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Abstract

Experimental and empirical evidence documents instances where the presence of an

inferior option in a menu increases the attractiveness of the better options from that menu

and thus distorts the normative ranking across menus. We analyze the case when besides

this so called context effects bias there is also a concern for flexibility in the spirit of

the literature initiated by Kreps (1979) and Dekel, Lipman and Rustichini (2001). Since

the context effects bias and the desire for flexibility both increase the inclination of a

decision maker to choose larger menus, the analysis allows the disentangling of the effect

of the behavioral bias from the effect of the rational desire from flexibility. We find a weak

condition on the set of ex post preferences under which the two effects are identifiable.

We show that our representation is essentially unique.
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1 Introduction

Numerous observations from the marketing and psychology literature document the existence of

a so called context-effects bias as suggested by the following experiment presented in Simonson

and Tversky (1992). The participants in the experiment were asked to choose between two

substitute products, tissues and towels. Two versions of the experiment were designed. One

superior brand of towels and one superior brand of tissues were included in both versions. In

addition, in one version of the experiment the participants were offered with one inferior brand

of towels, while in the other they were offered with one inferior brand of tissues. The results

of the experiment showed that the market share of the superior quality brand was significantly

higher when the inferior quality brand belonged to the same category. This example shows

how the presence of an inferior option in a menu may make the better bundles of that menu

appear more attractive by comparison, and thus distort the normative ranking of the available

options.1 This is a pattern of behavior inconsistent with the standard model of rationality,

which posits that products which are never chosen for consumption should not influence the

decision maker’s choices.

In a recent paper, Barbos (2009) studies a model of choice from categories, or menus,

consistent with the above experimental evidence. Since menus are the objects of choice that

reveal an individual’s desire for flexibility, as a natural extension of the certainty model whose

axiomatic foundations are provided in that paper, we study here the case when besides the

context-effects bias, there is also a concern for flexibility in the spirit of the literature initiated

by Kreps (1979) and Dekel, Lipman and Rustichini (2001) (henceforth DLR(2001)). More

precisely, we analyze the case in which we allow for the presence of some underlying uncertainty

between the moment of the choice of the menu and the moment of the choice of a specific option

from within the menu. Allowing for uncertainty between the two stages makes sense especially

in those applications in which there is some cost of switching between menus and the choice of

the specific element from the menu is made either significantly later or repeatedly over a long

period of time. In these cases, when choosing the menu the decision maker has to contemplate

various potential realizations of his future preferences and thus, the usual intuition behind the

notion of subjective tastes (Kreps (1979), DLR (2001)) applies here as well.2 Since both the

context effects bias and the desire for flexibility increase the inclination of a decision maker

to choose a particular menu when that menu is expanded, the analysis in this paper allows

1There are numerous similar observations in the psychology and experimental literature. See for instance
Bhargava, Kim and Srivastava (2000), Hsee and Lecrerc (1998), Huber, Payne and Puto (1982) or Pan, O’Curry
and Pitts (1995).

2Alternatively, one can think of this model as a study of the behavioral implications of a reference point bias
in the model of subjective uncertainty introduced by DLR (2001).
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disentangling the effect of the behavioral bias from the effect of the rational desire for flexibility

in evaluating preferences over menus. We show that our representation is essentially unique.

As a motivating example, consider an individual choosing between various movie rental

services–such as, Netflix, Vongo or Comcast On Demand. Some of these services offer a variety

of plans, combining benefits and prices. There is no cost of switching between these plans, but

there is a cost of switching between services. Thus, for instance Netflix requires an investment

in a DVD player, Vongo requires a broadband internet connection and Comcast On Demand

requires a subscription to the cable service. Assume that after some careful consideration, a

consumer decides to subscribe to Netflix and then selects one of the available options regarding

the number of DVDs he can rent at a time. Now, it may happen that the consumer is uncertain

about which of the various options fits him best and needs to test some of them. In this case,

since there is no cost of switching between the various plans offered by each service, it makes

sense to regard the initial selection of rental service as a choice between menus, and the selection

of a plan as a choice from a menu made after some uncertainty is resolved. Thus introducing

uncertainty in a model that attempts to capture the agent’s behavior is necessary.

For this model, following Kreps (1979), we will identify a menu with an ex ante observable

action that after some subjective uncertainty is resolved will make a certain set of outcomes

available ex post. The observability of these ex ante actions renders the preference over menus

a revealed preference; thus, we can take this to be our primitive in the uncertainty setting. The

reference dependent representation under uncertainty that we will axiomatize is the following:

V (A) =

∫

S

[
max
z∈A

U(z, s)

]
µ(ds)− θmin

x∈A

[∫

S

U(x, s)µ(ds)

]
(1)

where S is a state space capturing the subjective uncertainty with µ a positive measure over

S, U(z, s) is the ex post state utility of option z in state s and θ is a parameter that measures

the strength of the behavioral bias.3 The space S will satisfy an additional condition that will

specify that the decision maker does not reverse or almost reverse his ex ante preferences. Thus,

while we allow for the presence of uncertainty, we do restrict attention to those applications in

which there exists some underlying phenomenon that makes the ex ante preferences relevant

for the ex post stage. The behavioral bias is identifiable only in those applications in which this

condition is satisfied. We study the behavioral implications of both a finite and an infinite state

space S. An infinite state space appears, for instance, in models in which the individual has a

continuous distribution of the ex post tastes over the characteristics of the available options.

3Note that the reference point is the ex ante least preferred option from within the menu.
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Now, it is straightforward to see that (1) can be written as:

V (A) = (1− θ)

∫

S

[
max
z∈A

U(z, s)

]
µ(ds) + θ

∫

S

[
max
z∈A

U(z, s)−min
x∈A

U(x, s)

]
µ(ds) (2)

Thus, the preference for a menu is determined by the combination of a normative component

and a behavioral bias component. The normative component is the weighted average of the

utilities of the normative best options from the menu in each of the possible ex post states. The

weighting factors are the subjective probabilities of these ex post states. The behavioral bias

component is the weighted average of the difference in utilities between the normatively ex post

best options in the menu and the normatively ex ante worst element in the menu. The second

component is a measure of the increase in the relative attractiveness of the better options from

a menu generated by the presence of the inferior option against which they are compared.

We show that the main axiom that captures the departure from rationality in the certainty

model from Barbos(2009) is almost sufficient to deliver the context effects representation under

uncertainty when added to the standard axioms from DLR (2001). More precisely, the axiom is

sufficient for the case of a finite state space. When the state space is infinite, for the behavioral

bias to be identifiable, an additional simple axiom is required. This additional axiom imposes

the existence of a pair consisting of a menu A and a lottery y such that y does not provide any

ex post flexibility to a decision maker that was faced initially with the menu A.This axiom is

equivalent to the condition that the decision maker does not reverse or almost reverse his ex

ante preferences. Under this assumption, the effect of the behavioral bias can then be measured

by studying the effect of expanding the menu A with the lottery y. As the ex post preferences

are not observable, the existence of this pair is imposed through some ex ante behavioral

implications.4

Preferences over menus were considered for the first time by Kreps (1979). He identified an

act with the choice of a set of future options out of which at a later stage the decision maker

chooses his most preferred element. He interpreted the agent’s preference for the flexibility

offered by the menu as being generated by some underlying subjective uncertainty that will

be resolved between the moment when the choice of the menu is made and the moment when

the choice from the menu is made. This allowed him to show that under sufficiently weak

conditions, the decision maker behaves as if the uncertainty were described by a subjective

state space, where each state is identified with an ex post subjective utility. The preferences

that we study in this paper belong to the class of preferences modeled by DLR (2001). DLR

(2001) considered menus of lotteries instead of menus of deterministic bundles; this allowed

4When the state space is finite, we show that a pair (A, y) with the required property always exists and thus
this additional axiom is not necessary.
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restricting the ex post state utilities to be of the expected utility form. This addressed the issue

of the nonuniqueness of the subjective state space characteristic to the Kreps representation.

Also, unlike Kreps(1979), DLR (2001) allowed for subjective states of negative measure to

capture not only a preference for flexibility but also a preference for commitment. There is

a large body of literature that built on the class of preferences introduced by DLR (2001).

Gul and Pesendorfer(2001) were the first to give meaning to the abstract subjective states

derived in earlier papers. Thus, they imposed conditions on preferences such that the resulting

state space consists of one state of negative measure representing a temptation preference

and one state of positive measure representing the second period preferences which combine

a normative preference and the temptation preference. This combination of normative and

temptation preferences has been implemented in the meantime in other papers to model various

behavioral biases, such as non-bayesian updating, cognitive dissonance, etc. For examples, see

Epstein and Kopylov (2007) or Kopylov and Noor (2009). In another direction, the preference

for commitment has been interpreted in Sarver(2008) not as being driven by the presence of

temptation but by the anticipation of regret.

The rest of the paper is organized as follows. In section 2 we present the basic assumptions

common to most of the literature on preferences over menus. Also, in Section 2 we define the

representation in our model and compare it with other representations that built on the DLR

(2001) framework. In section 3 we present our additional axioms and the main results which

state the equivalence between the axioms and the representations, while section 4 concludes

the paper. Most proofs are relegated to the Appendix.

2 The Framework and the Representations

Let Z be a finite space of outcomes or prizes and let ∆(Z) denote the set of probability

measures on Z endowed with the topology of convergence in distribution. Let K(∆(Z)) denote

the collection of all nonempty closed subsets of ∆(Z). Endowing K(∆(Z)) with the Hausdorff

topology we make it a compact metric space. Elements of ∆(Z) will be called lotteries and will

be denoted by x, y, z, etc., while the typical elements K(∆(Z)) will be called menus and will be

denoted by A,B,C, etc. The decision maker is assumed to have a revealed preference relation

� over the elements in K(∆(Z)). For any two menus A,B ∈ K(∆(Z)) and any α ∈ [0, 1],

define their convex combination as αA+ (1− α)B ≡ {z ∈ ∆(Z) : z = αx+ (1− α)y, for some

x ∈ A and y ∈ B}.

We will impose throughout the paper the following standard axioms on the preference. For

a detailed interpretation and motivation of these axioms, see DLR(2001).
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Axiom 1 (Weak Order). � is a complete and transitive binary relation.

Axiom 2 (Continuity). For any A ∈ K(∆(Z)), the upper and lower contour sets, {B ∈

K(∆(Z)) : B � A} and {B ∈ K(∆(Z)) : B � A}, are closed in the Hausdorff metric topology.

Axiom 3 (Independence). For all A,B,C ∈ K(∆(Z)) and any α ∈ (0, 1), A � B implies

αA+ (1− α)C � αB + (1− α)C.

The representation in (1) is a particular case of the additive expected utility representation

as defined and axiomatized for the first time by DLR (2001). We will also frequently refer to it

throughout as the DLR representation.

Definition 4 An additive expected utility representation of � is a nonempty possibly

infinite set S, a state dependent utility function U : ∆(Z) × S → R and a finitely additive

signed Borel measure µ on S, such that V : K(∆(Z))→ R, defined for all A ∈ K(∆(Z)) by

V (A) =

∫

S

[
max
z∈A

U(z, s)

]
µ(ds) (3)

is continuous and represents � and each U(·, s) is an expected utility function in that for each

s ∈ S there exists us : Z → R such that U(z, s) = z · us.

Following DLR (2001), we allow for the uncertainty to be completely subjective. Thus,

besides allowing for a subjective distribution over the ex post contingencies as in standard

Savage type models, we also allow for the actual space of ex post contingencies to be subjective.

See DLR (2001) for further details. Therefore, a state in the above representation can be

uniquely identified by the corresponding ex post state utility.

For the case when the state space S is finite the representation can be equivalently written

as:

V (A) =
∑

s∈S

[
max
z∈A

U(z, s)

]
µ(s) =

∑
s∈S+

[
max
z∈A

us(z)

]
−
∑

s∈S−

[
max
z∈A

us(z)

]
(4)

where S+ ≡ {s ∈ S : µ(s) > 0} and S− ≡ {s ∈ S : µ(s) < 0} and us(·) ≡ |µ(s)|U(·, s). In

writing the above we used the fact that the measure over states and the state utility are not

separately identified in models of state-dependent utility, so they can be combined together.

Note that the above definition allows the measure µ over the states to be signed. DLR

(2001) call positive states and negative states, the states in the support of the positively signed

and respectively negatively signed components of µ. Intuitively, as stated in DLR (2001), the
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positive states would reveal the agent’s desire for flexibility, while the negative states would

reveal his desire for commitment. In our paper, unlike the other papers building on the DLR

(2001) framework, the agent is assumed to not have any kind of commitment issues. Therefore

we assume throughout an additional axiom on preferences called Monotonicity, which imposes

that weakly larger sets in the partial order given by inclusion be weakly preferred by the decision

maker.5 This is a condition consistent with the assumption of the agent not experiencing

commitment problems.

Axiom 5 (Monotonicity). For all A,B ∈ K(∆(Z)) with A ⊆ B, we have B � A.

DLR (2001) and Dekel, Lipman, Rustichini and Sarver(2007) prove the following result.

Theorem 6 When the set Z is finite, the preference � has an additive expected utility rep-

resentation with a measure µ which is always positive if and only if it satisfies Weak Order,

Independence, Continuity, and Monotonicity.

The effects of imposing Monotonicity on preferences are the following. Firstly, the axiom

insures that the measure over the states from the representation is everywhere positive. Sec-

ondly, it allows us to obtain a stronger property of the measure, that is σ-additivity instead

of finite additivity as in DLR (2001). Finally, Dekel, Lipman, Rustichini and Sarver (2007)

show that if Monotonicity is not imposed, the Continuity axiom as presented above needs to

be strenghtened to an axiom which they call Strong Continuity in order to get the additive

expected utility representation with a signed measure. The additional condition on preferences

that is needed delivers the Lipschitz continuity of the representation. Here, since we do assume

Monotonicity, we may impose the weaker continuity condition given by the Continuity axiom

presented above.

We will also consider the case when the state space from the DLR representation is finite.

A necessary and sufficient condition to obtain a finite state space was found in Dekel, Lipman

and Rustichini (2009). The authors call this additional axiom Finiteness.6

Axiom 7 (Finiteness) Every menu A ∈ K(∆(Z)) has a finite critical set, where a critical

set of a menu A is a any set A′ such that for all B with A′ ⊆ hull(B) ⊆ hull(A) we have

B ∼ A.

5The Monotonicity axiom is part of the axiomatization of the preference for flexibility in Kreps (1979).
6hull(A) = {z ∈ Z : z =

∑k

i=1
λizi with λi ≥ 0,

∑k

i=1
λi = 1 and zi ∈ A} denotes the convex hull of a set A.
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Dekel, Lipman and Rustichini (2009) prove the following result.

Theorem 8 When the set Z is finite, the preference � has an additive expected utility repre-

sentation with a measure µ which is always positive and with a finite state space S if and only

if it satisfies Weak Order, Independence, Continuity, Monotonicity and Finiteness.

The Reference Dependent Representation under Uncertainty

The specifics of the representation from DLR (2001) require a number of normalizations. First,

as explained in DLR (2001) the state space is just an index set that allows reference to different

ex post preferences. Moreover, the ex post state utilities which are assumed to be of the

expected utility form are identified only up to affine transformations, so we follow the approach

in DLR (2001) and restrict the state space S to the set of normalized utilities

SN ≡
{
s ∈ RN :

∑N

k=1
sk = 0 and

∑N

k=1
(sk)2 = 1

}
. (5)

Throughout the rest of the paper we use s ∈ SN to refer both to a second period contingency

as well as to the normalized expected utility function representing the preferences in that

state. Thus, the utility of x ∈ ∆(Z) in state s will be U(x, s) = x · s =
∑N

k=1
xksk, where

s = (s1, ..., sN) ∈ SN is the normalized expected utility function that represents the state s

preferences. Note now that the restrictions of the Weak Order, Continuity and Independence

axioms to ∆(Z) imply by standard results the existence of an expected utility function v(·)

that represents the restriction of � to ∆(Z). Sarver(2008) shows that since SN contains the

normalization of any affine function on ∆(Z), there exists s∗ ∈ SN and λ ≥ 0 such that

v(x) = λ
∑N

k=1
xksk∗ for all x ∈ ∆(Z).

We define now formally a normalized representation of the preferences exhibiting the refer-

ence point bias. As mentioned in the Introduction, we assume that in the second period, after

the uncertainty is resolved the decision maker cannot reverse or almost reverse his ex ante tastes.

Denote the ball of radius ε around s where ε > 0 and s ∈ S by Nε(s) ≡ {s
′ ∈ S : d(s′, s) < ε}

where d(·, ·) is the usual Euclidean metric in RN .

Definition 9 Let Z be any finite set. A normalized reference-dependent representation

under uncertainty of � consists of a nonempty possibly infinite measurable set S ⊂ SN , a

Borel measure µ on SN , with S being the unique support7 of µ and a constant θ ∈ (0, 1), such

that

7The support of a Borel σ-additive measure µ, if it exists, is a closed set, denoted S, satisfying: (1) µ(Sc) = 0;
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(i) V : K(∆(Z))→ R, defined for all A ∈ K(∆(Z)) by

V (A) =

∫

S

[
max
z∈A

(z · s)

]
µ(ds)− θmin

x∈A

[∫

S

(x · s)µ(ds)

]
(6)

represents the preference � ;

(ii) the utility of a lottery x ∈ ∆(Z) in state s ∈ S is x · s;

(iii) if s∗ ∈ SN is the normalized utility that represents the restriction of � to ∆(Z) then

there exists ε > 0 such that S ⊂ SN\Nε(−s∗).
8

We emphasize that besides S and µ which are the usual elements in a normalized DLR

representation, the parameter θ and the restriction (iii) on the set of ex post utility functions

will also be deduced from preference as a part of the representation.

Note that the functional form in (6) for V (·) can be rewritten as:

V (A) =

∫

S

[
max
z∈A

(z · s)

]
µ(ds) + max

x∈A
θ

[
−

∫

S

(x · s)µ(ds)

]
, (7)

and thus our representation is indeed a particular form of an additive expected utility repre-

sentation with all states having associated a positive measure. The condition (iii) on the set

of ex post utilities allows identification of the behavioral bias modeled by our representation

with the reference point bias. Note that (6) implies that the ex ante preferences over singletons

are represented by the utility function v(x) ≡ (1 − θ)

∫

S

(x · s)µ(ds). By inspecting (7), it is

clear that the preferences represented by v−(x) ≡ −

∫

S

(x · s)µ(ds) could constitute just another

ex post state in a DLR(2001) framework with the property that these ex post preferences are

exactly the reverse of the ex ante preferences over singletons. We rule out this possibility by

making the arguably reasonable assumption that in the second period, after the uncertainty is

resolved, the decision maker cannot reverse or almost reverse his ex ante tastes. This is done

by the identification of the term max
x∈A

θ

[
−

∫

S

(x · s)µ(ds)

]
from the equivalent representation in

(7) with the impact of a reference-point bias and by the condition (iii) from Definition 9.

In the remaining of this Section we present the particular structure imposed on the ex post

states of the DLR representation by various papers that built on that framework to underline

and (2) If G is open and G∩S 6= ∅, then µ(G∩S) > 0. Theorem 10.13 in Aliprantis and Border (1999) shows
that if the underlying topological space on which µ is defined is second countable or if µ is tight, then µ has a
(unique) support. In our case, SN is clearly second countable, so the definition is correct.

8When the state space is finite, condition (iii) can be written as −s∗ /∈ S. Also, note that −s∗ ∈ S
N .
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the differences between these representations and ours.9 Note firstly from (7) that in our model

there exist no negative states and there exists one positive state of strictly positive measure

having the corresponding utility a negative affine transformation of the utilities of the rest of

the states.

In Gul and Pesendorfer (2001) the equivalent DLR representation is the following:

V (A) = max
x∈A

u1(x)−max
y∈A

u2(y) (8)

where u1 is the utility that represents the second period preference relation and u2 is the

temptation component of these second period preferences. Therefore, in this representation

there is one positive state and one negative state with no particular mathematical relation

between them.

In Sarver (2008) the equivalent DLR representation of his regret representation is:

V (A) = max
z∈A

[
(1 +K)

∫

S

U(z, s)µ(ds)

]
−

∫

S

[
max
x∈A

KU(x, s)

]
µ(ds) (9)

where K ≥ 0. Thus, in this case there is a number, possibly infinite of negative states and

one positive state whose corresponding state utility is a positive affine transformation of the

utilities corresponding to the negative states.10

The equivalent representation from Dekel, Lipman and Rustichini (2009) of what they call

the temptation representation is:

V (A) =
∑

s∈S

[
max
z∈A

U(z, s)

]
µ(s)−

∑
s∈S

{∑
j∈Js

[
max
y∈A

U(y, j)

]}
µ(s) (10)

which is a generalization of the one from Gul and Pesendorfer (2001) in the sense that it assumes

multiple ex post states and for each ex post state multiple ex post temptations. This represen-

tation has a number of positive states and for each positive state a number of corresponding

negative states with some underlying structure among them. Unlike the other representations,

in Dekel, Lipman and Rustichini (2009) the state space is assumed to be finite.

9We emphasize that the actual representation from each of the papers is different from that presented here as
being its equivalent DLR representation in order to capture the corresponding behavioral trait that is analyzed
in each paper.
10The regret representation as defined in Sarver (2008) has the Borel measure µ positive. However, as

mentioned in that paper as well, the equivalent DLR representation is signed and has a negative component.
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3 The Axioms and the Main Results

As noted before, the representation in (6) is a special type of an additive expected utility repre-

sentation with a positive measure. Thus, it will be necessary that the preference satisfy Weak

Order, Continuity, Independence and Monotonicity. Two additional axioms will be sufficient

for the preference � to have a reference-dependent representation when combined with the

above four axioms. The first additional axiom captures the departure from the standard model

of rationality that we study in this paper.

Axiom 10 (CEB: Context-Effects Bias) : For any pair (A, x) ∈ K(∆(Z)) ×∆(Z), such

that {y} � {x} for all y ∈ A, we have A ∪ {x} � A.

Axiom CEB states that if the decision maker has the set of possible choices A expanded by

adding an option, say a singleton {x}, which from an ex ante point of view is strictly worse

that the rest of the elements in the menu, then the agent will strictly prefer the new expanded

set A∪{x} to the initial one A. The motivation for this preference is given by the fact that the

inferior lottery x will be chosen as the new reference point and thus the overall attractiveness

of the better options from the menu will increase. Note that since the preferences in the text

of the axiom are strict, Axiom CEB imposes that the agent has a strict preference for menus

having additional strictly inferior outcomes. This corresponds to the restriction that θ > 0 in

the representation in (6).

Axiom CEB provides the departure from the standard model of rationality as suggested

by the presence of a behavioral bias. However, when allowing for an infinite state space this

departure is identified only when combined with the Axiom CEB-2 presented below. This is

because, when allowing for the presence of uncertainty, it may happen that an ex ante inferior

option still provides some ex post flexibility to the elements of a set, and thus the pattern of

choice suggested by Axiom CEB is valid without assuming any reference point bias. In order

to have a departure from the standard rational preferences, there must exist at least one set

A and at least one lottery y strictly worse from an ex ante point of view to all elements of A

such that in any ex post state there exists an element in A that is at least as preferred as y.

Then, imposing Axiom CEB to the sets A and A ∪ {y} would provide the departure. Now,

in the case of a finite state space, the pair (A, y) with the desired properties always exists

when we maintain the assumption that the second period preferences cannot be exactly the

reversed ex ante preferences.11 In the case of an infinite state space, the existence of such a pair

(A, y) will be imposed by Axiom CEB-2 below. As the ex post preferences are not observable,

11See the necessity part of the proof of Theorem 14 below for a formal argument.
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this is done by imposing a natural implication of the existence of the pair (A, y) on the ex

ante preferences. Before presenting Axiom CEB-2 we will make a remark that suggests that

imposing axiomatically the existence of such a pair is correct when the preferences that we are

studying are represented by a utility function as in (6).

Remark 11 When the preferences � admit a normalized reference-dependent representation

as in (6), there exist a set A ∈ K(∆(Z)) with A ⊂ int(∆(Z)) and a lottery y ∈ ∆(Z) such

that: (i) for any x ∈ A we have x · s∗ > y · s∗ and (ii) for any s ∈ S there exists x ∈ A such

that x · s > y · s.

Proof. See Appendix A1 for some notation on support functionals and then Lemma 29.

The second non standard axiom for the case of an infinite subjective state space is the

following.

Axiom 12 (CEB-2): There exists a set A ∈ K(∆(Z)) with A ⊂ int(∆(Z)) and a set B ∈

K(∆(Z)) with A ⊂ B and {x} � {y} for all x ∈ A and some y ∈ B, such that for all lotteries

z ∈ ∆(Z) with {y} � {z} for all y ∈ B, we have B ∪ {z} ∼ A ∪ {z}.

To see the motivation for this axiom, consider a pair {A, y} such that y does not provide any

ex post flexibility to A. Then, on the one hand, by choice of y, it provides no ex post flexibility

to the set A ∪ {z}. On the other, since y is weakly preferred to z from an ex ante point of

view, y will not be the reference point chosen from A ∪ {y, z}. Since under no circumstances

the agent would choose y over the elements in A ∪ {z}, he is as well off having at hand the

menu A ∪ {z} as he is having the larger menu A ∪ {y, z}. Therefore, we impose the required

indifference. The condition that B is some superset of A instead of A ∪ {y} is a nonessential

weakening of the axiom meant only to simplify the notation in the proof of the main theorem

when we characterize a menu by the corresponding support functionals.

We mention that while the condition from the text of the axiom is valid for an infinite

number of sets in K(∆(Z)), we do not impose this condition to hold for all these sets simply

because there may exist A ∈ K(∆(Z)) such that there exists no lottery y /∈ A that does

not provide any ex post flexibility to A. Also, we do not impose the indifference of the sets

constructed as in the text of Axiom CEB-2, but for all B that contain a lottery y such that y

is strictly less preferred to all elements of A from the ex ante point of view. This is because, as

mentioned earlier, a lottery which is ex ante inferior to all x ∈ A could turn out ex post to be

better to all elements of A and then B ∪ {z} � A ∪ {z}. The weak restriction imposed in the

text of the Axiom that the condition is valid for at least one pair (A,B) is sufficient to obtain

12



the desired representation for all sets due to the additional structure provided by the EU form

of the ex post utilities. Note also that we impose that an element of B be strictly worse than

all elements of A. Without this condition, it is clear that the axiom would not have any bite

since we could always let B be exactly the set A.

Now we are ready to state the main result of the paper:

Theorem 13 The preference � has a representation as in (6) if and only if it satisfies Weak

Order, Continuity, Independence, Monotonicity, Axiom CEB and Axiom CEB-2.

Proof. See Appendix A1 and Appendix A2.

While the complete proof of Theorem 13 can be found in the Appendix, we present here for

intuition a sketch of this proof. We start by showing how the argument goes if the state space S

were finite. This reveals how Axiom CEB and Axiom CEB-2 work to give us the representation.

Weak Order, Continuity, Independence and Monotonicity imply that the preference over

menus has the following representation, with µ a positive measure:

V (A) =
∑

s∈S

[
max
z∈A

(z · s)

]
µ(s), for all A ∈ K(∆(Z)) (11)

Denote by v(·) the restriction of V (·) to singletons. Thus, v represents the ex ante preference

over lotteries and by (11) we have: v(z) =
∑

s∈S
(z · s)µ(s), for all z ∈ ∆(Z). Moreover, as

claimed in Section 2, since v is an affine function, there exists s∗ ∈ SN , such that v(z) =

λ(z · s∗) for all z ∈ ∆(Z). Now, recall that the representation in (6) is a particular case

of a DLR representation in which the utility associated with one of the states is a negative

affine transformation of the utilities associated with the rest of the states. We will prove here

that under Axiom CEB and Axiom CEB-2, the representation in (11) must have exactly that

structure on the ex post states, which comes down to showing that −s∗ ∈ S. The rest of the

proof consists of showing that given that structure, the representation in (11) can be written as

in (6). This second part of the proof is just simple algebra manipulations and its presentation

is relegated to the Appendix.

Let A ∈ int(K(∆(Z))) and B ∈ K(∆(Z)) be as in the definition of Axiom CEB-2, that is

A ⊂ B and {x} � {y} for all x ∈ A and some y ∈ B. Then by Axiom CEB and Monotonicity

we have B � A; using the representation in (11) it follows that:

∑
s∈S

[
max
x∈B

(x · s)

]
µ(s) >

∑
s∈S

[
max
x∈A

(x · s)

]
µ(s). (12)

13



Since the measure µ is positive, (12) implies that there must exist s′ ∈ S such thatmax
x∈B

(x · s′) >

max
x∈A

(x · s′). Denote the strict lower contour sets associated with an expected utility function

s and a lottery y ∈ ∆(Z) by Ls(y) ≡ {x ∈ ∆(Z) : x · s < y · s}. Then, given the linearity of

the utility functions, a state utility s will be a negative affine transformation of s∗ if and only

if Ls(y) ∩ Ls∗(y) = ∅ for all y ∈ ∆(Z). Assume by contradiction that there is no such state

utility as the one that we are looking for, that is Ls(y) ∩ Ls∗(y) 6= ∅ for all s ∈ S. We show

that in this case, if Axiom CEB holds then Axiom CEB-2 must be violated.

Take some y ∈ B such that x·s∗ ≥ y·s∗ for all x ∈ B and then some z ∈ Ls′(y)∩Ls∗(y) which

is nonempty by the contradiction assumption. Then, since y ∈ B we will havemax
x∈B

(x · s′) > z ·s′

so max
x∈B∪{z}

(x · s′) = max
x∈B

(x · s′) > max

(
max
x∈A

(x · s′) , z · s′
)
= max

x∈A∪{z}
(x · s′). Therefore:

V (B ∪ {z}) =
∑

s∈S\{s′}

[
max

x∈B∪{z}
(x · s)

]
µ(s) + µ(s′) max

x∈B∪{z}
(x · s′) >

∑
s∈S\{s′}

[
max

x∈B∪{z}
(x · s)

]
µ(s) + µ(s′) max

x∈A∪{z}
(x · s′) ≥

∑
s∈S\{s′}

[
max

x∈A∪{z}
(x · s)

]
µ(s) + µ(s′) max

x∈A∪{z}
(x · s′) = V (A ∪ {z}).

Therefore, V (B ∪ {z}) > V (A ∪ {z}) so there exists z with x · s∗ > z · s∗ for all x ∈ B such

that B ∪ {z} � A ∪ {z} which violates Axiom CEB-2 as claimed. In conclusion, there must

exist a state s ∈ S that is a negative affine transformation of s∗.

Proving the necessity of Axiom CEB is straightforward. To see that Axiom CEB-2 must

also be satisfied when the preferences can be represented as in (6) with a finite state space,

take some lottery y ∈ int(∆(Z)) and for each s ∈ S, take xs ∈ Hs(y) ∩ L−s∗(y) ∩∆(Z), where

Hs(y) ≡ {x ∈ ∆(Z) : x · s = y · s}. Let A ≡ ∪s∈Sxs and B ≡ A ∪ {y}. Then, by the choice of

the set A, we will have {x} � {y} for all x ∈ A. On the other hand, for any z ∈ Ls∗(y) ∪Hs∗(y)

we have

V (A ∪ {z}) =
∑

s∈S

[
max

w∈A∪{z}
(w · s)

]
µ(ds)− θ min

w∈A∪{z}

[∑
s∈S
(w · s)µ(ds)

]
=

∑
s∈S

[
max

(
max
w∈A

(w · s), z · s

)]
µ(ds)− θ

[∑
s∈S
(z · s)µ(ds)

]
=

∑
s∈S

[
max

(
max
w∈B

(w · s), z · s

)]
µ(ds)− θ min

w∈B∪{z}

[∑
s∈S
(w · s)µ(ds)

]
= V (B ∪ {z}).
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In the above we used the fact that the restriction of the representation to singletons implies

{x} � {y} ⇔ (1− θ)
∑

s∈S
(x · s) > (1− θ)

∑
s∈S
(x · s) and the fact that since for each s ∈ S,

there exists xs ∈ A ∩Hs(y) we have max
w∈A∪{y}

(w · s) = max
w∈A

(w · s).

While in the case of a finite state space, it is sufficient to show that −s∗ must be one of the

states from the DLR representation, for the case of an infinite state space this is not enough.

This is because the state −s∗ can always be added to the state space and assign a measure

zero. Thus, for the proof of the sufficiency of the axioms for the infinite state space case, the

main challenges are to show that the DLR measure of −s∗ is strictly positive and to show

the existence of the empty neighborhood of −s∗. The first straightforward step in the general

proof is to use Axiom CEB to assert the existence of a set Ŝ1 ⊂ S with µ(Ŝ1) > 0, such that

max
x∈B

(x · s′) > max
x∈A

(x · s′) for all s′ ∈ Ŝ1 (see Lemma 18). The main goal of the rest of the proof

of sufficiency is to construct a set Ŝ5 ⊂ Ŝ1 with µ(Ŝ5) > 0 and find a lottery z ∈ ∆(Z), such

that max
x∈B

(x · s′) > z · s′ for all s′ ∈ Ŝ5 and min
x∈B

(x · s∗) > z · s∗. Then, an argument similar to

the one from the case of a finite state space will complete the proof by showing that Axiom

CEB-2 must be violated.

Now, note the following fact.

Fact: If ∩s∈{s1,...,sn}Ls(y) 6= ∅ and
(
∩s∈{s1,...,sn}Ls(y)

)
∩ Lsn+1(y) = ∅ for some y ∈ ∆(Z),

then sn+1 ∈ hull(−s1, ...,−sn).

Thus, if we could find a set of N − 1 linearly independent ex post states in Ŝ1with:

µ(int (hull({s1, ..., sN−1}))) > 0 (13)

we could then first argue inductively using the above Fact that:

∩s∈{s1,...,sN−1}Ls(y) 6= ∅ (14)

(see Lemma 25) and then also argue that ∩s∈hull({s1,...,sN−1})Ls(y) 6= ∅ (see Lemma 26). In

addition, if we ensure that:

s∗ /∈ hull({−s1, ...,−sN−1}) (15)

then again by the above Fact, we would also have that
(
∩s∈{s1,...,sN−1}Ls(y)

)
∩ Ls∗(y) 6= ∅ and

thus be able to take:

z ∈
(
∩s∈hull({s1,...,sN−1})Ls(y)

)
∩ Ls∗(y) (16)

Finally, by letting:

Ŝ5 ≡ hull({s1, ..., sN−1}) (17)
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and selecting z as above, we would achieve the desired result. However, there are two problems

with this approach that do not allow the argument to go through as stated. Firstly, since Axiom

CEB-2 does not state the existence of a lottery y, but of a set B, the above mentioned Fact is

not true if we replace y with the set B. Secondly, since SN is the subset of normalized utilities,

findingN−1 linearly independent values with the desired properties is not immediately obvious,

if possible at all.

In order to solve the first issue, we will expand the set ∆(Z) to the smallest affine set that

contains it, that is to Ω ≡ {z ∈ RN :
∑N

i=1 zi = 1}. Then, by defining the expanded lower

contour sets Ls(B) ≡ {y ∈ Ω : y ·s < z ·s for all z ∈ B}, we will be able to prove a counterpart of

the above Fact (see Lemma 24). While in the end, we will obtain an element z′ that belongs to

the intersection of these expanded sets
(
∩s∈Ŝ5Ls(B)

)
∩Ls∗(B) (see Lemma 26), since ∆(Z) has

a non empty algebraic interior in Ω, we will be able to select a lottery z ∈ ∆(Z) that will have

the desired properties (see first Lemma 17 to see why we may consider without loss of generality

that B ⊂ int(∆(Z)) in the text of Axiom CEB-2 and then Lemma 27).12 To solve the second

problem, we will expand the set of ex post utilities from the normalized set SN to the set PN ={
s ∈ RN :

∑N

k=1
sk = 0

}
. A first effect of this expansion is that the counterpart of the above

Fact will have now to be written in terms of convex cones instead of convex hulls (see Lemma

24). But since z′ ∈
(
∩s∈{s1,...,sN−1}Ls(B)

)
∩Ls∗(B) still implies z

′ ∈
(
∩s∈cone({s1,...,sN−1})Ls(B)

)
∩

Ls∗(B) the argument will continue to go through (see Lemma 26). Therefore, we need to find

N − 1 linearly independent utilities in PN such that µ(int (cone({s1, ..., sN−1})) ∩ Ŝ1) > 0

and s∗ /∈ cone({−s1, ...,−sN−1}). Then, by letting Ŝ5 ≡ int (cone({s1, ..., sN−1}))∩ Ŝ1 and z be

selected as explained above we would complete the argument. We mention here that considering

N − 1 linearly independent states that would include −s∗ would not solve the problem because

then the interior of the cone generated by less than N −1 states in the N −1 dimensional space

PN would be empty and thus of zero measure. Therefore, the need for the more elaborate

construction.

Now, using the contradiction assumption µ({−s∗}) = 0, we show in Lemma 19 and Lemma

20 that there exists a set Ŝ2 ⊂ Ŝ1 such that µ(Ŝ2) > 0 and −s∗ /∈ cone
(
Ŝ2

)
. Next, Lemma 21

and Lemma 22 show that there exists a set Ŝ3 ⊂ Ŝ2 and ε > 0 such that−s∗ /∈ cone(∪s∈Ŝ3N ε(s)),

where N ε(s) is the closed ball of radius ε around s. In Lemma 23 we construct the set of

linearly independent utilities {s1, ..., sN} with the properties presented above. This is done

by covering the compact set Ŝ3 with a finite partition extracted from a cover of Ŝ3 whose

elements are the intersections of this set Ŝ3 with the convex cones generated for each s ∈

Ŝ3 by some set of N − 1 linearly independent utilities {ss1, ..., s
s
N−1} with the property that

12Note that while z′ ∈
(
∩
s∈Ŝ5

Ls(B)
)
∩Ls∗(B), z will satisfy only the weaker set of properties max

x∈B
(x · s′) >

z · s′ for all s′ ∈ Ŝ5 and z ∈ Ls∗(B). As argued above, this is sufficient to obtain the desired result.
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s ∈ int
(
cone

(
{ss1, ..., s

s
N−1}

))
. In addition, since −s∗ is sufficiently far away from the set

cone(∪s∈Ŝ3N ε(s)), as ensured in the Lemma 22, we will have s∗ /∈ cone({−s1, ...,−sN−1}). The

proof of the existence of the empty neighborhood around −s∗ is presented in Theorem 28.

It differs from the proof of the fact that µ({−s∗}) > 0 only in the way in which it uses the

contradiction assumption in the proof of Lemma 19 as a first step in the construction of the set

Ŝ2. We will present in the Appendix only the part of the argument in which the two proofs are

different.

The necessity part of the proof of Theorem 13 also needs a rather elaborate approach. This

is because the infinite set ∪s∈Sxs, with xs chosen as in the intuitive argument presented above, is

not necessarily closed and thus not necessarily compact. Thus, we need to take A = cl(∪s∈Sxs).

But then the fact that we select xs ∈ L−s∗(y) for each s ∈ S does not necessarily imply

{x} � {y} for all x ∈ A and this invalidates the required conclusion. Part (iii) of the Definition

9 will help overcome this problem but the construction is still not straightforward. The proof

of the necessity will share some steps which are similar to steps from the proof of Theorem

16 and those steps will be presented without proof in the Appendix. However, we emphasize

here that while in both proofs the initial steps consist of partitioning some compact set of

ex post states into a finite number of subsets such that the states contained in each subset

share some common properties, there is an important difference in terms of the ultimate goal

of these arguments. Thus, in the proof of Theorem 16, which is the result that shows that

µ({−s∗}) > 0, the partitioning of Ŝ1 was done so that we could in the end claim that one of

these subsets, namely Ŝ5, must be of strictly positive measure since the measure of the set Ŝ1

was strictly positive. In the proof of the necessity of Axiom CEB-2, the goal is to partition the

set SN\N
ε
(−s∗) into a finite number of subsets, each sharing some common relevant properties,

so that we can resolve the problems raised by the infiniteness of the state space. We defer the

presentation of the argument to the Appendix.

Next, we present an additional result that constitutes the representation theorem for the

case of a finite ex post state space of uncertainty. As argued above, in this case the restriction

on preferences given by Axiom CEB-2 is not necessary. To prove the theorem below, it is

enough to show that by replacing Axiom CEB-2 with Finiteness, the resulting set of axioms

imply Axiom CEB-2. Then the argument from the sketch of the proof of Theorem 13 would

complete the proof. Showing that Axiom CEB-2 must be satisfied in this case can be done by

following an argument close to the one used above as the intuitive proof of Theorem 13 for the

finite case.

Theorem 14 The preference � has a representation as in (6) with a finite state space if

and only if it satisfies Weak Order, Continuity, Independence, Monotonicity, Axiom CEB and

Finiteness.
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We close this section with a result that states the uniqueness of the representation for the

uncertainty model. This result is important because it allows the interpretation the objects

of the representation as intended. Thus, the fact that the parameters of the representation

are identified ensures that when observing choice, it is feasible to disentangle the impact on

behavior of the context effects from the impact of the presence of subjective uncertainty.

Our representation in (6) is identified by the elements of the set (µ, θ) where µ is a probability

over the SN and θ measures the strength of the behavioral bias. The following theorem shows

that both µ and θ are identified from preferences.

Theorem 15 Suppose that (µ1, θ1) is a normalized representation of some preferences � sat-

isfying Weak Order, Continuity, Independence, Monotonicity, Axiom CEB and Axiom CEB-2.

Then, if (µ2, θ2) is also a normalized representation of � we must have θ1 = θ2 and µ1 = µ2.

Proof. See Appendix A3.

4 Conclusion

This paper studies a model of reference-dependent preferences over menus of lotteries. We

extend the model of choices from categories in Barbos (2009) to allow for the presence of some

underlying subjective uncertainty between the moment of the choice of a menu and the time

a specific option within the menu is selected. The axiomatic foundations of this model allow

for the disentangling of the context effects bias from the rational desire from flexibility that

is usually captured by preferences over menus. We identify a weak condition on the set of ex

post preferences under which the two effects are distinguishable from each other. We find the

behavioral implications of both a finite and an infinite space of uncertainty.

Appendix

A1. Construction of the state space for the uncertainty model

We present here briefly the construction of the state space from Dekel, Lipman and Rustichini

(2001) as we will utilize the concepts introduced there extensively in the rest of the proof.

Firstly, as shown in DLR (2001) under Weak Order, Continuity and Independence any set

of lotteries in ∆(Z) is indifferent to its convex hull. Thus, we can restrict attention to the set
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of convex sets13 in K(∆(Z)), which we denote from now on with K̃(∆(Z)). Recall that the

number of outcomes in Z is denoted by N and that SN is the set of normalized expected utility

functions on ∆(Z). Define by C(SN) the set of real-valued continuous functions on SN and

endow it with the topology given by the sup-norm metric. Embed K̃(∆(Z)) into C(SN) by

identifying each menu with its support function: A → σA, with σA(s) = max
x∈A

∑N

k=1 x
ksk. It is

a standard result that the above mapping is an embedding, one-to-one and monotonic. Thus,

for all A,B ∈ K̃(∆(Z)), σA(·) = σB(·) implies A = B and A ⊂ B implies σA ≤ σB. The order

used on C(SN) is the usual pointwise partial order. Also the support functional is affine, that

is: σβA+(1−β)B = βσA + (1− β)σB.

Let C denote the subset of C(SN) that σ maps K̃(∆(Z)) into, that is C ≡ {σA ∈ C(SN)

: A ∈ K̃(∆(Z))}. Using this mapping and the Weak Order and Continuity axioms, DLR (2001)

construct the continuous linear functional W : C → R that represents the preference � over

K̃(∆(Z)):

W (σA) ≥ W (σB) if and only if A � B. (18)

As in the main text, define v : ∆(Z) → R to be the restriction of W to the set of support

functions of the singleton sets: v(x) ≡ W (σ{x}). It can be shown using the linearity of the

support functions that v is affine, that is v(βx+ (1− β)y) = βv(x) + (1− β)v(y). In addition,

as mentioned in Section 2, there exists s∗ ∈ SN and λ ≥ 0 such that v(x) = λ
∑N

k=1
xksk∗ for

all x ∈ ∆(Z).

Dekel, Lipman, Rustichini and Sarver (2007) show in the proof of their Theorem 2 that

under Monotonicity, the functionalW is increasing on the space H∗ = {r1σ1−r2σ2 : σ1, σ2 ∈ C

and σ1, σ2 ≥ 0} which is dense in C(SN). Since f ≤ ||f || · 1 for any f ∈ H∗, where 1 is the

function identically equal to 1, by the monotonicity of W we will have W (f) ≤ ||f ||W (1) so W

is bounded on H∗. Therefore, as in DLR (2001), W can be extended uniquely from C to the

whole C(SN) preserving continuity and linearity. Also, since H∗ is dense in C(SN), it follows

immediately thatW will be monotone on the whole C(SN). As in Royden (1988, page 355), W

can be decomposed as W = W+ −W− where W+ and W− are two positive linear functional

forms. Using again the monotonicity of W and the definition of W+ from Royden (1988) it is

straightforward to show that W (·) = W+(·) and W−(·) = 0 on C(SN).

Then, W is a positive linear functional on C(SN) so since SN is compact, the functions

in C(SN) have compact support since closed subsets of compact spaces are compact, so the

13Note that

∫

S

U(x, s)µ(ds) is a linear function in x so even when A is not convex, the minimum of
∫

S

U(x, s)µ(ds) over A will be attained at an element of A. Thus, the reference point will always belong

to A.
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Riesz-Markov Theorem from Royden (1988, page 352) can be used to writeW (f) as an integral

of f against a σ-additive positive measure µ over SN for any f ∈ C(SN). In particular,

W (σA) =

∫

SN
σA(s)µ(ds) for any A ∈ K̃(∆(Z)) (19)

This last step delivers the DLR representation of the preference �. However, note that we

use here a different version of the Riesz Representation Theorem than the one used in DLR

(2001). This is because the Monotonicity Axiom makes the functional W positive and thus we

can obtain a σ-additive and positive Borel measure as opposed to a finitely additive and signed

measure as in DLR (2001). As it will be seen below, the σ-additivity of the measure is necessary

both for obtaining our reference-dependent representation as well as for proving the uniqueness

of this representation. Next, we will impose the additional restrictions on preferences given by

Axiom CEB and Axiom CEB-2 to obtain our specific representation from (6).

A2. Proof of Theorem 13

As a first step in the proof, we will rewrite Axiom CEB and Axiom CEB-2 by using the

support functionals and the functional W instead of the preference relation. Note that since

v(x) represents the preference over lotteries in ∆(Z), using the results from Appendix B1 we

have:

{x} � {y} ⇔ λ
N∑

k=1

yk(−sk∗) ≥ λ
N∑

k=1

xk(−sk∗)⇔ λσ{y}(−s∗) ≥ λσ{x}(−s∗) (20)

Given two sets A,B ∈ K̃(∆(Z)), if there exists y ∈ B such that {x} � {y} for all x ∈ A we will

have that λσ{y}(−s∗) > λσ{x}(−s∗) for all x ∈ A so λσB(−s∗) > λσA(−s∗). Thus, in general

if there exists a lottery in B that is strictly worse than all lotteries in A we can write this in a

compact way as λσB(−s∗) > λσA(−s∗). Similarly, if y is weakly worse than all elements in A, we

have λσB(−s∗) ≥ λσA(−s∗). Also note that in order for Axiom CEB-2 to hold, more exactly for

a lottery y ∈ ∆(Z) to exist such that {x} � {y} for some other x ∈ ∆(Z), we need λ > 0 since

otherwise all elements in ∆(Z) are indifferent to each other. Therefore, under Axiom CEB-2

we have λσB(−s∗) > λσA(−s∗) if and only if σB(−s∗) > σA(−s∗). Finally, for any two support

functionals σA, σB ∈ C, denote their join by σA ∨ σB, that is (σA ∨ σB)(·) ≡ max(σA(·), σB(·))

and note that σA∪B = σA ∨ σB.

Using these results, the fact that A ∼ hull(A) for any A ∈ K(∆(Z)) and the fact that

A ⊂ B iff σA ≤ σB, we can write Axiom CEB and Axiom CEB-2 in the following equivalent

forms:
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Axiom CEB: For any A,B ∈ K̃(∆(Z)), with σA ≤ σB such that λσB(−s∗) > λσA(−s∗),

we have W (σB) > W (σA).

Axiom CEB-2: There exists a set A ∈ K̃(∆(Z)) such that A ⊂ int(∆(Z)) and a set

B′ ∈ K̃(∆(Z)) with σA ≤ σB′ and λσB′(−s∗) > λσA(−s∗), such that for all lotteries z ∈ ∆(Z)

with λσ{z}(−s∗) ≥ λσB′(−s∗), we have W (σhull(B′∪{z})) = W (σhull(A∪{z})).

We introduce now some new notation in addition to the one already presented in Sec-

tion 3. For any set B ∈ K̃(∆(Z)), denote its expanded weak lower and upper contour sets

corresponding to si ∈ PN by: Lsi(B) ≡ {y ∈ Ω : y · si ≤ z · si for all z ∈ B} and

Usi(B) = {y ∈ Ω : y · si > z · si for all z ∈ B}. For q ∈ ∆(Z) denote the hyperplane

generated by si as: Hsi(q) = {z ∈ Ω : z · si = q · si}. For any set S of points in P
N\{0}, denote

the convex cone and convex hull generated by S with: cone(S) ≡ {s ∈ PN : s =
∑k

i=1 λisi with

λi ≥ 0 and si ∈ S for all i ∈ {1, ..., k} and k ∈ N} and hull(S) ≡ {s ∈ P
N : s =

∑k

i=1 λisi with

λi ≥ 0,
∑k

i=1 λi = 1 and si ∈ S for all i ∈ {1, ..., k} and k ∈ N}.

Proof of Sufficiency in Theorem 13:

We will prove two results, Theorem 16 and Theorem 28, which together will bring us one step

away from obtaining the structure on the state space from the DLR representation necessary

for writing the representation of W (·) as in (6).

Theorem 16 Under axioms CEB and Identification we must have µ({−s∗}) > 0.

Proof. Assume by contradiction that µ({−s∗}) = 0 and take the set set A ∈ K̃(∆(Z)) given by

the Axiom CEB-2 with A ⊂ int(∆(Z)) and the superset B′ ∈ K̃(∆(Z)) of A such that there

exists x ∈ B′\A with λσ{x}(−s∗) > λσA(−s∗). Note that in order for such a set B
′ to exist it

must be that λ > 0 so we must also have σ{x}(−s∗) > σA(−s∗). We will break up most of the

rest of the proof of Theorem 16 into a series of lemmas.

Lemma 17 There exists a set B ∈ K̃(∆(Z)) with A ⊂ B ⊂ B′ ∩ int(∆(Z)) and σB(−s∗) >

σA(−s∗). Moreover, under Axiom CEB we have

∫

SN
σB(s)µ(ds) >

∫

SN
σA(s)µ(ds).

Proof. If x ∈ int(∆(Z)), then let B ≡ hull(A ∪ {x}). Since B′ and int(∆(Z)) are convex

and A ∪ {x} ⊂ B′ ∩ int(∆(Z)), we have hull(A ∪ {x}) ⊂ B′ ∩ int(∆(Z)). On the other hand,

σB(−s∗) = σA∪{x}(−s∗) = max(σ{x}(−s∗), σA(−s∗)) = σ{x}(−s∗) > σA(−s∗). If x /∈ int(∆(Z))

we will find some x′ ∈ int(∆(Z)) ∩ (B′\A) with σ{x′}(−s∗) > σA(−s∗) and then define B ≡
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hull(A ∪ {x′}) and repeat the argument above to prove the first part of the claim. Note that

since A is closed it must be that σA(−s∗) = σ{y}(−s∗) for some y ∈ A. Also, since −s∗ ∈ S
N ,

we have −s∗ 6= 0 so y /∈ int(A). Take x
′ = 1

2
(x+ y) and note that x′ ∈ int(∆(Z))∩ (B′\A). On

the other hand, by the affine property of σ(·) we have σ{x′}(−s∗) =
1
2
σ{x}(−s∗) +

1
2
σ{y}(−s∗) >

σA(−s∗). For the second part of the claim, note that A ⊂ B implies σA ≤ σB and since

σB(−s∗) > σA(−s∗) we can appeal to Axiom CEB to conclude thatW (σB) > W (σA). Using the

DLR(2001) representation from (19), this can be rewritten as

∫

SN
σB(s)µ(ds) >

∫

SN
σA(s)µ(ds).

�

Lemma 18 There exists an open set Ŝ1 ⊂ SN with µ(Ŝ1) > 0 and −s∗ ∈ Ŝ1 such that σB(s) >

σA(s) for any s ∈ Ŝ1.

Proof. The result follows from Theorem 5 in Royden(1988, pp. 82) and Lemma 17. �

Lemma 19 There exists ε > 0 such that µ(Ŝ1\cone(N ε(−s∗))) > 0 where N ε(−s∗) is the

closed ball of radius ε around −s∗ in R
N .

Proof. If this were not true we would then have µ
(
Ŝ1\cone

(
N 1

n
(−s∗)

))
= 0 for all n ≥ 1 so:

µ
(
cone

(
N 1

n
(−s∗)

)
∩ Ŝ1

)
= µ

(
Ŝ1

)
− µ

(
Ŝ1\cone

(
N 1

n
(−s∗)

))
> 0 for any n ≥ 1. Note that

{
cone

(
N 1

n
(−s∗)

)
∩ Ŝ1

}
is a decreasing sequence of sets with ∩∞n=1

(
cone

(
N 1

n
(−s∗)

)
∩ Ŝ1

)
=

cone({−s∗}) ∩ Ŝ1. But cone({−s∗}) = {λ(−s∗) : λ ≥ 0} and since Ŝ1 ⊂ SN in which

the utilities are normalized so that
∑N

k=1(s
k)2 = 1, we have cone({−s∗}) ∩ Ŝ1 = {−s∗}.

So, since µ
(
cone

(
N1(−s∗)

)
∩ Ŝ1

)
≤ µ

(
Ŝ1

)
< ∞ and µ is σ-additive we can use for in-

stance Theorem 9.8(ii) in Aliprantis and Border(1999, pp. 337) to conclude that: µ({−s∗}) =

lim
n→∞

µ
(
cone

(
N 1

n
(−s∗)

)
∩ Ŝ1

)
= lim

n→∞
µ
(
Ŝ1

)
> 0 which contradicts the assumption that µ({−s∗}) =

0. Thus, the set Ŝ1\cone(N ε(−s∗)) will be of strictly positive measure. �

Lemma 20 There exists a set Ŝ2 ⊂ Ŝ1 such that µ(Ŝ2) > 0 and −s∗ /∈ cone
(
Ŝ2

)
.

Proof. Even though−s∗ /∈ Ŝ1\cone(N ε(−s∗)), we cannot yet claim that−s∗ /∈ cone(Ŝ1\cone(N ε(−s∗))).

To obtain a set with this property, we will partition Ŝ2 into 2
N−2 elements constructed as follows.

Firstly, note that by the normalization
∑N

k=1 s
k = 0 for all s ∈ PN , we must have −s∗ · v1 = 0,

where v1 ≡ (1, ..., 1) ∈ R
N . Select next some other N − 3 vectors such that {v1, v2, ..., vN−2} is

a linearly independent set and −s∗ · vi = 0, for all i ∈ {1, ..., N − 2}. Note on the one hand

that choosing N − 2 such vectors is possible because the dimension of the underlying space PN
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is N − 1. On the other hand, since {v1, v2, ..., vN−2} are linearly independent, the dimension of

the set: R ≡ {s ∈ PN : s · vi = 0, for i ∈ {1, ..., N − 2}} is 1. Thus, since −s∗ ∈ R, we have

that s ∈ R implies s = κ(−s∗) for some κ ∈ R.

Let H1 ≡ {s ∈ PN : s · v1 ≥ 0} and H2 ≡ {s ∈ PN : s · v1 ≤ 0} and then construct

iteratively the following sets: Hi1,...,in,1 ≡ {s ∈ Hi1,...,in : s · vn+1 ≥ 0}, Hi1,...,in,2 ≡ {s ∈ Hi1,...,in :

s · vn+1 ≤ 0} for n = {1, ..., N − 3}. Let: Si1,...,iN−2 ≡ Hi1,...,iN−2 ∩
(
Ŝ1\cone(N ε(−s∗))

)
for all

{i1, ..., iN−2} ∈ {1, 2}
N−2. Note that the 2N−2 elements Si1,...,iN−2 thus constructed form a finite

partition of Ŝ1\cone(N ε(−s∗)), so since µ(Ŝ1\cone(N ε(−s∗))) > 0, one of the elements of the

partition which we denote Ŝ2 must be of strict positive measure. Without loss of generality we

may assume that s · vi ≥ 0 for all s ∈ Ŝ2 and i ∈ {1, ..., N − 2}. This is because when s · vi ≤ 0

for some i we may take v′i = −vi instead of vi and then, except for some notation, the elements

of the partition of Ŝ1\cone(N ε(−s∗)) will be the same.

We will show now that −s∗ /∈ cone(Ŝ2). Assume by contradiction that this is not true,

that is there exist {s1, ..., sm} ⊂ Ŝ2 and {φ1, ..., φm} ∈ R
m
+ such that −s∗ =

∑m

i=1 φjsj. We

may assume without loss of generality that sj 6= s∗ for any j, because when this is not true

we must still be able to write −s∗ as a positive combination of the remaining elements from

{s1, ..., sm}. Now, for any i ∈ {1, ..., N−2} we have −s∗ ·vi = 0, sj ·vi ≥ 0 and −s∗ =
∑m

i=1 φjsj

imply sj · vi = 0 for all j ∈ {1, ...,m}. Therefore, for any j ∈ {1, ...,m}, we have sj · vi = 0

for all i ∈ {1, ..., N − 2} which implies sj ∈ R ∩ SN . But R ∩ SN = {−s∗, s∗} because of

the normalization
∑N

k=1

(
sk
)2
= 1 for the elements in SN and of the fact that s ∈ R implies

s = κ(−s∗) for some κ ∈ R. Since sj 6= s∗ we must therefore have sj = −s∗ for all j which is

impossible because −s∗ /∈ Ŝ1\cone(N ε(−s∗)). This completes the proof of Lemma 20. �

We denote by diam(S) ≡ sup{d(s, s′) : s, s′ ∈ S} the diameter of a nonempty set.

Lemma 21 There exists a closed set Ŝ3 ⊂ Ŝ2 such that µ(Ŝ3) > 0 and diam(Ŝ3) ≤ δ for some

δ < 1
2
.

Proof. Wewill use Theorem 15 from Royden(1988, pp. 63) which states that if E is a measurable

set and ε > 0, then there exists a closed set F ⊂ E such that µ(E\F ) < ε. Since by Lemma 20

we have µ(Ŝ2) > 0, there exists ε such that µ(Ŝ2) > ε > 0. Applying the result from Royden,

we conclude that there exists a closed set Ŝ4 ⊂ Ŝ2 such that µ(Ŝ2\Ŝ4) < ε. But since Ŝ4 ⊂ Ŝ2,

we have: µ(Ŝ2\Ŝ4) = µ(Ŝ2) − µ(Ŝ4) > ε − µ(Ŝ4) from which it follows that µ(Ŝ4) > 0. Now,

take some δ < 1
2
and consider the open cover of Ŝ4 consisting of the sets {N δ

2
(s) ∩ Ŝ4}s∈Ŝ4 .

Since Ŝ4 is a closed subset of the compact set S
N , it is compact so there exists a finite subcover

of Ŝ4. Since µ(Ŝ4) > 0, one of the elements of the subcover, let’s say N δ
2
(s) ∩ Ŝ4, must be of

strict positive measure. Applying again the result from Royden(1988) to the set N δ
2
(s) ∩ Ŝ4,
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we conclude that there exists a closed set Ŝ3 ⊂ Ŝ2 such that µ(Ŝ3) > 0 and Ŝ3 ⊂ N δ
2
(s) so that

diam(Ŝ3) ≤ diam
(
N δ

2
(s)
)
≤ δ. �

Lemma 22 There exists ε > 0 such that −s∗ /∈ cone(∪s∈Ŝ3N ε(s)).

Proof. Assume by contradiction that the claim is not true so that for any n > 1, we have

−s∗ ∈ cone(∪s∈Ŝ3N 1
2n
(s)). Thus, for any n ≥ 2, there exist {λni , r

n
i }i∈{1,...,p(n)} with λ

n
i > 0

and rni ∈ ∪s∈Ŝ3N 1
2n
(s) such that −s∗ =

∑p(n)
i=1 λ

n
i r
n
i . We firstly claim that it is without loss of

generality to take p(n) = N for all n. To see this, note that: −s∗ = β
(∑p(n)

i=1 αir
n
i

)
, where β ≡

(∑p(n)
i=1 λ

n
i

)
and αi ≡

λni
β
. Since

∑p(n)
i=1 αi = 1, we have: r

n ≡
∑p(n)

i=1 αir
n
i ∈ hull

(
∪s∈Ŝ3N 1

2n
(s)
)
.

By Carathéodory’s Convexity Theorem (see for instance Theorem 5.17 from Aliprantis and

Border(1999, pp. 173)) in an (N − 1)-dimensional vector space, every vector in the convex hull

of a nonempty set can be written as a convex combination of at most N vectors from that set.

Thus, in our case there exist {αni , r
n
i }i∈{1,..., N} with α

n
i > 0 and rni ∈ ∪s∈Ŝ3N 1

2n
(s) such that

rn =
∑N

i=1 α
n
i r
n
i . Therefore, −s∗ =

∑N

i=1(βα
n
i )r

n
i as desired.

Now, since Ŝ3 is closed it follows that ∪s∈Ŝ3N 1
n
(s) is also closed. Moreover, for any rni ∈

∪s∈Ŝ3N 1
2n
(s) ⊂ ∪s∈Ŝ3N 1

4
(s) we have: ||rni || ≤ ||rni − s|| + ||s|| ≤ 5

4
because ||s|| = 1 when

s ∈ SN . Therefore, ∪s∈Ŝ3N 1
2
(s) is a closed subset of the compact set

{
s ∈ RN : ||s|| ≤ 5

4

}
so it

is compact. Since {rn1} is a sequence in a compact set, it has a convergent subsequence r
ni
1 → r01.

Thus, it is without loss of generality to assume that rn1 → r01 and then repeating the argument

iteratively we can take rni → r0i for all i ∈ {1, ..., N}. We claim that r0i ∈ Ŝ3 for all i. To see

this, note that if r0i /∈ Ŝ3 for some i, since Ŝ3 is closed we will have d(r
0
i , Ŝ3) = χ > 0. But

then, take M ′ such that for any n ≥ M ′ we have rni ∈ Nχ
2
(r0i ) and let M ≡ max(M ′, 1

χ
) + 1.

Then: χ = d(r0i , Ŝ3) ≤ d(r0i , r
M
i ) + d(rMi , Ŝ3) <

χ

2
+ χ

2
which is impossible so it must be

that r0i ∈ Ŝ3 for all i. Next, we show that for any i the real sequence {λni } is bounded

so that we can extract some convergent subsequence. Thus, we have −s∗ =
∑N

i=1 λ
n
i r
n
i =(∑N

i=1 λ
n
i

)
rn, for some rn ∈ hull

(
∪s∈Ŝ3N 1

2n
(s)
)
. Now, note that since diam(Ŝ3) ≤ δ we

will have: diam
(
hull

(
∪s∈Ŝ3N 1

2n
(s)
))

= diam
(
∪s∈Ŝ3N 1

2n
(s)
)
≤ δ + 1

n
. Thus, for any r ∈

hull
(
∪s∈Ŝ3N 1

2n
(s)
)
we have: ||r|| = d(r, 0) ≥ d(s, 0)− d(r, s) ≥ ||s|| − (δ+ 1

n
) = (1− 1

n
− δ) for

any s ∈ Ŝ3 and || − s∗|| =
(∑N

i=1 λ
n
i

)
||rn|| ≥

(∑N

i=1 λ
n
i

) (
1− 1

n
− δ
)
which since || − s∗|| = 1

and λni ≥ 0 implies λ
n
i ≤

1
1
2
−δ
. Therefore, repeating the argument from above, we may assume

without loss of generality that λni → λ0i ≥ 0 for each i ∈ {1, ..., N}. But then, the sequence∑N

i=1 λ
n
i r
n
i →

∑N

i=1 λ
0
i r
0
i as n → ∞. Therefore, −s∗ =

∑N

i=1 λ
0
i r
0
i with r

0
i ∈ Ŝ3 and λ

0
i ≥ 0 so
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−s∗ ∈ cone(Ŝ3) which is a contradiction and thus the proof of Lemma 22 is complete.
14
�

Lemma 23 There exists a set of N−1 linearly independent utilities15 {s1, ..., sN−1} ⊂ PN\{0}

such that µ(int(cone({s1, ..., sN−1})) ∩ Ŝ3) > 0 and −s∗ /∈ cone({s1, ..., sN−1}).

Proof. For any s ∈ PN , denote by s ∈ RN−1 the vector consisting of the first N − 1 coordinates

of s. Then, note that
∑N−1

i=1 λisi = 0 if and only if
∑N−1

i=1 λisi = 0, so finding N − 1 linearly

independent elements in PN is equivalent to finding N −1 linearly independent states in RN−1.

For each i ∈ {1, ..., N − 1}, let fi ≡ (0, ..., 1, ..., 0) ∈ R
N−1 with 1 on the ith position and

ei ≡ fi−
1

N−1
(1, ..., 1). It is straightforward to show that {e1, ..., eN−1} is a linearly independent

set in RN−1 so it constitutes a basis for RN−1. For for each i ∈ {1, ..., N − 1}, let ssi ≡ s+ ηsei

for some 0 < ηs < min(ε, 1), where ε is given by Lemma 22 and note that s =
∑N−1

i=1
1

N−1
ssi .

We claim that for any s ∈ Ŝ3 we can choose η
s such that the set {ss1, ..., s

s
N−1} is linearly

independent. For this, we will show that
∑N−1

i=1 λis
s
i = 0 must imply λi = 0 for all i. Since

{e1, ..., eN−1} is a basis in R
N−1, s =

∑N−1
i=1 γsiei for some γi ∈ R. Let λ ≡

∑N−1
i=1 λi and

γs ≡
∑N−1

i=1 γsi and note that

N−1∑

i=1

λis
s
i =

N−1∑

i=1

(λγsi + η
sλi)ei =

(
λγs1 + η

sλ1 −
λγs + ηsλ

N − 1
, ..., λγsN−1 + η

sλN−1 −
λγs + ηsλ

N − 1

)

(21)

Setting this equal to 0, we obtain a system ofN−1 equations withN−1 unknowns {λ1, ..., λN−1},

where the ith equation is:

λ1(γ
s
i −

γs + ηs

N − 1
) + ...+ λi(γ

s
i + η

s −
γs + ηs

N − 1
) + ...+ λN−1(γ

s
i −

γ + ηs

N − 1
) = 0 (22)

14Note here that unless we bound p(n) above with N , the argument as presented here does not go through
because it may well be that p(n)→∞ as n→∞.
15We emphasize here that the set {s1, ..., sN−1} is not required to belong to S

N , but to PN\{0}. While we could
adapt Lemma 24 below to conclude that sn+1 ∈ hull({−s1, ...,−sn}) and then also adapt the rest of the proof of
Theorem 16 to avoid using cones and work only with states in SN it is not immediately obvious, if possible at
all, in the proof of this Lemma to choose {s1, ..., sN−1} in S

N to satisfy the desired properties. Therefore, the
choice to work in the extended state space PN\{0} and use cones instead of convex hulls.
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We will show now that the (N − 1)× (N − 1) coefficient matrix of this system has a non-zero

determinant D. Thus:

D =

∣∣∣∣∣∣∣∣∣

γs1 + ηs − γs+ηs

N−1
γ1 −

γs+ηs

N−1
... γs1 −

γs+ηs

N−1

γs2 −
γs+ηs

N−1
γs2 + ηs − γs+ηs

N−1
... γs2 −

γs+ηs

N−1

... ... ... ...

γsN−1 −
γs+ηs

N−1
γsN−1 −

γs+ηs

N−1
... γsN−1 + η

s − γs+ηs

N−1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

1 1 ... 1

γs2 −
γs+ηs

N−1
γs2 + η

s − γs+ηs

N−1
... γs2 −

γs+ηs

N−1

... ... ... ...

γsN−1 −
γs+ηs

N−1
γsN−1 −

γs+ηs

N−1
... γsN−1 + η

s − γs+ηs

N−1

∣∣∣∣∣∣∣∣∣

N − 2

N − 1
(γs + ηs) =

=
N − 2

N − 1
(γs + ηs) (ηs)N−2

For the first equation, we added rows 2 through N−1 to the first row and then factored out

the term N−2
N−1

(γs+ηs). For the second equation, we subtracted from each row i ∈ {2, ..., N−1},

the first row multiplied with γsi −
γs+ηs

N−1
. Now note that since the only restriction on ηs is

0 < ηs < min(ε, 1) we can always select ηs such that ηs 6= −γs so D 6= 0. Therefore, the

system has a unique solution and since λi = 0 for i ∈ {1, ..., N − 1} solves the system, we

obtain that {ss1, ..., s
s
N−1} is a linearly independent set in R

N−1. Then, for each ssi construct:

ssi ≡ (s
s
i,1, ..., s

s
i,N−1,−(s

s
i,1+ ...+ s

s
i,N−1)) ∈ P

N and we obtained the N −1 linearly independent

states in PN .

We will show now that s ∈ int(cone({ss1, ..., s
s
N−1})), for which since cone({s

s
1, ..., s

s
N−1}) is

a convex set in an Euclidean space it suffices to show that s ∈ al− int(cone({ss1, ..., s
s
N−1})), the

algebraic interior of the set cone({ss1, ..., s
s
N−1}) in P

N . Thus, we will show that for any p ∈ PN ,

there exists some αs > 0 such that for all α ∈ [0, αs), we have (1−α)s+αp ∈ cone({ss1, ..., s
s
N−1}).

Since {ss1, ..., s
s
N−1} are linearly independent, they form a basis in the N − 1 dimensional space

PN so p =
∑N

i=1 δis
s
i with δi ∈ R. On the other hand, by construction s =

∑N−1
i=1

1
N−1

ssi so

(1 − α)s + αp =
∑N−1

i=1

(
(1− α) 1

N−1
+ αδi

)
ssi . Now, by denoting β

α
i ≡ (1 − α) 1

N−1
+ αδi we

will have (1 − α)s + αp =
∑N−1

i=1 βαi s
s
i and noting that for α sufficiently small β

α
i ≥ 0 for all

i, the argument is complete. Employing the procedure presented above and using the Axiom

of Choice construct the family of sets: F = {int(cone({ss1, ..., s
s
N})) ∩ Ŝ3 : s ∈ Ŝ3}. Since

s ⊂ int(cone({ss1, ..., s
s
N})) ∩ Ŝ3 for any s, the elements of F are nonempty and open relative

to Ŝ3. Thus, F is an open cover of Ŝ3 which is compact as a closed subset of the compact

set SN so there exists a finite family F ′ ⊂ F such that Ŝ3 ⊂ ∪
F∈F ′

F . Since µ(Ŝ3) > 0, one of

the elements of F ′ must be of strictly positive measure so µ(int(cone({ss1, ..., s
s
N−1}))∩ Ŝ3) > 0

for some s ∈ Ŝ3. Now, since
∑N−1

k=1 ei,k = 0 for all i, where ei,k denotes the k
th coordinate
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of the vector ei, note that d(s
s
i , s) = d(ssi , s) so: d(s

s
i , s) = ||ηsei|| = ηs N−2

N−1
< ε so we have

int(cone({ss1, ..., s
s
N−1})) ⊂ int(cone(N ε(s))). Therefore by Lemma 22 it follows that: −s∗ /∈

cone({ss1, ..., s
s
N−1}). Finally, for any i, ||s

s
i || = ||s + ηsei|| ≥ ||s|| − ||η

sei|| = 1− ηs N−2
N−1

> 1
N−1

implies ssi 6= 0. �

Lemma 24 Let {s1, ..., sn} ⊂ PN\{0} with n ≥ 1 be such that ∩ni=1Lsi(B) 6= ∅. Then, if

sn+1 ∈ P
N\{0} is such that (∩ni=1Lsi(B))∩Lsn+1(B) = ∅, we must have sn+1 ∈ cone({−s1, ...,−sn}).

Proof. Note that since B is compact, Lsi(B) = Lsi(zsi) for some lottery zsi ∈ B for all

i ∈ {1, ..., n + 1}. Moreover, ∩ni=1Lsi(B) ⊃ ∩ni=1Lsi(q) 6= ∅ for some q ∈ ∩ni=1Lsi(B) because

for any x ∈ ∩ni=1Lsi(q) and any i ∈ {1, ..., n} we will have x · si < q · si ≤ zsi · si. Therefore,

the condition that (∩ni=1Lsi(B)) ∩ Lsn+1(B) = ∅ implies that (∩ni=1Lsi(q)) ∩ Lsn+1(zn+1) = ∅.

Also, q · sn+1 > zn+1 · sn+1 because otherwise (∩
n
i=1Lsi(B)) ∩ Lsn+1(B) 6= ∅ since all elements

in ∩ni=1Lsi(q) would be also in Lsn+1(B). We will show now that: Lsn+1(q) ∩ (∩
n
i=1Lsi(q)) = ∅

and to this end, assume by contradiction that there exists some y ∈ Lsn+1(q) ∩ (∩
n
i=1Lsi(q)).

Consider the set: V ≡ {x ∈ Ω : q + τ(y − q) for some τ > 0} and note for any x ∈ V and

i ∈ {1, ..., n}, we have x · si < q · si because y · si < q · si. Therefore, V ⊂ ∩
n
i=1Lsi(q) so to prove

our claim it is enough to show that V ∩ Lsn+1(zn+1) 6= ∅. For this we need to find some τ > 0

such that (q + τ(y − q)) · sn+1 < zn+1 · sn+1. Since q · sn+1 > zn+1 · sn+1 as stated above and

y ∈ Lsn+1(q) by the contradiction assumption, any τ >
(q−z)·sn+1
(q−y)·sn+1

would satisfy this requirement.

Consider now the following sets:

Hsn+1(q) ≡ {z ∈ Ω : z · sn+1 = q · sn+1} (23)

Y ≡ {w ∈ Rn : w = ((z − q) · s1, ..., (z − q) · sn) or w = (−(z − q) · s1, ...,−(z − q) · sn) (24)

for some z ∈ Hsn+1(q)}

(25)

Y ′ ≡ {w ∈ Rn : w ≤ 0} (26)

Clearly, Y and Y ′ are closed and convex. We will show next that Y ∩ int(Y ′) = ∅. Thus,

we want to show that if z · sn+1 = q · sn+1 then it cannot be that z · si < q · si for all

i ∈ {1, ..., n} or z · si > q · si for all i ∈ {1, ..., n}. We can assume that si 6= −sn+1 because

otherwise we would be done with the proof of the lemma, so what remains to prove is that

Hsn+1(q)∩ (∩
n
i=1Lsi(q)) = ∅ and Hsn+1(q)∩ (∩

n
i=1Usi(q)) = ∅. The first claim follows from

the results we obtained above. Thus, note that if this were not true, that is if there exists

x ∈ Hsn+1(q)∩ (∩
n
i=1Lsi(q)), since ∩

n
i=1Lsi(q) is open, we could take a sufficiently small δ > 0

such that Nδ(x) ⊂ ∩
n
i=1Lsi(q). Since x ∈ Hsn+1(q), we have that βx+(1−β)y ∈ Nδ(x) ∩Lsn+1(q)

for some y ∈ Lsn+1(q) and some β sufficiently small and we would thus obtain a contradiction
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with the fact that Lsn+1(q) ∩ (∩
n
i=1Lsi(q)) = ∅. As for the second part of the claim, note that

if there exists x ∈ Hsn+1(q)∩ (∩
n
i=1Usi(q)) we would have x · si > q · si for all i ∈ {1, ..., n} and

x · sn+1 = q · sn+1. Consider then the element x
′ = q + α(q − x) for some α > 0. We will then

have x′ · si < q · si for all i ≤ n and x′ · sn+1 = q · sn+1 so x
′ ∈ Hsn+1(q)∩ (∩

n
i=1Lsi(q)) which we

know that cannot hold by the first part of the claim and thus we are done.

Given that Y and Y ′ are closed and convex and Y ∩ int(Y ′) = ∅ we can use the Separating

Hyperplane Theorem to obtain that there exists a vector φ ∈ Rn\{0} and a number k ∈ R

such that such that φ · w ≥ k for all w ∈ Y and φ · w ≤ k for all w ∈ Y ′. But since

((q− q) · s1, ..., (q− q) · sn) ∈ Y ∩ Y
′ we must have k = φ · 0 = 0. Also, note that for any w ∈ Y

we have−w ∈ Y so φ·w ≥ 0 and φ·(−w) ≥ 0 so φ·w = 0. Moreover, note that since φ·w ≤ k = 0

for all w ∈ Y ′ we must have φ ≥ 0. Therefore, we obtained that for any z ∈ Hsn+1(q), that is

for any z ∈ Ω with (z − q) · sn+1 = 0 we must have: (z − q) · (φ1s1 + ... + φnsn) = 0. Then,

denoting as above by si the elements of R
N−1 consisting of the first N − 1 coordinates of si

and using for instance Theorem 5.81 from Aliprantis and Border (1999, pp. 207), we have that

sn+1 = ψ(φ1s1 + ... + φnsn) for some ψ ∈ R and then sn+1 = ψ(φ1s1 + ... + φnsn). From the

fact that sn+1 ∈ PN\{0} it follows that ψ 6= 0. Since (∩ni=1Lsi(q)) ∩ Lsn+1(q) = ∅ we must

also have ψ < 0 so sn+1 =
∑n

i=1 αisi with αi ≡ ψφi ≤ 0 and the proof of the Lemma 24 is

complete. �

Lemma 25 ∩N−1i=1 Lsi(B) 6= ∅.

Proof. We will prove the lemma by induction. Clearly, we have Ls1(B) 6= ∅ so assume that

∩ni=1Lsi(B) 6= ∅ and by contradiction that ∩
n+1
i=1 Lsi(B) = ∅. By Lemma 24, it would follow that

sn+1 ∈ cone({−s1, ...,−sn}) so sn+1 =
∑n

i=1 αi(−si) with αi ≥ 0. But then, sn+1+
∑n

i=1 αisi = 0

which contradicts the fact that {s1, ..., sn+1} are linearly independent. Therefore, we must have

∩n+1i=1 Lsi(B) 6= ∅ and this completes the induction proof. �

Lemma 26 There exists a set Ŝ5 ⊂ Ŝ3 with µ(Ŝ5) > 0 and z′ ∈ Ω such that z′ ∈ U−s∗(B) ∩(
∩s∈Ŝ5Ls(B)

)
.

Proof. Since ∩N−1i=1 Lsi(B) 6= ∅ by Lemma 25 and −s∗ /∈ cone({s1, ..., sN−1}) which implies

immediately that s∗ /∈ cone({−s1, ...,−sN−1}) we can use Lemma 24 to conclude that: Ls∗(B)∩(
∩N−1i=1 Lsi(B)

)
6= ∅But since Ls∗(B) = {y ∈ Ω : y · s∗ < z · s∗ for all z ∈ B} = {y ∈ Ω :

y · (−s∗) > z · (−s∗) for all z ∈ B} = U−s∗(B) it follows that U−s∗(B) ∩ (∩
N−1
i=1 Lsi(B)) 6= ∅.

So we can take some: z′ ∈ U−s∗(B) ∩ (∩
N−1
i=1 Lsi(B)). Moreover, since z

′ ∈ ∩N−1i=1 Lsi(B) it

follows that: z′ ∈ ∩s∈cone({s1,...,sN−1})Ls(B). To see this, note firstly that z
′ · si < x · si for all

x ∈ B and for each i. Take some s =
∑N−1

i=1 αisi with αi ≥ 0 for all i. Then for any x ∈ B
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we will have z′ · s =
∑N−1

i=1 αi(z
′ · si ) <

∑N−1
i=1 αi(x · si ) = x · s so that z′ ∈ Ls(B). Now,

denote by: Ŝ5 ≡ cone({s1, ..., sN−1}) ∩ Ŝ3. Since z
′ ∈ U−s∗(B) ∩

(
∩s∈cone({s1,...,sN−1})Ls(B)

)

⊂ U−s∗(B)∩
(
∩s∈Ŝ5Ls(B)

)
and Ŝ5 ⊂ Ŝ3 with µ(Ŝ5) > 0 by Lemma 23, the proof of the Lemma

26 is complete. �

Lemma 27 There exists a lottery z ∈ ∆(Z) such that for all s ∈ Ŝ5 we have σB(s) > σ{z}(s)

and σB(−s∗) < σ{z}(−s∗).

Proof. Since B is compact we have U−s∗(B) = U−s∗({z
′′}) for some z′′ ∈ B. Since B ⊂

int(∆(Z)) we have z′′ ∈ int(∆(Z)) so there exists: z ≡ αz′′ + (1 − α)z′ ∈ int(∆(Z) for some

sufficiently high α < 1. Since z′ ∈ U−s∗(B) we will have σB(−s∗) < z′ · (−s∗). On the other

hand, by choice of z′′ we have z′′ · (−s∗) ≥ x ·(−s∗) for all x ∈ B so z′′ · (−s∗) ≥ σB(−s∗).

Therefore: σ{z}(−s∗) = αz′′ · (−s∗) + (1 − α)z′ · (−s∗) > σB(−s∗). Finally, for any s ∈ Ŝ5 we

have σB(s) ≥ z′′ ·s while z′ ∈ Ls(B) implies σB(s) > z′ ·s. Thus, σB(s) > αz′′ ·s+(1−α)z′ ·s =

z · s = σ{z}(s) and the proof of the lemma is complete. �

We will complete now the proof of Theorem 16. Thus, consider the sets A ∪ {z} and

B ∪ {z} and we want to show that we must have: W (σhull(B∪{z})) > W (σhull(A∪{z})) which

would be sufficient to exclude the case when µ({−s∗}) = 0. To see this, note that B ⊂ B′

implies W (σhull(B′∪{z})) ≥ W (σhull(B∪{z})) so we found z ∈ ∆(Z) with λσ{z}(−s∗) ≥ λσB(−s∗)

and W (σhull(B′∪{z})) > W (σhull(A∪{z})). This contradicts Axiom CEB-2 because B′ was chosen

arbitrarily from those sets satisfying the requirements of the axiom. Thus, we have:

W (σhull(B∪{z})) =

∫

SN\Ŝ5

(σB ∨ σ{z})(s)µ(ds) +

∫

Ŝ5

(σB ∨ σ{z})(s)µ(ds) ≥

≥

∫

SN\Ŝ5

(σA ∨ σ{z})(s)µ(ds) +

∫

Ŝ5

(σB ∨ σ{z})(s)µ(ds) >

>

∫

SN\Ŝ5

(σA ∨ σ{z})(s)µ(ds) +

∫

Ŝ5

(σA ∨ σ{z})(s)µ(ds) = W (σhull(A∪{z}))

where the weak inequality comes from the fact that A ⊂ B so σB(s) ≥ σA(s) for all s. The

strict inequality comes from the fact that for any s ∈ Ŝ5 ⊂ Ŝ3 with µ(Ŝ5) > 0 we have

σB(s) > σ{z}(s) and σB(s) > σA(s) so that (σB ∨σ{z})(s) > (σA∨σ{z})(s). Therefore, we must

have: µ({−s∗}) > 0 and thus the proof of Theorem 16 is complete. �

Theorem 28 Under axioms CEB and Identification there exists ε > 0 such that µ(Nε(−s∗)\{−s∗}) =

0.

Proof. Most steps in the proof of this theorem are identical to steps from the proof of the

previous theorem so we will present in detail only the step at which the two proofs differ.
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Assume Axiom CEB is satisfied and by contradiction that the statement of Theorem 28 is

false. Thus, for any ε > 0 we have µ(Nε(−s∗)\{−s∗}) > 0. Repeat the steps from Lemmas 17-

18 in the proof of Theorem 16 to construct the open set Ŝ1 ⊂ SN with µ(Ŝ1) > 0 and −s∗ ∈ Ŝ1

such that σB(s) > σA(s) for any s ∈ Ŝ1. We will next show that the result from Lemma 19

is true in this case as well.16 Then, the rest of the proof will go through as above and thus

we would conclude that Axiom CEB-2 is violated which would constitute the contradiction.

We have −s∗ ∈ Ŝ1 and we claim that there exists ε > 0 such that µ
(
Ŝ1\cone(N ε(−s∗))

)
> 0

where N ε(−s∗) is the closed ball of radius ε around −s∗ in R
N . If this were not true we

would then have µ
(
Ŝ1\cone

(
N 1

n
(−s∗)

))
= 0 for all n ≥ 1. Note that

{
Ŝ1\cone

(
N 1

n
(−s∗)

)}

is an increasing sequence of sets with ∪∞n=1

(
Ŝ1\cone

(
N 1

n
(−s∗)

))
= Ŝ1\cone({−s∗}). But

Ŝ1\cone({−s∗}) = Ŝ1\ {−s∗} because cone({−s∗})∩ Ŝ1 = {−s∗} as argued in the proof of the

Lemma 19 from Theorem 16. So, we can use Theorem 9.8(i) in Aliprantis and Border (1999,

pp. 337) to conclude that: µ(Ŝ1\{−s∗}) = lim
n→∞

µ
(
Ŝ1\cone

(
N 1

n
(−s∗)

))
= 0. Since −s∗ ∈ Ŝ1

and Ŝ1 is open, there must exist an open neighborhood Nδ(−s∗) of −s∗ included in Ŝ1 such that

µ(Nδ(−s∗)\{−s∗}) = 0 which would contradict our assumption. Therefore, there must exist

some ε > 0 such that µ
(
Ŝ1\cone(N ε(−s∗))

)
> 0 which completes the proof of the Theorem

28. �

We complete now the proof of the sufficiency of the Axioms. Using (19) for any A ∈

K̃(∆(Z)), we can write:

W (σA) =

∫

SN\{−s∗}

[
max
x∈A

(x · s)

]
µ(ds) + max

x∈A
(x · (−s∗))µ({−s∗}). (27)

In particular, for A = {z} we will have:

W (σ{z}) =

∫

SN\{−s∗}

(z · s)µ(ds) + (z · (−s∗))µ({−s∗}). (28)

But as shown above,W (σ{z}) = v(z) = λ(z·s∗) so we have: z·s∗ =
1

λ+µ({−s∗})

∫

SN\{−s∗}

(z·s)µ(ds)

so using (27) we get:

W (σA) =

∫

SN\{−s∗}

[
max
x∈A

(x · s)

]
µ(ds) + max

z∈A

[
−

µ({−s∗})

λ+ µ({−s∗})

∫

SN\{−s∗}

(z · s)µ(ds)

]
(29)

16Note that it is the proof of Lemma 19 where we used the contradiction assumption that µ({−s∗}) = 0 in
the proof of Theorem 16.
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In conclusion, since W (σA) = V (A) and A ∼ hull(A), for any A ∈ K(∆(Z)) we get the

desired normalized reference-dependent representation:

V (A) =

∫

S

[
max
x∈A

(x · s)

]
µ̃(ds)− θmin

z∈A

[∫

S

(z · s)µ̃(ds)

]
(30)

where θ ≡ µ({−s∗})
λ+µ({−s∗})

, S ≡ SN\Nε(−s∗) and µ̃(ds) ≡
µ(ds)

µ(SN )−µ({−s∗})
for s 6= −s∗ and µ̃({−s∗}) ≡

0. Note that since µ({−s∗}) > 0 by Theorem 16 and λ > 0 we will have θ ∈ (0, 1). Also, since we

have µ(Nε(−s∗)\{−s∗}) = 0 by Lemma 28 it follows that: µ̃(Nε(−s∗)) = µ̃(Nε(−s∗)\{−s∗}) +

µ̃({−s∗}) =
µ(Nε(−s∗)\{−s∗})
µ(SN )−µ({−s∗})

= 0 and thus condition (iii) from Definition 9 is also satisfied. This

completes the sufficiency part of the proof of Theorem 13. �

Proof of Necessity in Theorem 13:

We show next that the a preference relation which can be represented by a utility function as in

(6) must satisfy Weak Order, Continuity, Independence, Monotonicity, Axiom CEB and Axiom

CEB-2. The fact that the preference will satisfy the first three of the axioms is true because

the representation in (6) is just a particular form of a DLR representation which implies those

axioms. Also, given the equivalent representation in (2) it is clear that the preference must also

satisfy Monotonicity and it is straightforward to show the necessity of Axiom CEB. Therefore,

it remains to show that Axiom CEB-2 must also be satisfied.

The following lemma will constitute the main step of the argument. Note firstly that by

part (iii) of the representation in (6), there exists ε > 0 such that µ(Nε(−s∗)) = 0.

Lemma 29 When the preferences � admit a normalized reference-dependent representation

as in (6), there exist a compact set A′ ⊂ int(∆(Z)) and a lottery y ∈ int(∆(Z)) such that

σ{y}(−s∗) > σA′(−s∗) and σA′(s) > σ{y}(s) for all s ∈ S
N\N

ε
(−s∗).

Proof. Firstly, since −s∗ /∈ SN\cone(N
ε
(−s∗)) we can use an argument similar to the one

from the proof of Lemma 20 from Theorem 16 to cover SN\N
ε
(−s∗) with 2

N−2 elements

{S1, ..., S2N−2} such that −s∗ /∈ cone(Sj) for any j. By taking their closures, we can assume that

the elements are all closed sets. Then, using the approach from Lemma 21, we can partition

each Sj to obtain a cover of S
N\N

ε
(−s∗) with elements indexed by a finite set J , such that

diam(Sj) ≤ δ for some δ < 1
2
and all j ∈ J . Again, by taking closures we can assume that Sj are

closed for all j. Next, as in Lemma 22 we can show that for each j ∈ J there exists εj > 0 such

that for each j we have −s∗ /∈ cone(∪s∈SjN εj(s)). Thus, as in Lemma 23 we can find a cover

of Sj with a finite family of sets of the form {int(cone({s1,i, ..., sN−1,i})) ∩ Sj}i∈Ij such that for
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any i ∈ Ij, {s1,i, ..., sN−1,i} are linearly independent and −s∗ /∈ int(cone({s1,i, ..., sN−1,i})). Let

j(i) be the index j such that i ∈ Ij and let I ≡ ∪j∈JIj. Note that by construction, I is a finite

set. Take some arbitrary lottery y ∈ int(∆(Z)).

For each i ∈ I, since {s1,i, ..., sN,i} are linearly independent we can employ Lemma 24

as in the proof of Lemma 25 from Theorem 16 to conclude that ∩N−1k=1 Lsk,i(y) 6= ∅ and

then immediately that ∩N−1j=1 L−sk,i(y) 6= ∅. Therefore, using again Lemma 24 for the set

{−s1,i, ...,−sN−1,i} and−s∗ we will have that
(
∩N−1k=1 L−sk,i(y)

)
∩L−s∗(y) 6= ∅ so

(
∩N−1k=1 Usk,i(y)

)
∩

L−s∗(y) 6= ∅ because L−sk,i(y) = Usk,i(y). Now, for each i ∈ I, take x′i ∈
(
∩N−1k=1 Usk,i(y)

)
∩

L−s∗(y) and note that by an argument similar to the one from Lemma 26 we will have: x′i ∈(
∩s∈int(cone({s1,i,...,sN−1,i}))∩Sj(i)∩(SN\Nε (−s∗))Us(y)

)
∩L−s∗(y). Since x

′
i as chosen above is not nec-

essarily in ∆(Z) consider the set {λx′i+(1−λ)y : λ ∈ (0, 1)} and note that since y ∈ int(∆(Z))

which is algebraically open, for a small enough λ we will have xi ≡ λx′i+(1−λ)y ∈ int(∆(Z)).

In addition, since (λx′i+(1−λ)y)·s ≥ y ·s when x′i ·s ≥ y ·s and (λx′i+(1−λ)y)·(−s∗) < y ·(−s∗)

when x′i ·(−s∗) < y ·(−s∗) it follows that xi ∈
(
∩s∈int(cone({s1,i,...,sN−1,i}))∩Sj(i)∩(SN\Nε (−s∗))Us(y)

)
∩

L−s∗(y) ∩ int(∆(Z)). Let A
′ ≡ ∪i∈Ixi. Firstly, note that since xi ∈ L−s∗(y) for each i we have

xi · (−s∗) < y · (−s∗)⇒ sup
i∈I
(xi · (−s∗)) = max

i∈I
(xi · (−s∗)) < y · (−s∗) so σ{y}(−s∗) > σA′(−s∗).

On the other hand, the family {int({cone({s1,i, ..., sN−1,i}))∩Sj(i) ∩
(
SN\N

ε
(−s∗)

)
}i∈I being a

cover of SN\N
ε
(−s∗), for any s ∈ S

N\N
ε
(−s∗) we will have s ∈ int(cone({s1,i, ..., sN−1,i}))∩Sj(i)

for some i ∈ I. Therefore, σA′(s) ≥ σ{xi}(s) > σ{y}(s) which completes the proof of the Lemma

29. �

Let A ≡ hull(A′) and B ≡ hull(A∪ y), where A′ and y are given by the Lemma 29

and we will show that A and B thus defined will satisfy the conditions of Axiom CEB-2

from Appendix B which we already proved that is equivalent to Axiom CEB-2. Firstly, since

σ{y}(−s∗) > σA′(−s∗) it follows that:

σB(−s∗) = σA∪{y}(−s∗) = σA(−s∗) ∨ σ{y}(−s∗) = σA′(−s∗) ∨ σ{y}(−s∗) > σA′(−s∗) = σA(−s∗)

(31)

where we employed repeatedly the fact that σC(·) = σhull(C)(·). Using similar steps and the

monotonicity of σ(·)(s), it can be shown that σA′(s) > σ{y}(s) implies σA(s) = σB(s) for

s ∈ SN\N
ε
(−s∗). Secondly, we want to show that for any lottery z ∈ ∆(Z) with λσ{z}(−s∗) ≥

λσB(−s∗), we have W (σhull(B∪{z})) = W (σhull(A∪{z})).

For C ∈ {A,B} we have

W (σhull(C∪{z})) =

∫

SN\Nε (−s∗)

σhull(C∪{z})(s)µ(ds) +

∫

Nε(−s∗)

σhull(C∪{z})(s)µ(ds) (32)

Since µ(N
ε
(−s∗)) = 0 and |σhull(C∪{z})(s)| ≤ |σ∆(Z)(s)| <∞ because ∆(Z) is compact, we have
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W (σhull(C∪{z})) =

∫

SN\Nε (−s∗)

σhull(C∪{z})(s)µ(ds). On the other hand,

∫

SN\Nε (−s∗)

σhull(A∪{z})(s)µ(ds) =

∫

SN\Nε (−s∗)

σhull(B∪{z})(s)µ(ds) (33)

because σA(s) = σB(s) for s ∈ SN\N
ε
(−s∗). Thus, we have W (σhull(B∪{z})) = W (σhull(A∪{z}))

as desired. Finally, note that standard results guarantee that A and B are compact sets since

A′ is finite and A∪ y is compact.

This completes the proof of the necessity of the axioms for the representation. We mention

here that this slightly elaborate construction of the set A is necessary. Thus, note that it would

have not been enough to select a lottery xs ∈ Us(y) ∩ L−s∗(y) for each s ∈ SN\N
ε
(−s∗)

appealing to the Axiom of Choice and then define A ≡ cl
(
∪s∈SN\Nε (−s∗)xs

)
. This is be-

cause xs ∈ L−s∗(y) for all s ∈ SN\N
ε
(−s∗) would not necessarily imply sup

x∈A
(x · (−s∗)) <

y · (−s∗) as needed in order to show the required condition that σ{y}(−s∗) > σA(−s∗). On

the other hand, ∩s∈SN\Nε (−s∗)Us(y) is in general not necessarily nonempty so we cannot just

take an element in the intersection of this set with L−s∗(y) and let A be that element. An

alternative approach would be to take some element y′ ∈ L−s∗(y) ∩ int(∆(Z)) and then

to try take elements xs ∈ Us(y) ∩ L−s∗(y
′) with the aim of obtaining the strict condition

σ{y}(−s∗) > σ{y′}(−s∗) ≥ σA(−s∗). However, this approach also runs into problems because

even though Us(y)∩L−s∗(y
′) 6= ∅ we cannot insure in general that Us(y)∩L−s∗(y

′)∩∆(Z) 6= ∅

as necessary to obtain A ⊂ ∆(Z). �

A3. Proof of Theorem 15

Since the preferences � satisfy Weak Order, Independence and Continuity, Theorem 2 in DLR

(2001) shows that the function that represents these preferences must be unique up to an

affine transformation. Thus, if Vi(A) =

∫

S

[
max
z∈A

(z · s)

]
µi(ds)−θimin

x∈A

[∫

S

(x · s)µi(ds)

]
are two

normalized reference-dependent representations of �, then V1 = αV2 + β for some α > 0 and

β ∈ R. If vi(z) ≡ Vi({z}) are the corresponding restrictions to the singletons, we must have

v1 = αv2 + β. As argued in Appendix B1, for each i ∈ {1, 2} there exists si∗ ∈ S
N and λi ≥ 0

such that vi(z) = λi(z · s
i
∗) for all z ∈ ∆(Z). Moreover, as argued in Appendix B2, we must

have λi > 0. Therefore, for any z ∈ ∆(Z) we have λ1(z · s
1
∗) = αλ2(z · s

2
∗) + β. Because of the

normalization
∑N

k=1 s
k = 0 in SN , if we take z∗ = ( 1

N
, ..., 1

N
) ∈ ∆(Z) we have z∗· si∗ = 0. Thus,

λ1(z
∗ · s1∗) = αλ2(z

∗ · s2∗) + β implies β = 0.

Therefore, z · (λ1s
1
∗) = z · (αλ2s

2
∗) for any z ∈ ∆(Z) which in turn implies that λ1s

1
∗ = αλ2s

2
∗.

To see this, for each k ∈ {1, ..., N} take zk = (0, ..., 0, 1, 0, ..., 0) ∈ ∆(Z) with the 1 on kth
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position and note that zk · (λ1s
1
∗) = zk · (αλ2s

2
∗) implies (λ1s

1
∗)k = (αλ2s

2
∗)k where by (w)k we

denote the kth coordinate of a finite dimensional vector w. Thus, s1∗ is an affine transformation

of s2∗ which immediately implies that s
1
∗ = s2∗, because s

i
∗ ∈ S

N for i ∈ {1, 2} and we know that

SN contains the unique normalization of any affine function. On the other hand, as shown in

Appendix A for any A ∈ K̃(∆(Z)) we have Vi(A) = Wi(σA) =

∫

SN
σA(s)µi(ds) where µi is

the measure from the DLR representation. Since V1(A) = αV2(A) we have

∫

SN
σA(s)µ1(ds) =

∫

SN
σA(s)(αµ2)(ds) and then Lemma 18 in Sarver (2008) shows that this implies that µ1 = αµ2.

But µ1 and µ2 are both normalized to be probability measures so it must be that α = 1 and

then µ1 = µ2. Finally, α = 1 together with λ1s
1
∗ = αλ2s

2
∗ and s

1
∗ = s2∗ imply λ1 = λ2.

Now, recall that at the end of the sufficiency part of the proof of Theorem 13 we used

the elements of the DLR representation to define the elements of our normalized reference-

dependent representation. More specifically, with a slight abuse of notation we have θi ≡
µi({−s

i
∗
})

λi+µi({−s
i
∗
})
and µ̃i(ds) ≡

µi(ds)
µi(S

N )−µi({−s
i
∗
})
for i ∈ {1, 2}. Since s1∗ = s2∗, µ1 = µ2 and λ1 = λ2 it

follows that θ1 = θ2 and µ̃1 = µ̃2 which completes the proof of Theorem 15. �
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