative to others disproportionally

lowers the gross migration levels. Decressin does not find a significant connection between

bilateral gross migration and regional differences in wage level or unemployment when

purely cross-sectional estimate are considered. Difficulties in proving a significant influence

of regional wage decreases on the migratory behavior within Germany are also found

in earlier empirical studies based on micro-data directly addressing the motivation for

individual migratory behavior in Germany. Among these are Hatzius (1994) for the West

German states, and Schwarze and Wagner (1992), Wagner (1992), Burda (1993) and

Buechel & Schwarze (1994) for East Germany. Subsequent studies succeed in qualifying

the theoretically unsatisfactory result of an insignificant wage influence: Schwarze (1996)

shows that by using the expected wage variables instead of the actual ones, the wage

drop between East German and West German states has a significant influence on the

migratory behavior.8 In a continuation of Burda (1993), Burda et al. (1998) also indicates

a significant non-linear influence on household income.

Contrary to earlier evidence, in recent macroeconomic studies with an explicit focus

on intra-German East-West migration flows, regional wage rate differentials are broadly

tested to significantly affect migration flows (see e.g. Parikh & Van Leuvensteijn, 2003,

Hunt, 2000, as well as Burda & Hunt, 2001). The study of Parikh & Van Leuvensteijn

(2003) augments the core migration model with regional wage and unemployment diffe-

rentials as driving forces of interregional migration by various indicators such as regional

housing costs, geographical distance and inequality measures. For the sample period 1993

to 1995, the authors find a significant non-linear relationship between disaggregated re-

gional wage rate differences and East-West migration (of a U-shaped form for white-collar

workers and of inverted U-form for blue-collar workers), while unemployment differences

are tested be insignificant. The relationship between income inequality and migration did

not turn out to be strong.

According to Hunt (2000) and Hunt & Burda (2001), wage rate differentials and especi-

8This result is also confirmed in Brücker & Trübswetter (2004). The latter study also focuses on the role of self-selection
in East-West migration, finding that East-West migrants receive a higher individual wage compared to their non-migrating
counterparts after controlling for the human capital level.
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ally the fast East-West convergence are also a significant indicator in explaining observed

state-to-state migration patterns. Using data from 1991 to 1999, Hunt & Burda (2001)

find that the decline in East-West migration starting from 1992 onwards can almost exclu-

sively be explained by wage differentials and the fast East-West wage convergence, while

unemployment differences do not seem to play an important part in explaining actual

migration trends.9 In a recent application, Alecke et al. (2010) apply Panel VAR techni-

ques to analyse the simultaneous impact of labour market variables to migration and vice

versa for German Federal States between 1991 and 2006. The results broadly support the

neoclassical migration model and show that migration itself has an equilibrating effect

on labour market differences. The authors also find evidence for structural differences

between the West and East German macro regions in the migration equation, similar to

findings for an Italian ’empirical puzzle’ with a distinct North-South division in terms of

the magnitude of the migration response with respect to labour market signals (see e.g.

Fachin, 2007, and Etzo, 2007).

5 Data and stylized facts of German internal migration

Given the heterogeneity found in the international empirical literature in predicting inter-

regional migration flows, we take these results as a starting point for an updated regression

approach based on German spatial planning units between 1996 and 2006. For empirical

estimation we use regional data for the 97 German Spatial Planning Regions (so called

Raumordnungsregionen) as the level of analysis for spatial migration processes within

Germany (see e.g. Bundesinstitut fuer Bau-, Stadt-, und Raumforschung, 2010, for details

about the concept of Spatial Planning Regions). The time period used for estimation

ranges from 1996 to 2006. We have chosen to restrict our estimation approach to this

period since the regional boundaries of the German Spatial Planning Regions have changed

before and after, which may introduce a measurement problem that is likely to bias our

empirical results.

We use variables for regional net migration, population, real income, the unemployment

rate, human capital endowment, international competitiveness of regions and commuting

flows. The latter has been included to account for an alternative adjustment mechanism

to balance labour market disequilibria. We also include two sets of dummy variables in-

to the migration model: 1.) binary dummy variables for the 16 federal states to capture

macro regional differences. This may be especially important to account for structural

9For a critical reflection of the results of Hunt & Burda (2001) see e.g. Yellen (2001) and Wolff (2006).
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differences between West and East Germany (see e.g. Alecke et al., 2010, for recent fin-

dings); 2.) binary dummy variables for different regional settlement types ranging from

metropolitan agglomerations to rural areas (in total 7 different categories based on their

absolute population size and population density). As Napolitano & Bonasia (2010), point

out variables measuring population density may be an important factor in explaining the

regional amenities. Variable definitions and descriptive statistics are provided in table 1

to 3.

<<< Table 1 to table 3 about here >>>

In order to show some distinct regional and macro-regional differences for net migrati-

on and explanatory variables, figure 1 to figure 6 additionally visualize the above shown

descriptive statistics for net migration and labour market variables. As figure 1 shows

for both periods 1996 and 2006, the net in-migration flows show a high level of persis-

tence with huge net losses for the northern south-western regions in East Germany. Also,

the Western regions along the border to East Germany experienced net outflows. On

the other hand the northern West German Spatial Planning Regions around the urban

agglomerations Hamburg and Bremen are among the net inflow regions as well as the

western agglomerated regions in the Rhineland (around the metropolitan areas Cologne

and Duesseldorf) and the southern West German regions in Baden Wuerttemberg and

Bavaria. Among the few regions in East Germany with net migration inflows is the belt

of regions around Berlin. Looking at net migration trends by age-groups in figure 2 and

3 the graphs show that especially net outflows of the East German regions are especially

prevailing for the age-group of young persons between 18 and 25 years. This may give

a first indication that the labour market situation is poor in terms of qualification and

employment for the young workforce. For the other workforce relevant age-groups, the

spatial distribution of net in- and out-flow regions is more heterogeneous, while especial-

ly the middle German regions lose population due to internal migration throughout the

period 1996 to 2006. Looking at the broad picture for the elderly age-groups (50 to 65, as

well as above 65 years), here we see that both the north German coastal regions as well

as the southern regions close to Austria and Switzerland gain considerable population

through net in-migration. This trend may be interpreted in terms of regional amenities

via special topographical advantages, which guide migration flows.

The spatial distribution of regional labour market variables is shown in figure 4 for

real income in the periods 1996 and 2006 as well as regional unemployment rates (figure

5) for the same time period. Figure 4 for real income per capita shows a clear West-East
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division, which remains rather stable over time. The regions with the highest income levels

both in 1996 and 2006 are the northern regions around Hamburg, the Western regions in

the Rhineland as well as large parts of the southern Federal States Baden-Wuerttemberg

(especially around Stuttgart) and Bavaria (around Munich). Since these regions were

also found to have large net in-migration flows (both overall as well as for the workforce

relevant age-groups), this may give a first hint at the positive correlation of migration

flows and regional income levels as suggested by the neoclassical migration model.

As figure 5 shows for regional unemployment rates, here a strong negative correlati-

on with net migration inflows may be expected especially for the East German Spatial

Planning Regions, which face on average much higher rates than the West German coun-

terparts. Again this picture remains relatively stable over time. Finally, figure 6 plots the

classification of regional settlement type according to the BBSR definition (see table 1).

Compared to the highly agglomerated areas around the urban centers Hamburg, Berlin,

Stuttgart and Munich also large parts of Nordrhine-Westphalia show a strong agglome-

ration of population. On the contrary, especially the northern parts in East Germany as

well as South-Eastern regions in Bavaria are classified as rural areas. The same also holds

for the middle German regions in the state-level border zones of Thuringia, Hessen and

Bavaria. These graphical findings thus support the hypothesis from above that regions

with a high population density on average attract further migrants.

<<< Figure 1 to figure 6 about here >>>

6 Empirical Results for the Neoclassical Migration Model

For the migration model of eq.(7) and eq.(8) we apply different static and dynamic panel

data estimators. Before estimating the empirical migration model we look at the time

series properties of the variables involved in order to avoid the risk of running a spurious

regression for non-stationary variables (with T = 11). We therefore report the test results

of different panel unit root tests including the Levin-Lin-Chu (2003) and Im-Pesaran-Shin

(2003) unit root tests as well as Pesaran’s (2007) CADF test. The latter approach has

the advantage that it is relatively robust with respect to cross-sectional dependence in

the variable (see e.g. Baltagi et al., 2007, as well as de Silva et al., 2009, for extensive

Monte Carlo simulation evidence). As the results in table 4 shows for almost exclusively

all variables and test specifications, the null hypothesis of non-stationarity of the series

under observation can be rejected. Only for the (rest of the country) aggregate of the
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unemployment rate the Levin-Lin-Chu test could not reject the null of non-stationarity.

However, the LLC-test rejects the null hypothesis of an integrated time series if the

unemployment rate is transformed into regional differences (ũij,t). Thus, given the overall

picture presented by the panel unit root tests it seems reasonable to handle the variables

as stationary processes so that we can also run regressions in levels (as it is the case for

Blundell-Bond System GMM) without running the risk of spurious regression results. The

estimation results are reported in the next section.

<<< Table 4 about here >>>

For estimation we start from an unrestricted presentation of the baseline model inclu-

ding the core labour market variables real income (y) and unemployment rates (u) and

test for parameter constraints according to eq.(9) and eq.(10). As the results in table 5

show for almost all model specifications the null hypothesis for equal parameter cannot

be rejected on the basis of standard Wald tests. Compared to the the static specification

in column 2, the (relative) RMSE criterion of the model strongly increases if we add a

dynamic component to the migration equation. The RSME for each equation is thereby

computed as the ratio compared to the RMSE of the static POLS benchmark specification

in column 1. As discussed above the POLS, REM and FEM estimators are biased for dy-

namic panel data models. We thus compute a corrected FEM specification as proposed e.g.

in Kiviet (1995) as well as the Arellano-Bond (1991) und Blundell-Bond (1998) system

GMM estimators. According to the relative RMSE criterion the Blundell-Bond system

GMM specification has the smallest forecast error. The coefficients for labour market

signals are statistically significant and of expected signs. Moreover the SYS-GMM speci-

fication passes standard tests for autocorrelation in the residuals (m1 and m2 statistic)

as well as the Hansen J-statistic for instrument validity. The reported C-statistic for the

exogeneity of the instruments in the level equation shows the validity of the augmented

approach in extension to the standard Arellano-Bond first differenced model.

<<< Table 5 about here >>>

We then use the SYS-GMM approach to test for the significance of different extensions

of the baseline Harris-Todaro model. We start by including a dummy variable for the East

German Spatial Planing Regions (see table 6). The motivation for this approach is to test

for the significance of the so-called East German empirical puzzle, where a relatively high
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degree of migratory interregional immobility was found to coexist with large regional

labour market disparities. Fachin (2007) and Etzo (2007) report similar results to hold

for Italian South-North migration trends, while Alecke & Untiedt (2000) as well as Alecke

et al. (2010) identify such effects for German East-West migration throughout the 1990s.

However, the latter study found that along with a second wave of East-West movements

in early 2000 net flows out of East Germany on the contrary were much higher than

expected after controlling for its weak labour market and macroeconomic performance.

Since this trend was accompanied by a gradual fading out of economic distortions, this

supports the view of ”repressed” migration flows for that period. As the result in table 6

show for the period 1996 to 2006 we find a statistically significant positive East German

dummy, which indicates higher net in-migration balances for the East German Spatial

Planning Regions than their labour market performance would suggest. To get further

insights we also estimate a specification which includes Federal state level fixed effects.

The results for the state dummies in the baseline model are reported in table 7 (column 1)

and are graphically shown in figure 7. The fixed effects for federal states, which represent

remaining time-fixed macro regional influential factors for the regional net in-migration

rate, are statistically significant for many cases.

<<< Table 6 and table 7 about here >>>

<<< Figure 7 about here >>>

As the figure highlights, for all six East German state dummies we get statistically

significant and positive coefficients. Negative coefficients are found for the West German

states Baden Wuerttemberg, Bavaria and Hessen. A Wald test for joint effect of the set

of state dummies turns out to be highly significant. For both models (including the East

German dummy and the set of state dummies), the impact of labour market variables is

of expected sign and higher than in the baseline specification.

We then also add further variables as discussed above. Here, the results show that

higher net in-commuting levels are negatively correlated with the net in-migration ra-

te, indicating that both types are alternative adjustment mechanisms to reduce labour

market disparities. Adding a set of binary dummy variables for different settlement types

(classified by size of local urban centers and population density, see table 1 for details) re-

veals further structural differences in inter-regional migration patterns. Next to rural areas

with low population density, agglomeration regions of Type 2 and 4 also show significantly
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lower net in-migration rates relative to benchmark category Type 1 (highly agglomerated

area with regional urban center above 100,000 persons and population density above 300

inhabitants/sqm). This may hint at the role played by regional centers of agglomeration in

attracting migration flows and may be interpreted in favour of a ’reurbanisation’ process

in Germany for the period 1996 to 2006. Similar trends were also reported in Swiaczny

et al. (2008).10 Finally, testing for the effects of regional human capital endowments and

international competitiveness shows mixed results. While the proxy for the latter variable

in terms of foreign turnover relative to total turnover in manufacturing sector industries

shows the expected positive effect on net in-migration, the regional endowment with hu-

man capital is insignificant. This finding corresponds to recent results for Spain between

1995–2002, where regional differences in human capital do not help to explain migration

flows (see Maza & Villaverde, 2004). The latter may be explained by the fact that not

the region specific stock of human capital but rather the individual endowment of the

prospective migrant is the appropriate level of measurement. However, the latter variable

is not observable for regional data.

In order to check for the appropriateness of our augmented SYS-GMM specifications,

we perform a variety of of postestimation tests for instrument appropriateness, temporal

and cross-sectional dependence of the error term. The test results are reported in table 6.

With respect to IV appropriateness and temporal autocorrelation of the error terms, all

model specifications shows satisfactory results. In order to control for cross-sectional error

dependence due to unobserved common factors, we first add year dummies to our model

specification, which also turn out to be jointly significant. We then apply the Sargan’s

difference test for the SYS-GMM model (CCDGMM) as described above, which tests for

the nature of the cross-sectional dependence given unobserved common factors as being

homogeneous our heterogeneous among regions. In order to run the test, we first need

to judge whether the set of explanatory variables (excluding instruments for the lagged

endogenous variable) is exogenous with respect to the combined error term. This can be

easily tested by means of a Sargan/Hansen J-statistic based overidentification test. As

the results in table 6 show, only those model specification which include fixed state effects

pass the overidentification test for the vector of explanatory variables. For these equations

we could then apply CCDGMM from eq.(16) in order to test for the existence of hetero-

geneous factor loading for the common factor structure of the error terms as proposed

by Sarafidis et al. (2009). The test results do not indicate any sign of misspecification

after including period-fixed effects for standard significance levels. In sum, the augmented

10The authors argue that throughout the process of demographic change in Germany city core regions may gain in
demographic terms from young migrants, while suburban and rural areas are expected to face increasing migration losses.
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neoclassical migration equation shows to be an appropriate representation of the data

generating process and highlights the role of key labour market variables in explaining

net in-migration rates for German Spatial Planning regions.

7 Sensitivity analysis: Disaggregate estimates by age groups

Given the supportive findings for the neoclassical migration model at the aggregate level,

we finally aim to check for the sensitivity of the results when different disaggregated

age groups are used. Detailed results for the baseline and augmented specification of the

migration model are shown in table A.1 and table A.2 in the appendix.11 We are especially

interested to analyse whether the estimated coefficients for the labour market signals

change for different age-groups. Indeed, the results show that the migratory response to

labour market variables is much higher for workforce relevant age groups. The resulting

coefficient size for real income and unemployment rate differences together with 95%

confidence intervals for the estimated models are plotted in figure 8 and 9.

<<< Figure 8 and Figure 9 about here >>>

The coefficient for real income differences in figure 8 shows a clear inverted U-shape

when plotted for the different age-groups in ascending order. While for migrants up to

18 year real income difference do not seem to matter, especially for migrants with an

age between 18 to 25 years and 25 to 30 years the estimated coefficient is statistically

significant and much higher compared to the overall migration equation from table 6. For

older age-groups the effect reduces gradually. The results are found to be very similar for

the baseline and augmented migration specification (see figure 8). Similar results were

found for regional unemployment rate differences, which are found to be almost equally

important for age groups until 50 years and only show much smaller and partly insignifi-

cant coefficient signs for elderly age groups. If we look at the distribution of the state-level

fixed effects for each estimated age-group specification, the estimation results show that

the positive dummy variable coefficients for the East German states particularly hold for

the workforce relevant age groups. The results are graphically shown in figure 10 for the

baseline migration model (detailed results for the estimated coefficients of the baseline

and augmented specification are reported in the the appendix).

11For the augmented migration model we choose a specification including commuting flows as well as settlement structure
and state level fixed effects in order to guarantee a high number of observations in the sample.
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<<< Figure 10 about here >>>

Finally, table 8 computes the ’relative importance’ of the labour market variables by

age-groups with respect to net migration flows. Thereby, the relative importance refers

to the quantification of an individual regressors contribution to a multiple regression

model (see e.g. Groemping, 2006, for an overview). This allows us to further answer

the question, in how far our estimation results support the prominent role of labour

market conditions in guiding internal migration rates (of the workforce population) in

Germany. Table 8 calculates to specifications either based on the squared correlation of

the respective regressor with the dependent variables (univariate R2, specification A) as

well as the standardized estimated SYS-GMM coefficents from the augmented migration

model in table A.2. This latter metric for assessing the relative importance of regressors

has the advantage over the simple benchmark in specification A since it accounts for the

correlation of regressors. As the table shows both methods assign a significant share for the

two key labour market variables in predicting migration flows, especially for the workforce

population (up to 50% joint contribution in Specification A for age-group 18 to 25 years

and even up to 65% for age-group 25 to 30 years in Specification B). The SYS-GMM

thereby on average assigns a stronger weight to real income differences in explaining net

in-migration relative to unemployment differences. However, the overall picture confirms

our interpretation of the regression tables in assigning a prominent role to labour market

imbalances in driving German internal migration.

<<< Table 8 about here >>>

8 Conclusion

In this paper we have analysed the explanatory power of the neoclassical migration model

in describing aggregate and age-group specific internal migration trends for 97 German

Spatial Planning regions throughout the period 1996–2006. Our results based on model

specifications for dynamic panel data estimators give strong evidence in favor for the

neoclassical inspired Harris-Todaro model. Both real income differences as well as un-

employment rate disparities are found to be statistically significant with expected signs.

That is, a real income increase in region i relative to region j leads to higher net migration

inflows to i from j; on the contrary, a rise in the regional unemployment rate in i leads to

lower net inflows. Given these responses to labour market signals, migration flows act as

a spatial adjustment mechanism and equilibrate regional labour market differences. The
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results of the standard neoclassical migration model remain stable if commuting flows,

the regional human capital endowment, the region’s international competitiveness as well

as differences in the settlement structure are added as further explanatory variables. The

inclusion of the regional net in-commuting rate shows a negative correlation with migra-

tion underlying the substitutive nature of the two variables. Also, an increasing level of

international competitiveness attracts further in-migration flows. We also find hetero-

geneity for different types of regional settlement structure proxied by population density

and we observe structural differences for the two East-West macro regions (by including

individual federal state level fixed effects or an combined East German dummy). We

finally estimate the migration model for age-group specific subsamples of the data. Here

the impact of labour market signals is found to be of greatest magnitude for workforce

relevant age-groups (18 to 25, 25 to 30 and 30 to 50 years). This latter result underlines

the prominent role played by labour market conditions in guiding internal migration rates

of the working age population in Germany.

References

[1] Ahn, S.; Schmidt, P. (1995): ”Efficient estimation of models for dynamic panel

data”, in: Journal of Econometrics, Vol. 68, pp. 5-27.

[2] Alecke, B.; Mitze, T.; Untiedt, G. (2010): ”Internal Migration, Regional Labour

Market Dynamics and Implications for German East-West-Disparities - Results from a

Panel VAR”, in: Jahrbuch für Regionalwissenschaft (online first).

[3]Alecke, B.; Untiedt, G. (2000): ”Determinanten der Binnenwanderung in Deutsch-

land seit der Wiedervereinigung”, Working Paper, University of Münster.

[4] Arellano, M. (1989): ”A Note on the Anderson-Hsiao Estimator for Panel Data”,

in: Economic Letters, Vol. 31, pp.337-341.

[5] Arellano, M.; Bond, S. (1991): ”Some tests of specification for panel data: Monte

Carlo evidence and an application to employment equations”, in: Review of Economic

Studies, Vol. 58, pp. 277-297.

[6] Arellano, M.; Bover, O. (1995): ”Another look at the instrumental-variable esti-

mation of error-components models”, in: Journal of Econometrics, Vol. 68, pp. 29-52.

[7] Baltagi, B. (2008): ”Econometric Analysis of Panel Data, 4th edition, Wiley.

21



[8] Baltagi, B.; Bresson, G.; Pirotte, A. (2007): ”Panel unit root tests and spatial

dependence”, in: Journal of Applied Econometrics, Vol. 22(2), pp. 339-360.

[9]Baltagi, B.; Blien, U.; Wolf, K. (2007): ”Phillips Curve or Wage Curve? Evidence

from West Germany 1980-2004”, IAB Discussion paper No. 14/2007.

[10] Blanchflower, D.G.; Oswald, A.J. (1994): ”The Wage Curve”, MIT Press,

Cambridge MA.

[11] Blundell, R.; Bond, S. (1998): ”Initial conditions and moment restrictions in

dynamic panel data models”, in: Journal of Econometrics, Vol. 87, pp. 115-143.

[12] Bond, S.; Hoeffler, A.; Temple, J. (2001): ”GMM Estimation of Empirical

Growth Models”, CEPR Discussion Paper No. 3048.
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Table 1: Variable definition and data sources

Variable Description Source
NM Net migration defined as in- minus outmigration German Statistical Office
NM(to18) Net migration for persons under 18 years German Statistical Office
NM(18to25) Net migration for persons between 18 and 24 years German Statistical Office
NM(25to30) Net migration for persons between 25 and 29 years German Statistical Office
NM(30to50) Net migration for persons between 30 and 49 years German Statistical Office
NM(50to65) Net migration for persons between 50 and 65 years German Statistical Office
NM(over65) Net migration for persons 65 years and above German Statistical Office
POP Population Level VGRdL
Y Gross Domestic Product (real) per Person VGRdL
UR Unemployment Rate Federal Employment Agency
COMM Net Commuting level defined as in- minus

outcommuting
German Statistical Office

HK Human Capital level defined as %-share of
employees with university degree relative to total
employees

German Statistical Office

INTCOMP International Competitiveness proxied by foreign
turnover relative to total turnover in manufacturing
industries

German Statistical Office

EAST Binary dummy variable for regions in East
Germany

own calculation

STATE Set of binary dummies for each of the 16 Federal
States

own calculation

TIME Set of year specific time dummies for sample period
1996 to 2006

own calculation

SETTLE Set of binary dummies for types of settlement
structure with:

Federal Institute for Research
on Building, Urban Affairs and
Spatial Development (BBSR)

Type1: Highly agglomerated area with regional
urban center above 100.000 persons and population
density above 300 inhabitants/sqm
Type2: Highly agglomerated area with regional
urban center above 100.000 persons and population
density below 300 inhabitants/sqm
Type3: Agglomerated area with population density
above 200 inhabitants/sqm
Type4: Agglomerated area with regional urban
center above 100.000 persons and population
density between 100-200 inhabitants/sqm
Type5: Agglomerated area without regional urban
center above 100.000 persons and population
density between 150-200 inhabitants/sqm
Type6: Rural area with population density above
100 inhabitants/sqm
Type7: Rural area with population density below
100 inhabitants/sqm

i index for region i (region in focus)
j index for region j (rest of the country aggregate)
t time index
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Table 2: Descriptive statistics for continuous variables in the sample

Variable Obs. Mean Std. Dev. Min Max Unit
INM 1067 0.00 7.21 -95.90 37.01 in 1000 persons
INM (to18) 1067 0.00 1.91 -24.41 32.41 in 1000 persons
INM (18to25) 1067 0.00 1.85 -12.97 15.76 in 1000 persons
INM (25to30) 1067 0.00 1.27 -9.93 12.42 in 1000 persons
INM (30to50) 1067 0.00 2.48 -30.99 8.24 in 1000 persons
INM (50to65) 1067 0.00 0.91 -10.61 1.82 in 1000 persons
INM (over65) 1067 0.00 0.62 -7.05 1.23 in 1000 persons
POP 1067 848.10 607.13 226.29 3466.52 in 1000 persons
Y 1067 51.23 7.49 34.02 80.01 in 1000 Euro
UR 1067 11.84 4.94 4.37 26.18 in %
COMM 873 -33.49 37.44 -177.73 36.31 in 1000 persons
HK 873 7.30 2.71 2.88 16.81 in %
INTCOMP 946 30.05 11.42 0.82 61.12 in %

Table 3: Descriptive statistics for binary variables in the sample

Variable Obs. % with
X = 1

EAST 1067 23.7
Federal State Level Dummies
BW 1067 12.4
BAY 1067 18.5
BER 1067 1.0
BRA 1067 5.2
BRE 1067 1.0
HH 1067 1.0
HES 1067 5.1
MV 1067 4.1
NIE 1067 13.4
NRW 1067 13.4
RHP 1067 5.1
SAAR 1067 1.0
SACH 1067 5.1
ST 1067 4.1
SH 1067 5.1
TH 1067 4.1
Settlement Type Dummies

Type1 1067 15.5
Type2 1067 15.5
Type3 1067 17.5
Type4 1067 17.5
Type5 1067 8.2
Type6 1067 15.4
Type7 1067 10.3

Note: BW = Baden-Wurttemberg, BAY = Bavaria, BER = Berlin, BRA = Brandenburg, BRE = Bremen, HH
= Hamburg, HES = Hessen, MV = Mecklenburg-Vorpommern, NIE = Lower Saxony, NRW = North
Rhine-Westphalia, RHP = Rhineland-Palatine, SAAR = Saarland, SACH = Saxony, ST = Saxony-Anhalt, SH
= Schleswig-Holstein, TH = Thuringia.
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Figure 1: Spatial Distribution of Net In-Migration Flows for German Regions

Figure 1: 1996

Figure 2: 2006
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Figure 2: Net In-Migration by Age Groups for German Regions in 1996
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Figure 3: Net In-Migration by Age Groups for German Regions in 2006
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Figure 4: Spatial Distribution of Real Income in German Regions

Figure 5: Spatial Distribution of Unemployment Rate in German Regions
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Figure 6: Regional Settlement Structure by Size of Urban Centres and Population Density

Note:

Type1 = Highly agglomerated area with regional urban center above 100.000 persons and population
density above 300 inhabitants/sqm
Type2 = Highly agglomerated area with regional urban center above 100.000 persons and population
density below 300 inhabitants/sqm
Type3 = Agglomerated area with population density above 200 inhabitants/sqm
Type4 = Agglomerated area with regional urban center above 100.000 persons and population density
between 100-200 inhabitants/sqm
Type5 = Agglomerated area without regional urban center above 100.000 persons and population
density between 150-200 inhabitants/sqm
Type6 = Rural area with population density above 100 inhabitants/sqm
Type7 = Rural area with population density below 100 inhabitants/sqm

Table 4: Results of Panel unit root tests for variables in the migration model

Test used: p-val.
LLC

Lags p-val.
IPS

Lags p-val.
CADF

Lags

H0: All series are non-stationary

nmij,t (0.00) 1.47 (0.03) 1.47 (0.00) 1.00
ui,t (0.00) 3.20 (0.00) 3.20 (0.00) 1.00
uj,t (0.99) 3.81 (0.00) 0.22 (0.00) 1.00
yi,t (0.00) 1.35 (0.00) 1.35 (0.00) 1.00
yj,t (0.00) 0.00 (0.00) 0.00 (0.00) 1.00
ũij,t (0.00) 3.30 (0.00) 3.30 (0.00) 1.00
ỹij,t (0.00) 1.44 (0.00) 1.44 (0.00) 1.00

Note: Including a constant term; optimal lag length selected according to the AIC information criterion for the
LLC and IPS test. The Pesaran CADF test includes one lag and a potential time trend in the estimation
equation.
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Table 5: Baseline Specifications of the Neoclassical Migration Model for German Spatial Planning Regions

Dep. Var.: nmij,t POLS POLS POLS REM FEM FEMc AB-GMM SYS-GMM

nmij,t−1 0.90∗∗∗ 0.90∗∗∗ 0.78∗∗∗ 0.92∗∗∗ 0.84∗∗∗ 0.88∗∗∗

(0.011) (0.011) (0.022) (0.031) (0.001) (0.001)
ui,t−1 -0.74∗∗∗

(0.114)
uj,t−1 0.64∗

(0.399)
ũij,t−1 -0.72∗∗∗ -0.05 -0.05 -0.32∗∗ -0.28∗ -0.53∗∗∗ -0.19∗∗∗

(0.114) (0.041) (0.041) (0.166) (0.166) (0.023) (0.006)
yi,t−1 0.07

(0.315)
yj,t−1 -0.14

(0.378)
ỹij,t−1 0.07 0.12 0.12 -0.26 -0.10 0.25∗∗∗ 0.03∗∗

(0.314) (0.108) (0.112) (0.372) (0.374) (0.066) (0.014)
No. of obs. 1067 1067 1067 1067 1067 1067 1067 1067
No. of groups 97 97 97 97 97 97 97 97
No. of years 11 11 11 11 11 11 11 11
βui

= −βuj
(0.83) (0.60 (0.42) (0.11) (0.19) (0.00) (0.14)

βyi
= −βyj

(0.76) (0.60) (0.24) (0.39) (0.59) (0.58) (0.14)
m1 and m2 (0.42)/(0.24) (0.35)/(0.24)
J-Stat. Overall Passed Passed
C-Stat. LEV-EQ Passed
Time Dummies (11) No Yes Yes Yes Yes Yes Yes Yes
Relative RMSE 1 1.07 0.38 0.38 0.41 0.39 0.43 0.38

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. Standard Errors in brackets.
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Figure 7: State level effects for German States in the Aggregate Baseline Migration Model

Note: For details of calculation see table 7.

Figure 10: State level effects Effects in Baseline Migration Model by States and Age

Note: For details of calculation see table A.1 and table A.2.

34



Table 6: Augmented Neoclassical Migration Model for German Spatial Planning Regions

nmij,t SYS-GMM

nmij,t−1 0.87∗∗∗ 0.87∗∗∗ 0.89∗∗∗ 0.87∗∗∗ 0.86∗∗∗ 0.89∗∗∗

(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)
ũij,t−1 -0.33∗∗∗ -0.52∗∗∗ -0.25∗∗∗ -0.58∗∗∗ -0.86∗∗∗ -0.86∗∗∗

(0.008) (0.022) (0.030) (0.034) (0.060) (0.058)
ỹij,t−1 0.47∗∗∗ 0.48∗∗∗ 0.30∗∗∗ 1.25∗∗∗ 0.84∗∗∗ 1.05∗∗∗

(0.046) (0.11) (0.047) (0.118) (0.172) (0.225)
EAST 0.29∗∗∗ 0.63∗∗∗

(0.016) (0.045)
COMM -0.02∗∗∗ -0.02∗∗∗ -0.05∗∗∗ -0.05∗∗∗

(0.002) (0.002) (0.006) (0.007)
HK 0.004

(0.011)
INTCOMP 0.05∗∗

(0.021)
Type of Settlement Structure

Type 2 -0.07∗∗ -0.53∗∗∗ -0.40∗∗∗

(0.035) (0.143) (0.126)
Type 3 0.01 -0.10 -0.02

(0.039) (0.083) (0.088)
Type 4 -0.12∗∗∗ -0.24∗∗∗ -0.16∗

(0.041) (0.085) (0.082)
Type 5 0.02 -0.12 -0.01

(0.049) (0.088) (0.095)
Type 6 -0.05 -0.08 0.04

(0.047) (0.094) (0.107)
Type 7 -0.05 -0.29∗∗∗ -0.15

(0.045) (0.110) (0.117)

No. of obs. 1067 1067 873 873 873 753
Time Dummies (11) 167.9∗∗∗ 12.4∗∗∗ 32.3∗∗∗ 12.8∗∗∗ 16.5∗∗∗ 6.4∗∗∗

State Dummies (16) No 21.7∗∗∗ No No 26.6∗∗∗ 27.8∗∗∗

m1 (0.38) (0.37) (0.50) (0.57) (0.55) (0.64)
m2 (0.24) (0.24) (0.21) (0.20) (0.20) (0.20)
J-Stat. Overall (0.52) (0.67) (0.16) (0.12) (0.31) (0.22)
C-Stat. LEV-EQ (0.99) (0.99) (0.76) (0.63) (0.97) (0.57)
C-Stat. Exog. Var. (0.07) (0.99) (0.00) (0.00) (0.33) (0.11)
C-Stat. CD-GMM (0.58) (0.35) (0.57)

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. In the regressions
including the regional settlement structure the dummy for higly agglomerated areas of Type1 is excluded and
thus serves as the benchmark category for the further settlement type dummies. Standard Errors in brackets.
For m1, m2, J- and C-Statistic test results p-values are reported.
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Table 7: Estimated state level effects in Migration Models

Model: Baseline Augmented

BW -0.22∗∗∗ -0.27∗∗∗

(0.023) (0.079)
BAY -0.18∗∗∗ -0.39∗∗∗

(0.019) (0.119)
BER 0.42∗∗ 1.12∗∗∗

(0.188) (0.264)
BRA 0.38∗∗∗ 0.63∗∗∗

(0.045) (0.137)
BRE 0.20 1.23∗∗

(0.255) (0.492)
HH -0.18 1.08∗

(0.346) (0.553)
HES -0.15∗∗∗ -0.32∗∗

(0.030) (0.125)
MV 0.34∗∗∗ 0.53∗∗∗

(0.045) (0.125)
NIE -0.02 -0.05

(0.021) (0.105)
NRW -0.03 0.02

(0.026) (0.059)
RHP -0.09∗∗∗ -0.67∗∗∗

(0.023) (0.129)
SAAR -0.01 -0.49

(0.254) (0.583)
SACH 0.37∗∗∗ 0.79∗∗∗

(0.052) (0.174)
ST 0.33∗∗∗ 0.23∗

(0.047) (0.133)
SH 0.06∗∗ 0.07

(0.024) (0.107)
TH 0.32∗∗∗ 0.19

(0.037) (0.154)

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. BW =
Baden-Wurttemberg, BAY = Bavaria, BER = Berlin, BRA = Brandenburg, BRE = Bremen, HH = Hamburg,
HES = Hessen, MV = Mecklenburg-Vorpommern, NIE = Lower Saxony, NRW = North Rhine-Westphalia,
RHP = Rhineland-Palatine, SAAR = Saarland, SACH = Saxony, ST = Saxony-Anhalt, SH =
Schleswig-Holstein, TH = Thuringia. Baseline results according to column 8 in table 5, augmented model results
according to column 5 in table 6.
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Figure 8: Coefficients for Real Income Differences (ỹij,t−1) by Age Groups

Note: For details of calculation see table A.1 and table A.2. Dotted lines are 95% convidence intervals.

Figure 9: Coefficients for Unemployment Rate Differences (ũij,t−1) by Age Groups

Note: For details of calculation see table A.1 and table A.2. Dotted lines are 95% convidence intervals.

37



Table 8: Relative Contribution of Labour Market Variables in Explaining Migration Flows

Specification A Specification B
Age-Group yij,t−1 uij,t−1 Joint yij,t−1 uij,t−1 Joint

Up to 18 1% 3% 4% 0% 19% 19%
18 to 25 29% 21% 50% 19% 8% 27%
25 to 30 18% 14% 31% 54% 11% 65%
30 to 50 1% 5% 6% 5% 8% 13%
50 to 65 1% 1% 1% 2% 0% 2%
Over 65 1% 0% 2% 1% 1% 2%

Note: Specification A is based on the computation of the squared correlation of the respective regressor with the
dependent variables (univariate R2). Specification B is calculated using the estimated SYS-GMM coefficent from
the augmented migration model specification in table A.2. The estimation coefficient for regressor xk is further
standardized as β̂standardized,k = β̂k

√
skk√
syy

, where skk and syy denote the empirical variances of regressor xk and

the dependent variable y respectively. As long as one only compares regressors within models for the same y,
division by

√

syy is irrelevant.
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Table A.1: Baseline Migration Model based on System GMM Estimation

nmij,t To18 18to25 25to30 30to50 50to65 Over65

nmij,t−1 0.87∗∗∗ 0.86∗∗∗ 0.86∗∗∗ 0.87∗∗∗ 0.90∗∗∗ 0.88∗∗∗

(0.001) (0.005) (0.004) (0.002) (0.001) (0.002)
ũij,t−1 -0.78∗∗∗ -0.91∗∗∗ -0.78∗∗∗ -0.42∗∗∗ 0.19∗∗∗ -0.03

(0.044) (0.156) (0.148) (0.036) (0.019) (0.018)
ỹij,t−1 0.28∗∗ 3.73∗∗∗ 4.03∗∗∗ 0.25∗∗ -0.83∗∗∗ -0.59∗∗∗

(0.112) (0.406) (0.395) (0.102) (0.042) (0.043)

BW -0.31∗∗∗ -0.35∗∗∗ -0.37∗∗∗ -0.17∗∗∗ 0.11∗∗∗ 0.01
(0.035) (0.093) (0.093) (0.018) (0.016) (0.011)

BAY -0.28∗∗∗ -0.21∗∗∗ -0.20∗∗∗ -0.15∗∗∗ 0.07∗∗∗ -0.01
(0.031) (0.075) (0.077) (0.018) (0.016) (0.009)

BER 0.42∗∗∗ 1.67∗∗ 1.32 0.12 -0.17∗∗∗ -0.02
(0.144) (0.721) (0.937) (0.187) (0.054) (0.068)

BRA 0.59∗∗∗ 0.89∗∗∗ 1.12∗∗∗ 0.36∗∗∗ -0.24∗∗∗ -0.06∗∗∗

(0.044) (0.171) (0.156) (0.052) (0.019) (0.018)
BRE -0.06 1.95∗∗∗ -0.38 -0.03 0.04 -0.10∗∗∗

(0.256) (0.610) (0.470) (0.161) (0.107) (0.133)
HH -0.11 -0.12 -1.22 -0.12 0.07 0.09

(0.410) (0.712) (1.133) (0.018) (0.125) (0.160)
HES -0.18∗∗∗ -0.22∗ -0.27∗∗ -0.12∗∗∗ 0.09∗∗∗ 0.03

(0.045)) (0.133) (0.110) (0.018) (0.031) (0.027)
MV 0.48∗∗∗ 1.11∗∗∗ 1.19∗∗∗ 0.26∗∗∗ -0.31∗∗∗ -0.12∗∗∗

(0.047) (0.171) (0.164) (0.051) (0.022) (0.021)
NIE -0.01 0.14∗∗ 0.15∗∗ -0.02 -0.05∗∗∗ -0.04∗∗∗

(0.020) (0.065) (0.057) (0.017) (0.011) (0.007)
NRW -0.01 0.08 0.13∗ -0.02 -0.01 -0.01

(0.035) (0.065) (0.071) (0.019) (0.010) (0.008)
RHP -0.14∗∗∗ 0.15 0.08 -0.08∗∗∗ 0.02 -0.04∗∗∗

(0.035) (0.102) (0.089) (0.017) (0.026) (0.014)
SAAR 0.46 0.49 2.20∗∗ 0.07 0.11 0.03

(0.384) (0.764) (1.062) (0.153) (0.176) (0.082)
SACH 0.47∗∗∗ 1.33∗∗∗ 1.49∗∗∗ 0.24∗∗∗ -0.33∗∗∗ -0.15∗∗∗

(0.055) (0.194) (0.177) (0.052) (0.028) (0.022)
ST 0.53∗∗∗ 1.06∗∗∗ 1.17∗∗∗ 0.25∗∗∗ -0.35∗∗∗ -0.15∗∗∗

(0.088) (0.177) (0.178) (0.051) (0.020) (0.021)
SH 0.10∗∗∗ 0.18∗ 0.19∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.03

(0.030) (0.094) (0.056) (0.013) (0.013) (0.007)
TH 0.39∗∗∗ 1.42∗∗∗ 1.31∗∗∗ 0.21∗∗∗ -0.34∗∗∗ -0.18∗∗∗

(0.058) (0.212) (0.173) (0.048) (0.019) (0.018)
No. of obs. 1067 1067 1067 1067 1067 1067
Time Dummies (11) Yes Yes Yes Yes Yes Yes

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. BW =
Baden-Wurttemberg, BAY = Bavaria, BER = Berlin, BRA = Brandenburg, BRE = Bremen, HH = Hamburg,
HES = Hessen, MV = Mecklenburg-Vorpommern, NIE = Lower Saxony, NRW = North Rhine-Westphalia,
RHP = Rhineland-Palatine, SAAR = Saarland, SACH = Saxony, ST = Saxony-Anhalt, SH =
Schleswig-Holstein, TH = Thuringia.
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Table A.2: Augmented Migration Model based on System GMM Estimation

nmij,t To18 18to25 25to30 30to50 50to65 Over65

nmij,t−1 0.86∗∗∗ 0.85∗∗∗ 0.87∗∗∗ 0.87∗∗∗ 0.90∗∗∗ 0.84∗∗∗

(0.002) (0.006) (0.006) (0.003) (0.002) (0.003)
ũij,t−1 -1.10∗∗∗ -0.72∗∗∗ -0.84∗∗∗ -0.72∗∗∗ -0.02 -0.27∗∗∗

(0.117) (0.239) (0.256) (0.061) (0.032) (0.035)
ỹij,t−1 -0.23 3.13∗∗∗ 5.28∗∗∗ 1.55∗∗∗ -1.12∗∗∗ -0.53∗∗∗

(0.175) (0.633) (0.369) (0.157) (0.097) (0.090)
COMM -0.10∗∗∗ -0.06∗∗∗ -0.04∗∗ -0.01∗∗ -0.02∗∗∗ -0.03∗∗∗

(0.010) (0.014) (0.015) (0.005) (0.002) (0.003)

BW -0.19 -0.28 -0.85∗∗∗ -0.39∗∗∗ 0.14∗∗∗ -0.02
(0.136) (0.229) (0.179) (0.068) (0.046) (0.037)

BAY -0.59∗∗∗ -0.37 -0,98∗∗∗ -0.39∗∗∗ 0.05 -0.11∗∗

(0.193) (0.261) (0.237) (0.077) (0.056) (0.052)
BER 1.41∗∗∗ 1.02 0.81 0.59∗∗ 0.02 0.49∗∗∗

(0.481) (1.182) (1.157) (0.279) (0.136) (0.186)
BRA 0.59∗∗∗ 0.37 065∗ 0.71∗∗∗ -0.18∗∗∗ 0.04

(0.164) (0.365) (0.350) (0.103) (0.046) (0.055)
BRE 1.95∗∗ 2.76 -1.37 0.24 0.08 0.39

(0.782) (2.015) (0.934) (0.458) (0.211) (0.435)
HH 1.00 1.07 -1.23∗ -0.41 0.35 0.09

(1.173) (1.183) (0.629) (0.424) (0.368) (0.611)
HES -0.18 -0.33 -0.86∗∗∗ -0.39∗∗∗ 0.13∗∗ 0.01

(0.209) (0.248) (0.198) (0.072) (0.058) (0.057)
MV 0.26∗ 0.41 0.76∗∗ 0.63∗∗∗ -0.16∗∗∗ -0.02

(0.133) (0.288) (0.312) (0.084) (0.048) (0.059)
NIE -0.26∗ -0.17 -0.52∗∗ -0.06 0.05 -0.08∗∗

(0.139) (0.264) (0.198) (0.083) (0.047) (0.033)
NRW 0.06 0.09 -0.12 -0.05 0.03 0.01

(0.076) (0.183) (0.157) (0.056) (0.032) (0.028)
RHP -1.31∗∗∗ -0.71∗∗∗ -0.91∗∗∗ -0.32∗∗∗ -0.09∗ -0.38∗∗∗

(0.226) (0.247) (0.286) (0.089) (0.051) (0.066)
SAAR -0.11 0.17 0.86 -0.33 0.26 0.06

(0.736) (1.279) (1.361) (0.488) (0.249) (0.227)
SACH 0.57∗∗∗ 0.96∗∗ 1.21∗∗∗ 0.75∗∗∗ -0.34∗∗∗ -0.08

(0.188) (0.405) (0.403) (0.115) (0.061) (0.066)
ST -0.23 0.13 0.54 0.56∗∗∗ -0.31∗∗∗ -0.23∗∗∗

(0.176) (0.321) (0.352) (0.088) (0.048) (0.055)
SH 0.11 -0.22 -0.56∗∗∗ -0.02 0.09∗∗ 0.06

(0.165) (0.266) (0.211) (0.089) (0.046) (0.043)
TH -0.45∗ 0.46 0.77∗∗ 0.53∗∗∗ -0.34∗∗∗ -0.18∗

(0.256) (0.306) (0.360) (0.102) (0.067) (0.102)

No. of obs. 873 873 873 873 873 873
Time Dummies (11) Yes Yes Yes Yes Yes Yes
Settlement Type (6) Yes Yes Yes Yes Yes Yes

Note: ***, **, * = denote significance levels at the 1%, 5% and 10% level respectively. BW =
Baden-Wurttemberg, BAY = Bavaria, BER = Berlin, BRA = Brandenburg, BRE = Bremen, HH = Hamburg,
HES = Hessen, MV = Mecklenburg-Vorpommern, NIE = Lower Saxony, NRW = North Rhine-Westphalia,
RHP = Rhineland-Palatine, SAAR = Saarland, SACH = Saxony, ST = Saxony-Anhalt, SH =
Schleswig-Holstein, TH = Thuringia.
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