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This paper presents a nonparametric approach to classification of data from lottery ex�

periments. Using very basic mathematical tools the paper endeavors to answer the questions: 

How to determine the “average” subject in a group? How to find a subject presenting the most 

similar behavior to a given one? How to detect outlier subject(s)? How to classify behaviors 

by their dissimilarity from the perfectly rational decision making? How to rank subjects by 

risk attitudes? How to cluster subjects? This paper demonstrates that the answer to all of these 

questions may be found non�parametrically, without the use of any specific model.  
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��������� Lottery experiments, Certainty Equivalents, Risk Attitude, Cluster Analysis, Non�

parametric Methods, Relative Utility Function. 
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 ����
 There is an enormous number of theories explaining lottery experiments (and 

more generally risky choices), which were presented during the last 50 years. The most 

prominent of them is Prospect Theory for which Daniel Kahneman was awarded the Nobel 

Prize for economics in 2002. Despite this, it is hard to find any theory which is able to give 

simple answers to such questions as which subject presents the “average” behavior within a 

group or which subject is the most risk averse or risk seeking? One of the reasons for that is 

that the models typically use several functions and parameters (like the value and probability 

weighting functions in the case of Prospect Theory) and the resulting behavior or risk attitude 

pattern is described by a combination of them. 

This, however, seems to be a very unfortunate situation as the questions posed appear 

to be very basic. Besides the sample “average” or extreme values may be found in most of 
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economic problems non�parametrically, i.e. even without involving any specific model.  

This paper is intended to find answers to several important questions regarding a sub�

ject’s behavior in risky choices. As the mathematical tools needed for this purpose are very 

basic, so it is the “language” of this paper. Point 2 presents a very basic introduction into dis�

tance measures, which is the basic tool used throughout the paper. Point 3 presents experi�

mental data, which serve to demonstrate examples in the further part of this research. Point 4 

is devoted to determining the “average” subject within a group. Point 5 demonstrates how to 

find a subject presenting the most similar behavior to a given one. Point 6 is devoted to de�

tecting outlier subjects. Point 7 demonstrates the method of ordering subjects by dissimilarity 

from the perfectly rational decision maker. Ranking subjects by risk attitude is presented in 

Point 8. Point 9 is devoted to clustering the subjects. Point 10 summarizes the study with the 

conclusion that all of the presented questions and problems may be answered non�

parametrically, without involving any specific model.  

In order to check the obtained results with a parametrical approach the paper presents 

in the Appendix individual relative utilities (Kontek, 2010) derived from the examined data�

set. Comparison of the results obtained non�parametrically and using the relative utility model 

shows their strong correspondence and validates both methods. 

"���
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"��� An “average” value of a given data set may be defined in several ways. The most 

common are mean and median. The median is typically preferred as it is more robust to out�

liers than the mean. No complex theory is required to use mean and median in practice, but it 

is worth restating that their use as measures of central tendency is justified by distance meas�

ures. 

"�"� Assuming there is a vector of data 1 2{ , ,.., }�� � � �= one is looking for such �����  

value, which minimizes the (Squared) Euclidean Distance: 
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The minimum distance may be found by comparing the derivative of (2.1) to zero:  
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which is the mean value of all sample data. 

"�%� That the use of median results from minimizing the Manhattan Distance is less 

obvious. The Manhattan distance is expressed as a sum of absolute differences rather than of 

their squares: 
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In the ordered sample of �� , (2.4) may be presented as:  
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The derivative of (2.5) is  

 ,���

���
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	 �

��
= −  (2.6) 

which assumes the value of 0 when the number of data points to the left equals the number of 

points to the right. As the second derivative of (2.5) is always 0, (2.5) has no curvature and is 

a straight line between consecutive points. It follows that (2.5) assumes the minimum at the 

middle point for an odd sample and at any point between two middle points for an even sam�

ple (usually the mean of middle points is assumed). This is exactly the median definition. 

"�&� The basic procedures presented in Points 2.2. and 2.3. need to be slightly modified 

if the solution is sought among data points. It is because the value of �����  (2.3) may be any 

point in the domain, not necessarily one of the data points. In order to determine such a solu�

tion (called “medoid” instead of “mean” or “centroid”) it is necessary to calculate the Euclid�

ean Distance (2.1) for each data point and to select this one for which the distance assumes 

the minimum value. 

There is also a slight difference in the case of determining the median of an even sam�

ple. As the solution is sought among data points and the minimized function (2.4) assumes a 

constant value between the middle points it must be accepted that there are two median values 

in this case.  

"�'� The data points may, in general, be vectors of data. The procedure of determining 

the “average” values in this case will be shown after presenting the data from lottery experi�

ments. 
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%��� The data set used in this research is the experimental data presented by Traub and 

Schmidt (2009), whose research concerned the relationship between WTP (Willingness to 

Pay) and WTA (Willingness to Accept)
3
. Twenty�four subjects participated in the experiment. 

A subset of this data concerning certainty equivalents is presented in Table 3.1.  

Lottery Outcomes Probabilities 1 2 3 . 22 23 24 

. . . . . . . . . . 

2 0, 30 0.75, 0.25 10 7 7.5 . 7.5 7.5 7 

3 0, 10, 30 0.3, 0.6, 0.1 8.7 10 9 . 9 9 20 

4 10, 30, 40 0.6, 0.1, 0.3 16 20 21 . 21 25 20 

. . . . . . . . . . 

56 0, 10, 40 0.25, 0.35, 0.4 17 25 19.5 . 19.5 20 19 

)����
%��� The subset of experimental data. Data in columns 1..24 present certainty equivalents de�

fined by respective subjects. 

%�"� Each column 1..24 represents a vector of certainty equivalents defined by respec�

tive subjects. According to the methodology presented in Point 2 the task of determining the 

“average” subject is to find the mean and median vectors of certainty equivalents. However, 

as the examined lotteries have different minimum and maximum values, the certainty equiva�

lents assume values in different ranges. This complicates calculation of distance minimum, as 

lotteries with a broader outcome range would have a greater impact on the result than lotteries 

with narrower range of outcomes. Therefore, it is quite natural to normalize the lottery out�

comes and respective certainty equivalents using: 

 min

max min

,

� �

�
� �

−
=

−
 (3.1) 

where � denotes the normalized certainty equivalent, 
� denotes the certainty equivalent, 

min� denotes the minimum lottery outcome, and max� denotes the maximum lottery outcome.  

The data presented formerly in Table 3.1. are now shown in Table 3.2. Both lottery 

outcomes and respective certainty equivalents have been transposed to the [0,1] interval thus 

equalizing the impact of each lottery on the minimization procedure. 

Lottery Outcomes Probabilities 1 2 3 . 22 23 24 

 . . . . . . . . . 

2 0, 1 0.75, 0.25 1/3 7/30 ¼ . ¼ 1/4 7/30 

3 0, 1/3, 1 0.3, 0.6, 0.1 29/100 1/3 3/10 . 3/10 3/10 2/3 

4 0, 2/3, 1 0.6, 0.1, 0.3 1/5 1/3 11/30 . 11/30 1/2 1/3 

 . . . . . . . . . 

56 0, ¼, 1 0.25,0.35, 0.4 17/40 5/8 39/80  39/80 1/2 19/40 

)����
%�"� The normalized subset of experimental data. Data in columns 1..24 represent normalized 

certainty equivalents given by respective subjects. 

                                                 
3
 The data were also analyzed in another paper by Hey, Morone and Schmidt (2009). 
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 Instead of presenting the whole data set in a table form, it is demonstrated as individ�

ual relative utilities (Kontek, 2010). This is done in Appendix, as the purpose of this paper is 

to consider solely a nonparametric approach. However the reader is encouraged to compare 

these utilities with the results obtained in the remaining part of this paper. 

&�
#����*����	
�
�
+�����	�,
(!�-���


&��� Determining the “average” data point using distance measures (2.1) and (2.4) has 

to be modified as each data point is now a vector of normalized certainty equivalents. There 

are 24 vectors (as the number of subjects participating in the experiment) and their length is 

54 (as the number of lotteries considered
4
). These vectors describe fully the behavior of sub�

jects in the lottery experiment therefore they will be called “subjects” or “behaviors” in the 

remaining part of this paper.  

The mean Manhattan Distance of a given subject to all other subjects is calculated us�

ing: 
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where � denotes the number of lotteries, � denotes the number of subjects, � denotes the re�

spective subject, and ,� 	�  denotes the normalized certainty equivalent of �th subject in the 	th 

lottery. The value � � 1 appears in the denominator as there are � � 1 distances considered for 

a given subject.  

The mean Euclidean Distance of a given subject to all other subjects is calculated using: 
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The subjects are then ordered by respective distances. This ordering is presented in Table 4.1. 

)����
&��� Subjects ordered by the mean Manhattan and Euclidean Distances to other subjects. Small�

est distances on the left.  

The mean distances of respective subjects to all other subjects are presented graphi�

cally in Figure 4.1  

                                                 
4
 There were altogether 56 lotteries, but two were removed from this research, as they were lotteries with a cer�

tain payment (e.g. 30GBP with a probability of 1). 
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.�	!��
&��� The mean Manhattan and Euclidean Distances of respective subjects to all other subjects. 

Ordering as in Table. 4.1.  

The lowest mean Manhattan distance to other subjects is that of subjects 20 and 21. 

Therefore they are the median subjects in the examined group.   

The lowest mean Euclidean Distance to other subjects is that of subject 22. Therefore 

it is the mean subject in the examined group.  

It should be noted that subjects 3 and 22 have similarly low mean distances to other 

subjects. The next in these rankings are subjects 1 and 7, meaning that their behaviors are also 

close to the average in the group. 

'�
.�����	
�
�
$���
(�*����
(!�-���/�0


 '��� One of the questions, which may be posed when analyzing lottery data is which 

subject presents the most similar behavior comparing to a given one. This problem is easily 

solved by calculating distances between pairs of subjects. Using Manhattan Distance results 

in:  

 , , ,
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= −∑  (5.1) 

and using Euclidean Distance in: 
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where ,� 
�  denotes the distance between �th and 
th subject, � denotes the number of lotteries 

considered, and ,� 	�  denotes the normalized certainty equivalent of �th subject in the 	th lot�

tery. Quite obviously the distances (5.1) and (5.2) determine the level of dissimilarity between 

subjects; lower the distance – more similar are behaviors presented by subjects. The most 

similar subject to a given subject � can therefore be found by determining the subject 
� which 
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is the nearest to subject �. The results for each subject using the Manhattan Distance are pre�

sented in Table 5.1 

 

)����
 '��� The nearest (most similar) subject by Manhattan Distance. Respective subjects are pre�

sented on white background, the nearest subjects on light blue, the mean distance between the 

neighbors on gray. 

It should be noted that subjects 20 and 21 present the same behavior, as the distance 

between them is 0. Interestingly to note that they were determined in Point 4 as two median 

subjects in the group. Subject 20 appears to be the most similar to 5 other subjects. This is 

also the case with subject 3. This confirms the results obtained in Point 4 and proves that sub�

jects 20, 21 and 3 present the behavior, which is common in the examined group. 

The nearest subjects using Euclidean Distance are presented in Table 5.2. 

 

)����
'�"� The nearest (most similar) subject by Euclidean Distance. Respective subjects are presented 

on white background, the nearest subjects on light blue, the average distance on gray. 

It should first be noted that changing the measure (from Manhattan to Euclidean Dis�

tance) changes the nearest subject in 11 out of 24 cases. This leads to slightly different con�

clusions than in the previous case. Subject 22, which was determined as the mean subject, is 

the nearest only to subject 3. The most “popular” is subject 7, whose behavior is the most 

similar to 5 other subjects. Subject 20 is the most similar to 3 subjects
5
.  

These conclusions confirm to a big extent the results presented in Point 4. The differ�

ences may result from the fact that having similar mean distance to other subjects (Table 4.1.) 

does not necessarily mean that subjects are similar to each other (Table 5.1 and 5.2). This 

should be quite obvious when one imagines two points located on different parts of a circle, 

which have the same distance to the circle centre. The case considered here is definitely much 

more difficult to imagine as the subjects are described not in 2 but in 54 dimensions. 

                                                 
5
 The reader is encouraged here once again to compare the results presented in this Point with individual relative 

utilities presented in the Appendix. 
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1��� The results presented in Points 4 and 5 enable detection of outliers, i.e. subject 

demonstrating behaviors, which vary substantially from the average in the group. One may 

see from Table 4.1 that subject 8 is the most distant from all other members of the group, so it 

may be suspected of being an outlier. This observation is confirmed by the data in Tables 5.1 

and 5.2. The distance of subject 8 to its most similar neighbor is large comparing with other 

pairs. This means that subject 8 is an obvious outlier and his/her data should be treated care�

fully if not even declassified from further considerations.  

It should be noted that other subjects being quite distant from their nearest neighbors. 

These are subjects 9, 16, 6 and 15. Not surprisingly, the same subjects appear in Table 4.1 as 

the most distant from all subjects in the group. This shows that their behavior differs substan�

tially from the average.  

1�"� Detecting outliers may lead to declassifying data from further analysis. This, how�

ever, should be done very carefully and only in exceptional cases
6
.  

3�
2������	
��
�45�����
6��!�
#����*�������


3��� As shown in Point 6 it is possible to measure dissimilarity between behaviors pre�

sented by a pair of subjects. However a question may be posed how a specific behavior differs 

from that of the perfectly rational decision maker? The only difference in the approach would 

be that the dissimilarity is measured between the specific behavior and the expected value of 

the lottery, as this is the value, which is chosen by a perfectly rational decision maker. The 

calculation can be made using Manhattan Distance: 

 ,

1

1
,

�

� � 	 	
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� =

= −∑  (7.1) 

where ��	 denotes the normalized expected value of 	th lottery. Similarly using the Euclidean 

Distance results in: 
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The obtained distances may be ordered giving the classification by the behavior dis�

                                                 
6
 Hey et. al. (2009), who used the same data as in the present research, stated “�������������������������
�
���

����
�
������������ ���������������!!�"������������������#������$����
����$�
����%�&�!���������'���”. It is not 

quite clear whether they omit the subjects only in one of the tables or also in the further analysis. If so, it would 

mean that authors declassified subjects 20 and 21, which, as presented, are the median subjects in the examined 

group, but left subject 8, which is the obvious outlier.  
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similarity from the expected value maximization. This ordering is presented in Table 7.1  

 

)����
3��� Ordering of subjects by the behavior dissimilarity from the Expected Value Maximization. 

More “rational” subjects to the left. 

The values of dissimilarity from the Expected Value maximization are presented 

graphically in Figure 7.1. 

 

.�	!��
3��� Behavior dissimilarity from the expected value maximization presented by respective sub�

jects. Ordering of subjects as in Table 7.1.  

As seen Subjects 20, 21, 22, and 3 present behavior, which is identical or almost iden�

tical with the expected value maximization. It means these subjects are perfectly rational deci�

sion�makers. On the other hand subject 8, which was detected earlier as the outlier, presents 

the behavior, which is the most dissimilar from the expected value maximization. This would 

mean that his/her behavior is far from rational. 

7�
2������	
��
����
�����!��


7��� Let us now consider another method of classifying subjects according to their risk 

attitude. It should be quite apparent that the certainty equivalent expected for a given lottery 

becomes lower with the increasing risk aversion of the examined subject. It gives an indica�

tion that risk attitudes of two subjects may be compared using the following function:  

 ( ), , ,

1

1 �

� 
 � 	 
 	

	

� � �
� =

= −∑  (7.3) 

where � and 
 denote respective subjects, 	 denotes a specific lottery, and � denotes the num�

ber of lotteries. Equation (7.3) has a similar form to (5.1) but, by no means, is any measure of 

distance as it may assume negative values as well. Instead, it defines the mean shift of nor�
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malized certainty equivalents between two subjects. It should be seen that a negative value of 

� indicates that subject � is generally more risk averse than subject 
, whereas a positive value 

would indicate that subject � is generally more risk seeking than subject 
. The term “gener�

ally” is used here because (7.3) is calculated for a set of lotteries covering (hopefully) a wide 

range of risky choices.  

7�"� Please note that � (7.3) is a relative measure as it compares certainty equivalents 

of two subjects. However (7.3) can be presented alternatively as: 

 , , ,

1 1

1 1� �

� 
 � 	 
 	 � 


	 	

� � � (� (�
� �= =

= − = −∑ ∑  (7.4) 

i.e. as the difference between absolute measures of risk attitude presented by respective sub�

jects. In fact (�� and (�
 are the means of normalized certainty equivalents expected by a sub�

ject for a set of lotteries: 

 
1

1 �

	

	

(� �
� =

= ∑  (7.5) 

The higher the risk aversion presented by a subject – the lower the value of (�. The 

higher the risk seeking presented by a subject – the higher the value of (�. Therefore this 

measure corresponds with the risk�seeking attitude of a given subject. The (� assumes the 

value of 0 when the subject is maximally risk averse (i.e. all certainty equivalents are equal to 

minimum lottery outcomes). (� assumes the value of 1 when the subject is maximally risk�

seeking (i.e. all certainty equivalents are equal to maximum lottery outcomes). (� should as�

sume the value of 0.5 when a subject is generally risk neutral (for instance when the subject is 

a perfect expected value maximizer). Due to the range of values assumed by RS it is straight�

forward to define the Risk Aversion measure as: 

 1() (�= −  (7.6) 

7�%� The values of (� and () for a risk neutral person would assume the value of 0.5 

only when the set of examined lotteries consists of lotteries with randomly distributed prob�

abilities of their winning. Otherwise the result may be biased towards 0 or 1. Therefore it is 

better to use the Risk Seeking and Risk Aversion measures adjusted by lottery expected val�

ues: 

 ( )
1

1 �

	 	

	

(�) � ��
� =

= −∑  (7.7) 

where ��	 denotes the normalized expected value of 	th lottery. Expected values serve here 

only as constants, so they do not change preferences defined by (� (7.5). However they help 
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to avoid the measure bias and shift the result to a more convenient range of values. (�) as�

sumes values in the range [�0.5, 0.5], and is negative for a generally risk averse person and 

positive for a generally risk seeking person. Adjusted Risk Aversion measure may be then 

symmetrically defined as: 

 ( )
1

1 �

	 	

	

()) (�) �� �
� =

= − = −∑  (7.8) 

It appears that the Adjusted Risk Aversion measure is the mean difference between 

normalized expected values and certainty equivalents. Synonymously, the person is risk 

averse when the certainty equivalents are on average lower than lottery expected values, and 

the person is risk seeking when the certainty equivalents are on average greater than lottery 

expected values
7
.  

7�&� It has to be added that the definition of the risk attitude presented above may lead 

to some interesting conclusions. For example that a risk neutral person does not necessarily 

have to be a perfect expected utility maximizer, although the reverse holds true. This is be�

cause a subject may always expect certainty equivalents of the half of main prizes whatever 

the probability of lottery winning. In this case the subject would be classified as a risk neutral 

person as he/she expects, on average, the expected value of all lotteries. Subject’s behavior, 

however, differs completely from the expected value maximization.  

On the other hand being a perfectly rational decision maker guarantees the risk meas�

ure to show subject’s risk neutrality. This, however, does not mean that dissimilarity from 

expected value maximization is a more general measure than risk attitude. Some counterex�

amples may be given showing that subjects presenting similar level of dissimilarity may dem�

onstrate different risk attitudes.      

7�'� The values of (�) may easily be calculated for each subject. The ordering of sub�

jects is presented in table 8.1. 

 

)����
7��� Ordering of subjects by their Risk Seeking attitude. More risk averse subjects to the left. 

                                                 
7
 This simple and apparently obvious definition may, anyhow, be regarded as a very controversial. This is due to 

the fact it does not involve the shape of the utility function, which is the classical approach to the subject. Be�

sides it does not take into account other more complex concepts resulting from decades long discussion on what 

risk aversion is. For instance Prospect Theory endeavors to separate the lottery results into the value and the 

probability weighting functions. However it then combines both functions in order the present what is called “the 

fourfold pattern of risk attitude”. The author of this paper sees no reason, especially in the nonparametric ap�

proach, to split the observation into several functions, which then have to be joined in order to predict the sub�

ject’s behavior. Therefore this simple definition is used further in the paper.  
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The values of risk seeking adjusted measure are presented in Figure 8.1. 




.�	!��
7��� Risk Seeking adjusted measure for all subjects. Ordering as in Table 8.1. 

It is seen that the most risk�averse subjects are subjects 16 and 6, whereas the most 

risk�seeking are subjects 13 and 19. Interestingly, the subjects, which present the average risk 

attitude (i.e. are middle points in Table 8.1 and in Figure 8.1) are subjects 20 and 21, so ex�

actly those that were determined as the median subjects in the group. As their (�) measure is 

0 it may be stated that they present a risk neutral attitude
8
. This confirms the conclusion pre�

sented in Point 7 that these subjects are perfectly rational decision makers. 

8�
��!������	
�!�-����


8��� Clustering is a method of organizing data in such a way that they are divided into 

separate groups (clusters) so that members of one cluster are somehow similar to each other 

and are dissimilar from members of other clusters. Clustering may be performed in several 

ways. A very basic approach has already been presented in Point 4. Detecting subjects which 

are the nearest to other subjects enables one to determine groups of subjects presenting similar 

behavior. This simplified method, however, does not consider all distances between subjects 

and may only serve for initial considerations. 

8�"� More elaborate methods take into account all distances and use optimization algo�

rithms. There are several algorithms known in the literature such as K�Medoid and K�Mean 

                                                 
8
 As stated in footnote 5 the definitions of risk seeking (7.7) and risk aversion (7.8) do not involve the shape of 

the utility function. It is, however, interesting to check in the Appendix that the relative utility functions of sub�

jects 16 and 6 are generally convex, the relative utilities of subjects 13 and 19 are generally concave, and the 

relative utilities of subjects 20 and 21 are linear. This is in full accordance with the traditional approach of de�

termining risk attitudes based on the shapes of utility functions. 



 13 

(Dunham, 2002). These algorithms divide data into K clusters, where in the first case the clus�

ter center is one of the data points, whereas in the second case it may be any point in between. 

The aim of these algorithms is to minimize the total distance between the data points. Details 

of the methods are not presented here as they are described in the literature and because the 

algorithms are available in most of the advanced statistical packages.  

8�%� In this research we use the algorithm available in the Mathematica
9
 program. It 

uses K�Medoid procedure with several distance measures as an option. The results
10

 for dif�

ferent number of clusters and using the Euclidean Distance measure are presented in Table 

9.1.  

 

)����
8��. Division of subjects into 3, 4, 5, and 6 clusters using K�Medoid algorithm and the Euclid�

ean Distance measure.  

Very interestingly, the division of subjects into 3 clusters resulted in a solution de�

pending strongly on stated risk attitudes. The third cluster contains subjects 10, 13, 17, and 

19, which, according to Table 8.1., present the most risk�seeking attitude. The second cluster 

contains subjects 6, 8, 11, 14, and 16, which present the most risk�averse attitude. The only 

exception is the lack in this group of subject 15, which is slightly more risk�averse than sub�

ject 11. The remaining subjects form the first cluster. As concluded in Points 4, 5, and 7 there 

is a large group of subjects presenting average behavior with subjects 20, 21, 22, 3, and 7 as 

                                                 
9
 Wolfram Research Inc. 

10
 The resulting clusters may depend on starting options. Therefore it is important to use a large number of opti�

mization steps. 
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its main representatives. The obtained clustering result justifies, therefore, the definitions of 

risk attitude presented in Point 8 and proves that risk attitude is the key factor in clustering the 

subjects according to their behavior in risky choices. 

The results of clustering into 6 clusters are also worth discussion. The algorithm sepa�

rated risk seeking subjects (10, 13, 17, and 19), risk averse subjects (6, 11, 14, and 16), risk 

neutral subjects whose decision making is very similar to expected value maximization (2, 3, 

4, 7, 12, 20, 21, 22, and 23), and risk neutral subjects whose decision making differs from 

expected value maximization (1, 5, 15, 18, and 24). The remaining clusters are formed by a 

single subject 8, which is the outlier and by a single subject 9, which is also risk�neutral, but 

the decision making is highly dissimilar from the expected value maximization.  The obtained 

results show that the dissimilarity from perfectly rational decision�making is the second key 

factor important during the clustering procedure
11

. 

8�&� The results presented in previous the subpoint enable the proposal of another sim�

plified method of clustering the subjects. All subjects may be presented on one plane, where 

an x�axis is the risk attitude and y�axis is the dissimilarity from the expected value maximiza�

tion. This is presented in Figure 9.1. 

 

.�	!��
8��� Subjects presented on Risk Attitude� Expected Value Dissimilarity Plane.  

First of all it must be stated that risk attitude different from neutral also causes dissimi�

                                                 
11

 Of course the K�Medoid algorithm does not know this and does not work like this. It simply minimizes the 

total distance. The presented conclusion results from other conclusions presented earlier in the paper.  
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larity from expected value maximization. Therefore the points are located only on the part of 

the plane. The figure presents dotted lines, which approximately limit the area of possible 

behaviors. The point located at (0, 0) indicates the perfectly rational maximizer. The point (0, 

0.28) corresponds with the subject expecting always half of the main prize whatever the prob�

ability of winning the lottery (as in the example given in Point 8.4). The point (0.5, 0.58) – 

not shown in the figure � corresponds with the maximally risk seeking person, whereas point 

(�0.5, 0.58) corresponds with the maximally risk averse person.     

These lines help to understand the behavior of respective subjects presented as dots 

and help to determine clusters and outliers. The results obtained by the K�Medoid algorithm 

and presented in Point 9.3. may now be analyzed once again
12

. Subjects 16, 6, 14, and 11 

form one of the clusters as they are the most risk averse subjects in the group. Subject 8 and 

15 are not included in this cluster as they are dissimilar from the expected value maximiza�

tion. Subjects 13, 19, 10, and 17 form another cluster, as they are the most risk�seeking sub�

jects in the group. Subjects 1, 5, 15, 18, and 24 are separated from other subjects having simi�

lar risk neutral attitude as they present a certain level of dissimilarity from the expected value 

maximization. Subject 9 as an extraordinarily case of dissimilarity is excluded and forms yet 

another cluster.   

The example shows that the proposed plane may be a useful tool to analyze the results 

obtained using computer algorithms or may even serve to replace them.    

�9�
�����!�����



This paper presented a nonparametric approach to classify data from lottery experi�

ments. The paper demonstrated that many important questions and problems might be an�

swered without involving any particular model. These questions concern sample “average” 

and extreme values, dissimilarity of subject’s behavior from perfectly rational decision mak�

ing and risk attitudes presented by subjects. The paper shows how subjects may be clustered 

in a group of similar behaviors. The only tools used for this are distance measures: Manhattan 

or Euclidean. Comparison of the obtained results with the relative utilities of subjects vali�

dates both methods of analyzing data from lottery experiments. 

�55����4


���� The relative utility model assumes that certainty equivalents are transposed to the 

                                                 
12

 The best to compare these results also with the relative utilities presented in the Appendix. 
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range [0,1] using the same (3.1) transformation, which is used in this paper to normalize vec�

tors of certainty equivalents. All the data and the estimated relative utility function are then 

presented on a single $ (probability) – � (relative certainty equivalent) graph. No probability 

weighting function is needed to describe experimental results. Further details are to be found 

in Kontek (2010).  

 

The Figure with the relative utilities of all subjects is presented on the next page. 

 

The relative utility function is described using Cumulative Beta Distribution and least 

squares procedure was used to derive its parameters. Two outcome lotteries are presented as 

blue dots, more than two outcome lotteries with red dots.  
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