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Abstract

The paper extends the analysis of price competition among capacity-
constrained sellers beyond the cases of duopoly and symmetric oligopoly.
We first provide some general results for the oligopoly, highlighting
features of a duopolistic mixed strategy equilibrium that generalize
to oligopoly. Unlike in the duopoly, however, there can be infinitely
many equilibria when the capacity of a subset of firms is so large that
no strategic interaction among smaller firms exists. Then we focus on
the triopoly, providing a complete characterization of the mixed strat-
egy equilibrium of the Bertrand-Edgeworth game. The mixed-strategy
region of the capacity space is partitioned according to key equilibrium
features. We also prove the possibility of a disconnected support of an
equilibrium strategy and show how gaps are then determined. Com-
puting the mixed strategy equilibrium then becomes quite a simple
task.

1 Introduction

The issue of price competition among capacity-constrained sellers has at-
tracted considerable interest since Levitan and Shubik’s [13] modern reap-
praisal of Bertrand and Edgeworth. Assume a given number of firms pro-
ducing a homogeneous good at constant and identical unit variable cost up
to some fixed capacity. Assume, also, a non-increasing and concave demand
and that rationing takes place according to the surplus maximizing rule.
Then there are a few well-established facts about equilibrium of the price
game. First, at any pure strategy equilibrium the firms earn competitive
profit. However, a pure strategy equilibrium need not exist unless the ca-
pacity of the largest firm is small enough compared to total capacity. When
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a pure strategy equilibrium does not exist, existence of a mixed strategy
equilibrium is guaranteed by Theorem 5 of [3] for discontinuous games.

Under the above assumptions on demand and cost, a mixed strategy
equilibrium was characterized by Kreps and Scheinkman [12] for the duopoly
within a two-stage capacity and price game. This model was subsequently
extended to allow for non-concavity of demand (by Osborne and Pitchik,
[15]) or differences in unit cost among the duopolists (by Deneckere and
Kovenock, [9]). This led to the discovering of new phenomena, such as the
possibility of the supports of the equilibrium strategies being disconnected
and non-identical for the duopolists.

Yet there is still much to be learned about mixed strategy equilibria
under oligopoly, even with constant and identical unit cost and concave
demand, where a complete characterization of the mixed strategy equilib-
rium is available only for some special cases. Vives [17], amongst others,
analyzed the case of equal capacities among all firms. Within an analysis
concerning horizontal merging of firms Davidson and Deneckere [4] pro-
vided the complete analysis (apart for the fact that attention is restricted
to equilibria in which strategies of equally-sized firms are symmetrical) of
a Bertrand-Edgeworth game with linear demand, equally-sized small firms
and one large firm with a capacity that is a multiple of small firm’s capac-
ity.1 More recently Hirata [11] provided an extensive analysis of triopoly
with concave demand and efficient rationing: having highlighted the basic
features of mixed strategy equilibria under triopoly, he was able to analyze
how mergers between two firms would affect profitability in the different
circumstances. Our analysis of the triopoly differs in scope from Hirata’s
since we provide a complete characterization of mixed strategy equilibria in
the triopoly: we reveal all qualitative features possibly arising in the tri-
opoly, including the facts highlighted in [11].2 In a still unpublished paper
Ubeda [16] has compared discriminatory and uniform auctions and obtained
a number of novel results on discriminatory auctions, a context equivalent

1Davidson and Deneckere [4] assumed a given number of equally-sized firms some of
which merge. To see whether merger facilitates collusion in a repeated price game, they
had to characterize equilibria of the static price game for the resulting special asymmetric
oligopoly and hence mixed strategy equilibria when the new capacity configuration falls
in the mixed strategy region of the capacity space. Our study shows that the equilibrium
strategies of smaller firms may indeed be indeterminate (though each firm equilibrium
payoff is the same at any equilibrium). Davidson and Deneckere avoided this problem by
restricting their attention to equilibria that treat small firms symmetrically ([4], footnote
10, p. 123).

2Our own research and Hirata’s were conducted independently. (Results were made
publicly available, in [7] and [10], respectively.)
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to a Bertrand-Edgeworth game. Differences between our contribution and
those of Hirata and Ubeda are further clarified below.

These references make it clear that the issue at hand is relevant in many
respects, such as mergers (hence regulation), auctions, and price leader-
ship.3 In contrast, a characterization of payoffs of all firms at a mixed
strategy equilibrium of the price game does not seem to be needed to solve
an oligopolistic two-stage capacity and price game, at least under Kreps and
Scheinkman’s assumptions of convex cost of capacity, concavity of demand,
and efficient rationing. In fact, it has recently been shown (see [2] and [14])
that the Cournot outcome then extends to oligopoly. This result basically
derives from a fundamental property of mixed strategy equilibria, namely,
the fact that the payoff of (any of) the largest firm is what is earned by the
Stackelberg follower when rivals supply their capacity.4

As explained above, our ultimate goal was to deepen our understand-
ing of mixed strategy equilibria under oligopoly and this paper provides a
number of results in this connection. However, as soon as mixed strategy
equilibria turned out to have different qualitative features depending upon
the firms’ capacities, it occurred to us that a taxonomy was required in order
to completely characterize such equilibria. This seemed hard to manage un-
der general oligopoly and so we turned to the triopoly, to simplify the task
and in the confidence of getting insights for subsequent generalizations to
oligopoly. This research has led to several discoveries. Unlike in the duopoly,
the equilibrium strategies need not have identical supports for all the firms:
the maximum and minimum of the supports need not be the same for all
the firms5 and supports need not be connected (although their union is).
A further difference from the duopoly is that there can be infinitely many
equilibria.

The paper is organized as follows. Section 2 contains definitions and the
basic assumptions of the model along with a few basic results on equilibrium
payoffs in oligopoly and a key Lemma. Section 3 is concerned with mixed

3The relevance of mixed strategy equilibria of price games for the analysis of mergers
might also be viewed in a longer-run perspective, by allowing for capacity decisions by
the merged firm and outsiders (on this, see Baik [1]). Characterizing mixed strategy equi-
librium of the price game in a duopoly allows Deneckere and Kovenock [8] to endogenize
price leadership by the dominant firm when the capacity vector lies in the mixed strategy
region.

4Hence, at any capacity configuration giving rise to a mixed strategy equilibrium of
the price subgame, the largest firm has not made a best capacity response: it would raise
profit by reducing capacity. Having ruled out any such capacity configuration, the Cournot
outcome follows straightforwardly.

5That minima may differ has also been recognized in [10] and [11].
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strategy equilibria under oligopoly. Several features of a duopolistic mixed
strategy equilibrium turn out to generalize to oligopoly: determination of
the upper and lower bounds of the support of the equilibrium strategy of
(any of) the largest firm; determination of the equilibrium payoff of the
second-largest firm; the necessary symmetry of equilibrium strategies for
equally sized firms (so long as the equilibrium is fully determined); the
absence of atoms in equilibrium strategies, apart from the upper bound of
the support of the largest firm, which it charges with positive probability
when its capacity is strictly higher than for any other firm. Unlike in the
duopoly, however, there can be infinitely many equilibria. Roughly speaking,
this feature can arise when total capacity and the share of it held by a subset
of firms are so large 6 that no strategic interaction exists among smaller
firms: what is sold by any of them at some price only depends on prices set
by firm(s) with larger capacities. In such a case, we show that there is a
single equation constraining the equilibrium strategies of smaller firms.

Sections 4 to 6 are devoted to the triopoly. In Section 4 the region of
the capacity space involving a mixed strategy equilibrium is partitioned into
several subsets according to the features of the resulting equilibrium. This
leads to a classification theorem which characterizes the firms’ payoffs and
bounds the supports of the equilibrium strategies throughout the region of
mixed strategy equilibria. Quite interestingly, there are circumstances where
the smallest firm gets a higher payoff per unit of capacity than the larger
ones’.7 Section 5 introduces the theoretical possibility of the support of the
equilibrium strategy being disconnected for some firms. More specifically, we
clarify when there is necessarily a gap in the support between the minimum
and the maximum and how the gap is then determined. Having done this,
we are able to complement our classification theorem with a uniqueness
theorem: either the equilibrium is unique or not fully determined, and we
identify the two complementary subsets of the region of mixed strategy
equilibria where the former and the latter hold true, respectively.8 The
event of a gap in some support is established in Section 6. Here we construct
the mixed strategy equilibrium in the set where the supports of equilibrium
strategies have the same bounds for all the firms. That set is, in turn,
partitioned into two subsets according to the nature of the equilibrium: in

6In [11], as well as in the earlier version [7] of this paper, indeterminateness was only
discovered for the case in which the largest firm’s capacity is higher than total demand.

7This fact was also discovered by [11]. Besides, we are able to compute that firm’s
payoff, even in those circumstances.

8Uniqueness of the mixed strategy equilibrium of the price game with fixed capacities
was proved, for the duopoly, by Osborne and Pitchik [15].
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one, the supports are connected for all the firms; in the other, there is a
gap in the support of the smallest firm. To show that gaps are a more
general phenomenon, in Section 6 we also look elsewhere in the region of
mixed strategy equilibria and provide an example with a gap in the support
of the equilibrium strategy of the intermediate-size firm. Section 7 briefly
concludes.

2 Preliminaries

There are n firms, 1, 2, ..., n, producing a homogeneous good at the same
constant unit cost (normalized to zero), up to capacity. The demand func-
tion D(x) is defined for p > 0, continuous, and decreasing and concave when
positive. We define P (x) as the inverse function D−1(x) for x ∈ [0, D(0))
and P (x) = 0 for x > D(0).9 Without loss of generality, we consider the
subset of the capacity space (K1,K2, ...,Kn) where K1 > K2 > ... > Kn,
and we define K = K1 + ...+Kn.

It is assumed throughout that any rationing is according to the efficient
rule. Consequently, let Ω(p) be the set of firms charging price p: the residual

demand forthcoming to all firms in Ω(p) is max
{

0, D(p) − ∑
j:pj<p

Kj

}
=

Y (p). If
∑

i∈Ω(p)Ki > Y (p), the residual demand forthcoming to any
firm i ∈ Ω(p) is a fraction αi(Ω(p), Y (p)) of Y (p), namely, Di(p1, ..., pn) =
αi(Ω(p), Y (p))Y (p). Our analysis does not depend on the specific assump-
tion being made on αi(Ω(p), Y (p)): for example, it is consistent with αi(Ω(p), Y (p)) =
Ki/

∑
r∈Ω(p)Kr as well as with the assumption that residual demand is

shared evenly, apart from capacity constraints, among firms in Ω(p).10

At any given pure strategy profile, let p = max{p1, ..., pn}. Let pc be the
competitive price, that is,

pc =

{
P (K) if D(0) > K
0 if D(0) 6 K.

We now provide necessary and sufficient conditions for the existence of a pure
strategy equilibrium and show that no pure-strategy equilibrium actually
exists when the competitive price is not an equilibrium. These results are
straightforward generalizations of similar results for the duopoly.

9A similar definition of function P (x) can be found in Davidson and Deneckere [5].
10In this case, αi(Ω(p), Y (p)) = min{Ki/Y (p), β(p)} where β(p) is the solution in α of

equation
P

i∈Ω(p) min{Ki/Y (p), α} = 1. Let M ∈ Ω(p) and KM > Ki (each i ∈ Ω(p)).

Then
P

i∈Ω(p) min{Ki/Y (p), α} is increasing in α over the range [0,KM/Y (p)] and equal

to
P

i∈Ω(p)Ki/Y (p) > 1 for α = KM/Y (p).
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Proposition 1 (i) (p1, ..., pn) = (pc, ..., pc) is an equilibrium if and only if
either

K −K1 > D(0), if D(0) 6 K, (1)

or
K1 6 −pc

[
D′(p)

]
p=pc

, if D(0) > K. (2)

(ii) All firms earn the competitive profit at each pure strategy equilibrium
and (pc, ..., pc) is the unique equilibrium if D(0) > K.

Proof. (i) If K > D(0), charging pc = 0 is a best response of firm i to
rivals charging pc if and only if

∑
j 6=iKj > D(0). This holds for each i if and

only if
∑

j 6=1Kj > D(0). If D(0) > K, charging pc is the best response of

firm i to rivals charging pc if and only if
[
d[p(D(p) − ∑

j 6=iKj)]/dp
]

p=pc
6 0.

This holds for each i if and only if K1 6 −pc [D′(p)]p=pc .
(ii) We must scrutinize strategy profiles such that p > pc. Assume first

D(p) − ∑
j:pj<p

Kj > 0. If #Ω(p) > 1, then at least some firm i ∈ Ω(p) has
a residual demand lower than Ki and would raise profits by deviating to
a price negligibly lower than p, since output would jump up, from [D(p) −
∑

j:pj<p
Kj ]αi(Ω(p), Y (p)) to min

{
Ki, D(p− ǫ) − ∑

j:pj<p
Kj

}
. If #Ω(p) <

n, any firm j /∈ Ω(p) is selling its entire capacity and therefore has not made
a best response: it would still sell its capacity by raising the price, provided it
remains lower than p. Next assume D(p)−∑

j:pj<p
Kj 6 0. In order for any

firm charging more than the lowest price p to have made a best response,
it must be p = 0 and

∑
j:pj=0Kj > D(0) (the latter of course requiring

that K > D(0)): note that all firms are here earning the competitive profit
(zero). But then, in order for each firm j charging p to have also made a
best response, it must be

∑
s:ps=0,s 6=jKs > D(0).

Therefore, equilibria with p > pc may only exist if inequalities (1) hold,
the set of equilibria then being any strategy profile such that

∑
s:ps=0,s 6=jKs >

D(0) for each j such that pj = 0; if inequalities (2) hold, then a unique
equilibrium exists, in which all firms charge the competitive price pc >
0; if neither (1) nor (2) holds, then no pure strategy equilibrium exists.
As a consequence, the existence of a pure strategy equilibrium depends
upon the capacity of the largest firm to be sufficiently small compared
to total capacity. In fact, either (1) or (2) holds if and only if K1 6
max{K −D(0),−pc [D′(p)]p=pc}. It is assumed in the following that K1 >
max{K−D(0),−pc [D′(p)]p=pc}, so that we are in the region of mixed strat-
egy equilibria.
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We henceforth denote by (φ1(p), ..., φn(p)) = (φi(p), φ−i(p)) a profile of
strategies at a mixed strategy equilibrium, where φi(p) = Pr(pi < p) is
the probability of firm i charging less than p. For the sake of brevity, we
denote by Π∗

i (rather than by Π∗
i (φi(p), φ−i(p)) firm i’s expected profit at

equilibrium strategy profile (φi(p), φ−i(p)), and by Πi(p) firm i’s expected
profit when it charges p with certainty and the rivals are playing the equi-
librium profile of strategies φ−i(p).11 Further, Si is the support of φi(p),

and p
(i)
M and p

(i)
m are the maximum and minimum of Si, respectively. More

specifically, we say that p ∈ Si when φi(·) is increasing at p, that is, when
φi(p+h) > φi(p−h) for any 0 < h < p, whereas p /∈ Si if φi(p+h) = φi(p−h)
for some h > 0.12 Of course, any φi(p) is non-decreasing and everywhere con-
tinuous except at p◦ such that Pr(pi = p◦) > 0, where it is left-continuous

(limp→p◦− φi(p) = φi(p
◦)), but not continuous. Let pM = maxi p

(i)
M and

pm = mini p
(i)
m , M = {i : p

(i)
M = pM} and L = {i : p

(i)
m = pm}. Moreover, if

#M < n, then we define p̂M = maxi/∈M p
(i)
M . Similarly, if #L < n, then we

define p̂m = mini/∈L p
(i)
m .

Obviously, Π∗
i > Πi(p) everywhere and Π∗

i = Πi(p) almost everywhere
in Si. Some more notation is needed to investigate further the properties
of Πi(p). Let N = {1, ..., n} be the set of firms, N−i = N − {i}, and
P(N−i) = {ψ} be the power set of N−i. Further, let

Zi(p;φ−i) := p
∑

ψ∈P(N−i)

qi,ψ
∏

r∈ψ
φr

∏

s∈N−i−ψ
(1 − φs), (3)

where φi ∈ [0, 1] are real numbers and qi,ψ = max{0,min{D(p)−∑
r∈ψKr,Ki}}

is firm i’s output when any firm r ∈ ψ charges less than p and any firm
s ∈ N−i−ψ charges more than p.13 Function Zi(p;φ−i) allows firm i’s payoff
function Πi(p) to be decomposed into functions {p, φ−i(p)}, so long as firm
i’s rivals’ equilibrium strategies φ−i(p) are all continuous in p: namely, Πi(p) =
Zi(p;φ−i(p)). If instead Pr(pj = p◦) > 0 for some j 6= i, then Zi(p

◦;φ−i(p◦)) >
Πi(p

◦) > limp→p◦+ Zi(p;φ−i(p)).14 Sometimes we factorize φj and (1 − φj)
in equation (3) to obtain

Zi(p;φ−i) = Zi(p;φ−i−j , φj) = φjZi(p;φ−i−j , 1) + (1 − φj)Zi(p;φ−i−j , 0).

11In principle the vector of equilibrium payoffs need not be unique if the equilibrium
strategy profile is not so.

12Note that φi(p) = 0 in a right neighborhood of zero.
13Note that

Q

r∈ψ
φr is the empty product, hence equal to 1, when ψ = ∅; and it is

similarly
Q

s∈N
−i−ψ

(1 − φs) = 1 when ψ = N−i.
14The exact value of Πi(p

◦) when Pr(pj = p◦) > 0 for some j 6= i depends on function
αi(Ω(p), Y (p)).
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Zi(p;φ−i−j , 1) and Zi(p;φ−i−j , 0)) have a clear interpretation: if φr = φr(p)
(each r 6= i, j), then Zi(p;φ−i−j , 1) and Zi(p;φ−i−j , 0)) are firm i’s expected
payoffs when charging p, conditional on pj < p and pj > p, respectively. We
establish some properties of functions Zi(p;φ−i) which will be useful later
on.

Lemma 1 (i) Zi(p;φ−i) is continuous in p. For every p and every
φ−i there exists ǫ > 0 such that Zi(p;φ−i) is concave in p in the intervals
[p, p + ǫ] and [p − ǫ, p]: as a consequence, Zi(p;φ−i) is locally concave in
p whenever it is differentiable in p. Wherever Zi(p;φ−i) is concave in p
but not strictly so, there is a function h(φ−i), 0 6 h(φ−i) 6 1, such that
Zi(p;φ−i) = h(φ−i)pKi.

15

(ii) For given φ−i and for any ψ ∈ P(N−i), Zi(p;φ−i) is kinked at
p = P (

∑
r∈ψKr) and locally convex there if

∏
r∈ψ φr

∏
s∈N−i−ψ(1−φs) > 0.

(iii) Zi(p;φ−i) is continuous and differentiable in φj (each j 6= i) and
∂Zi/∂φj 6 0. More precisely, ∂Zi/∂φj < 0if and only if there exists some
ψ ∈ P(N−i−j) such that16

∏

s∈ψ
φs

∏

t∈N−i−j−ψ
(1 − φt) > 0 (4)

and
0 < D(p) −

∑

h∈ψ
Kh < Ki +Kj . (5)

(iv) ∂Zi/∂φj < 0 if and only if ∂Zj/∂φi < 0.
(v) If ∂Zi/∂φj < 0, then ∂Zi/∂φr < 0 for any r < j.
(vi) If ∂Zi/∂φj = 0, then there is function G(φ−i−j) such that Zi(p;φ−i) =

G(φ−i−j)pKi and Zj(p;φ−j) = G(φ−i−j)pKj .

(vii) Let Ñ = {i ∈ N : ∂Zj/∂φi < 0 ∀j ∈ N} and ˜̃N = N−Ñ . Similarly,

φ̃ = {φi : i ∈ Ñ} and
˜̃
φ = {φi : i ∈ ˜̃N}. Assume that ˜̃N is not empty.

Then, for each r ∈ Ñ , Zr(p;φ−r) = Qr(p; φ̃−r)−pRr(φ̃−r)
∑

s∈ ˜̃N
φsKs where

Qr(p; φ̃−r) := p
∑

ψ∈P(Ñ−r)
qr,ψ

∏
t∈ψ φt

∏
v∈Ñ−r−ψ(1 − φv) and Rr(φ̃−r) :=∑

ψ∈P(Ñ−r),0<qr,ψ<Kr

∏
t∈ψ φt

∏
v∈Ñ−r−ψ(1 − φv).

(viii) Assume 0 < φ1 < 1, 0 < φs < 1 for some s ∈ N−1, and
P (

∑
i6=1Ki) > p > P (

∑
i∈ΦKi) where Φ = {i ∈ N : φi > 0}. Then:

(a) ∂Z1/∂φi < 0 and ∂Zi/∂φ1 < 0 for any i ∈ N−1;

15If φ−i = φ−i(p
◦), then h(φ−i) is the probability that the residual demand for firm i

is not lower than Ki when firm i charges p◦ and the rivals are playing φ−i(p
◦).

16By slightly extending notation, N−i−j = N − {i, j} and P(N−i−j) is its power set.
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(b) if p < P (
∑r

h=1Kh) then ∂Zr+1/∂φi < 0 and ∂Zi/∂φr+1 < 0 for
any i > r + 1;

(c) if p > P (K1), ∂Zi/∂φj = 0 for any i ∈ N−1 and any j ∈ N−1−i.
(ix) If Ki = Kj and φi 6 φj, then Zi(p;φ−i) 6 Zj(p;φ−j) and Zi(p;φ−i) <

Zj(p;φ−j) whenever φi < φj and ∂Zi/∂φj < 0.
(x) If Ki 6 Kj and φi > φj = 0, then (Kj/Ki)Zi(p;φ−i) > Zj(p;φ−j).

Proof. (i) Zi(p;φ−i) is a convex linear combination of functions which
are concave in the intervals [p, p + ǫ] and [p − ǫ, p] for any p and suffi-
ciently small ǫ. If

∏
r∈ψ φr

∏
s∈N−i−ψ(1 − φs) > 0 at some ψ such that

qi,ψ = D(p) − ∑
r∈ψKr, then Zi(p;φ−i) is strictly concave; if not, then∏

r∈ψ φr
∏
s∈N−i−ψ(1 − φs) > 0 only for ψ’s such that either qi,ψ = Ki or

qi,ψ = 0.
(ii) At p = P (

∑
r∈ψKr), the left derivative of Zi(p;φ−i) with respect to

p equals the right derivative plus pD′(p)
∏
r∈ψ φr

∏
s∈N−i−ψ(1 − φs) < 0.

(iii) Differentiate Zi(p;φ−i) with respect to φj and rearrange to obtain

∂Zi
∂φj

= Zi(p;φ−i−j , 1) − Zi(p;φ−i−j , 0) =

= p
∑

ψ∈P(N−i−j)

(qi,ψ∪{j} − qi,ψ)
∏

r∈ψ
φr

∏

s∈N−i−j−ψ
(1 − φs). (6)

Then, ∂Zi/∂φj 6 0 since qi,ψ∪{j} − qi,ψ 6 0. Clearly, ∂Zi/∂φj < 0 if
and only if there exists ψ ∈ P(N−i−j) such that inequality (4) holds and
qi,ψ∪{j} − qi,ψ < 0, which leads to inequalities (5).

(iv) It follows from the symmetrical role of i and j in inequalities (4)
and (5).

(v) Recall that, in order for ∂Zi/∂φj < 0 (∂Zi/∂φr < 0), inequalities (4)
and (5) must hold for some ψ ∈ P(N−i−j) (resp., ψ′ ∈ P(N−i−r)). Suppose
they hold for some ψ such that r /∈ ψ. For ψ′ = ψ, inequalities (5) read
0 < D(p)−∑

h∈ψKh < Ki +Kr, which hold too since the first inequality is
unchanged andKj 6 Kr; inequality (4) holds if φj < 1. Suppose inequalities
(4) and (5) hold for some ψ such that r ∈ ψ. For ψ′ = ψ ∪ {j} − {r},
inequalities (5) read 0 < D(p)−∑

h∈ψ′ Kh < Ki +Kr, which hold too since
the second inequality is unchanged andKj 6 Kr; inequality (4) holds if φj >
0. Thus the claim is proved if φj ∈ (0, 1). Assume now that φj = 0. The
claim is still proved if some φ’s for which inequalities (4) and (5) are satisfied
do not include r. Assume the opposite, i.e., that all φ’s for which inequalities
(4) and (5) are satisfied include r; then Zi(p;φ−i) = φrZi(p;φ−i−r, 1) and
∂Zi/∂φr 6 0 only if Zi(p;φ−i) = 0. Assume now that φj = 1 and all
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φ’s for which inequalities (4) and (5) are satisfied do not include r, then
Zi(p;φ−i) = (1 − φr)Zi(p;φ−i−r, 0) and ∂Zi/∂φr < 0.

(vi) For each ψ ⊆ N−i−j it is either qi,ψ∪{j} = qi,ψ = 0 or qi,ψ∪{j} = qi,ψ =
Ki or

∏
r∈ψ φr

∏
s∈N−i−j−ψ(1 − φs) = 0. Hence in all positive addends of

sum (3) qi,ψ = Ki. Thus there is a function Gi(φ−i−j) such that Zi(p;φ−i) =
Gi(φ−i−j)pKi. Similarly, taking account of part (iv), we obtain Zj(p;φ−j) =
Gj(φ−i−j)pKj . Finally, Gi(φ−i−j) < Gj(φ−i−j) if and only if qi,ψ = 0 and
qj,ψ = Kj for some ψ ⊆ N−i−j , i.e., Kj 6 D(p) − ∑

r∈ψKr 6 0. This
contradiction implies that Gi(φ−i−j) = Gj(φ−i−j).

(vii) Let ψ ∈ P(Ñ−r) and ψ′ ∈ P( ˜̃N). It is easily checked that if
qr,ψ = Kr, then also qr,ψ∪ψ′ = Kr. Otherwise there are i, j ∈ ψ′ such that
∂Zi/∂φj < 0 since qi,ψ∪ψ′∪{r} − qi,ψ∪ψ′∪{r}−{j} < 0. Similarly, if 0 < qr,ψ <
Kr, then qr,ψ∪ψ′ = qr,ψ − ∑

s∈ψ′ Ks > 0. As a consequence, Zr(p;φ−r) =
p

∑
ψ∈P(Ñ−r),qr,ψ=Kr

∑
ψ′∈P( ˜̃N)

Kr
∏
t∈ψ φt

∏
u∈ψ′ φu

∏
v∈N−r−ψ−ψ′(1−φv)+

p
∑

ψ∈P(Ñ−r),0<qr,ψ<Kr

∑
ψ′∈P( ˜̃N)

[
qr,ψ − ∑

s∈ψ′ Ks

] ∏
t∈ψ φt

∏
u∈ψ′ φu

∏
v∈N−r−ψ−ψ′(1−

φv) = p
∑

ψ∈P(Ñ−r)
qr,ψ

∏
t∈ψ φt

∏
v∈Ñ−r−ψ(1−φv)

[∑
ψ′∈P( ˜̃N)

∏
u∈ψ′ φu

∏
v∈ ˜̃N−ψ′

(1 − φv)
]
−

p
∑

ψ∈P(Ñ−r),0<qr,ψ<Kr

∏
t∈ψ φt

∏
v∈Ñ−r−ψ(1−φv)

[∑
ψ′∈P( ˜̃N)

∑
s∈ψ′ Ks

∏
u∈ψ′ φu

∏
v∈ ˜̃N−ψ′

(1 − φv)
]

=

Qr(p; φ̃−r)−pRr(φ̃−r)
∑

s∈ ˜̃N
φsKs

[∑
ψ′∈P( ˜̃N)−P( ˜̃N−s)

∏
u∈ψ′−{s} φu

∏
v∈ ˜̃N−ψ′

(1 − φv)
]

=

Qr(p; φ̃−r) − pRr(φ̃−r)
∑

s∈ ˜̃N
φsKs. The first equality holds by definition.

The other equalities are obtained by rearranging the sum and by recognizing
complementary events.

(viii.a) ∂Z1(p)/∂φi < 0 if at least one product on the right-hand side of
(6) is strictly negative. This is certainly so for ψ = Φ − {1, j}. (Note that
if i ∈ Φ, 0 < q1,ψ∪{i} < K1 whereas if i /∈ Φ, 0 < q1,ψ < K1.) Part (iv)
completes the proof.

(viii.b) Let Ψ1 be the set of the subsets ψ of N−(r+1)−i which satisfy
inequality D(p) >

∑
h∈ψKh. Ψ1 is not empty since {1, 2, ..., r} ∈ Ψ1. Let

Ψ2 be the set of the subsets ψ of N−(r+1)−i which satisfy inequality D(p) <∑
h∈ψKh +Kr+1 +Ki. Ψ2 is not empty since Φ− {r+ 1, i} ∈ Ψ2. Because

of part (iii) the claim is proved if Ψ1 ∩ Ψ2 6= ∅. Assume contrariwise that
Ψ1 ∩ Ψ2 = ∅. Then for any ψ ∈ Ψ1, D (p) − ∑

h∈ψKh > Kr+1 + Ki > 0,
while, for any ψ ∈ Ψ2, D (p)−∑

h∈ψKh 6 0 < Kr+1 +Ki. Of course, there
is some ψl ∈ Ψ1 such that {1, 2, ..., r} ⊆ ψl and ψl ∪ {l} ∈ Ψ2. Therefore
Kl > D(p) − ∑

h∈ψl Kh > Kr+1 +Ki, which contradicts the fact that Kl 6
Kr+1 and Ki > 0. Statement (iv) completes the proof.

(viii.c) If 1 /∈ ψ ⊆ N−i−j , then qi,ψ∪{j} − qi,ψ = Ki − Ki = 0. If
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1 ∈ ψ ⊆ N−i−j , then qi,ψ∪{j} − qi,ψ = 0 − 0 = 0.
(ix) Since Ki = Kj , Zi(p;φ−i−j , β) = Zj(p;φ−i−j , β). Hence Zi(p;φ−i)−

Zj(p;φ−j) = (φj − φi)∂Zi/∂φj .
(x) Since φi > φj = 0, Zi(p;φ−i) = Zi(p;φ−i−j , 0), whereas Zj(p;φ−j) 6

Zj(p;φ−i−j , 0) because of part (iii). Thus it suffices to prove that (Kj/Ki)Zi(p;φ−i−j , 0) >
Zj(p;φ−i−j , 0). Note that for any qi,ψ with a positive coefficient in Zi(p;φ−i−j , 0)
there is a corresponding qj,ψ with a positive coefficient in Zj(p;φ−i−j , 0),
based on the same ψ ∈ P(N−i−j), and vice versa. The claim follows since
(Kj/Ki)qi,ψ > qj,ψ for each ψ ∈ P(N−i−j).

Parts (iv)-(vii) of Lemma 1 allow a nice interpretation of the Jacobian
matrix [∂Zi/∂ψj ]i,j∈N . If #Ñ = s, Ñ = {1, 2, ..., s}, because of part (v).
Submatrix [∂Zi/∂ψj ]i,j∈ ˜̃N

is a zero (n−s)× (n−s) matrix, because of parts

(iv), (v), and (vi). Submatrix [∂Zi/∂ψj ]i∈ ˜̃N,j∈Ñ is a negative (n − s) × s

matrix whose rank is 1, because of parts (v) and (vi). Similarly, submatrix
[∂Zi/∂ψj ]i∈Ñ,j∈ ˜̃N

is a negative s× (n− s) matrix whose rank is 1, because

of parts (v) and (vii). Finally, submatrix [∂Zi/∂ψj ]i,j∈Ñ is an s× s matrix
with all elements on the main diagonal nought and all off-diagonal elements
negative, because of part (v).

3 Mixed strategy equilibria under oligopoly

In this section we establish a number of general properties of mixed strategy

equilibria under oligopoly. Since [12] it has been known that pM = p
(1)
M =

p
(2)
M = arg max p(D(p) − K2) in a duopoly with K1 > K2; also, φ1(pM ) <
φ2(pM ) = 1 if K1 > K2, while φ1(pM ) = φ2(pM ) = 1 if K1 = K2. Therefore
Π∗
i = pM (D(pM ) − K2) for any i such that Ki = K1. These results have

recently been generalized to oligopoly, as summarized here.

Proposition 2 φi(pM ) = 1 for any i such that Ki < K1, pM = arg max p(D(p)−∑
j 6=1Kj), p

(i)
M = pM for some i such that Ki = K1, and Π∗

i = max p(D(p)−∑
j 6=1Kj) for any i : Ki = K1.

Proof. For a complete proof, see [2] and [6], and, more recently, [16],
[14], and [11].

The following proposition establishes quite expected properties of mixed
strategy equilibria.

11



Proposition 3 (i) For any i ∈ N , Π∗
i = Πi(p) for p in the interior of Si.

(ii) For any p◦ ∈ (pm, pM ), p◦ > P (
∑

i:p
(i)
m <p◦

Ki).

(iii) #L > 2 and #M > 2.
(iv) For any p◦ ∈ (pm, pM ), #{i : p◦ ∈ Si} 6= 1.

Proof. (i) Suppose contrariwise that Π∗
i > Πi(p

◦) for some p◦ in the
interior of Si. This reveals that p◦ is not charged by i: it is Pr(pj = p◦) > 0
for some j 6= i and Zi(p

◦;φ−i(p◦)) > Πi(p
◦) > limp→p◦+ Zi(p;φ−i(p)). As a

consequence, Π∗
i > Πi(p) on a right neighborhood of p◦: a contradiction.

(ii) Otherwise for i such that p
(i)
m < p◦ it would be Πi(p) = pKi for

p ∈ Si ∩ [pm, p
◦]: a contradiction.

(iii) Assume contrariwise that L = {i}. Then, on a right neighborhood
of pm, Πi(p) = pmin{Ki, D(p)}, a non-constant function. A similar contra-
diction would occur if M = {1}.

(iv) If #{i : p◦ ∈ Si} = 1, then φ−i(p) are all constant for p close
enough to p◦, and Πi(p) = Π∗

i cannot be positive there: by Lemma 1(i)-(ii),
∂Zi(p;φ−i)/∂p = 0 only if Zi(p;φ−i) = 0.

The following proposition about pm and pM generalizes well known re-
sults concerning duopoly to oligopoly. Similar generalizations were also pro-
vided by Ubeda [16] in a different context. In order to shorten notation, we
henceforth denote limp→h+ Πi(p) and limp→h− Πi(p) as Πi(h

+) and Πi(h
−),

respectively, and limp→h+ φi(p) as φi(h
+).

Proposition 4 (i) p
(i)
m = pm for any i such that Ki = K1.

(ii) pm = max{p̂, ̂̂p} where p̂ = Π∗
1/K1 and ̂̂p is the smallest solution of

equation pD(p) = Π∗
1; Π∗

1 = p̂K1 or Π∗
1 = ̂̂pD(̂̂p) according to whether p̂ > ̂̂p

or p̂ 6 ̂̂p.
(iii) pm > P (

∑
j∈LKj).

(iv) p
(i)
M = pM for any i such that Ki = K1.

Proof. (i) SinceD(pM ) >
∑

j 6=1Kj , if p
(i)
m > pm for some i 6= 1 such that

Ki = K1, then a fortiori D(p) >
∑

j∈LKj for p 6 pM : as a consequence,

for any j ∈ L, Πj(p) is increasing for p ∈ [pm, p
(i)
m ): a contradiction.

(ii) If p < max{p̂, ̂̂p}, then Π1(p) 6 pmin{D(p),K1} < Π∗
1 = p̂K1 =

̂̂pD(̂̂p). Hence, pm > max{p̂, ̂̂p}. On the other hand, if pm > max{p̂, ̂̂p}, then

Π1(p
−
m) > Π∗

1. Indeed, if p̂ > ̂̂p, then D(p̂) > K1 so that it is either D(pm) >
K1, hence Π1(p

−
m) = pmK1 > p̂K1, or D(pm) < K1, hence Π1(p

−
m) =

12



pmD(pm) > ̂̂pD(̂̂p) (since pD(p) is increasing for p ∈ [0, pM ]). If ̂̂p > p̂,

then D(̂̂p) < K1 and hence Π1(p
−
m) = pmD(pm) > ̂̂pD(̂̂p).

(iii) If #L = n and pm 6 P (
∑

j∈LKj), then each firm earns no more
than its competitive profit, contrary to Proposition 2. If #L < n and
pm < P (

∑
j∈LKj), then Πj(p) is increasing over a right neighborhood of

pm, any j ∈ L: an obvious contradiction. If #L < n and pm = P (
∑

j∈LKj),
then Π∗

i = pmKi even if pm were charged with positive probability by some
j ∈ L− {i}. As a consequence,

Π∗
i = Πi(p) = p


D(p) −

∑

j∈L−{i}
Kj




∏

j∈L−{i}
φj(p) + pKi


1 −

∏

j∈L−{i}
φj(p)




= p[D(p) −D(pm)]
∏

j∈L−{i}
φj(p) + pKi

in a neighborhood of pm. Therefore
∏
j∈L−{i} φj(p) = (pm−p)Ki

p[D(p)−D(pm)] , which is

decreasing in a right neighborhood of pm since limp→p+m
d

∏
j∈L−{i} φj(p)/dp =

[KipmD
′′(p) + 2D′(p)]/2p2

m[D′(p)]2 < 0: an obvious contradiction.

(iv) Let K2 = K1, p
(1)
M = pM and p

(2)
M < pM . Since φ1(p) < φ2(p) = 1

for p ∈ (p
(2)
M , pM ), Π1(p) < Π2(p) there because of the following Lemma

2(a) and Lemma 1(ix). As a consequence, Π∗
2 > Π2(p) > Π1(p) = Π∗

1 for

p ∈ (p
(2)
M , pM )∩S1, contrary to the fact that Π∗

1 = Π∗
2 because of Proposition

2. Quite similarly, if (p
(2)
M , pM )∩S1 = ∅, i.e., Pr(p1 = pM ) = 1−φ1(p

(2)
M ) > 0,

then Π∗
2 > Π2(p

−
M ) > Π1(pM ) = Π∗

1.

Lemma 2 If p ∈ (pm, pM ), then
(a) [∂Z1/∂φi]φ−1=φ−1(p) < 0 and [∂Zi/∂φ1]φ−i=φ−i(p) < 0 for any i ∈

N−1;
(b) if p < P (

∑r
h=1Kh) then [∂Zi/∂φj ]φ−i=φ−i(p) < 0 and [∂Zj/∂φi]φ−j=φ−j(p) <

0 for any i 6 r + 1 and any j ∈ N−i;
(c) if p > P (K1), [∂Zi/∂φj ]φ−i=φ−i(p) = 0 for any i ∈ N−1 and any

j ∈ N−1−i.
Proof. Proposition 2, Proposition 3(ii)-(iii), and Proposition 4(i) imply

that for (φi, φ−i) = (φi(p), φ−i(p)) and p ∈ (pm, pM ) the assumptions of part
(viii) of Lemma 1 hold. Then the claim follows from Lemma 1(iv)-(v)&(viii)
and from the fact that the demand function is not increasing.

Note that, since p̂ is decreasing in K1, the event of ̂̂p > p̂ arises at
relatively large levels ofK1. Proposition 4(ii) has an immediate consequence:

Corollary 1. pm > P (K1) if and only if ̂̂p > p̂.
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An interesting question is whether some price p ∈ [pm, pM ] is charged
with positive probability by some firm at a mixed strategy equilibrium. This
event can be ruled out for any p ∈ (pm, pM ).

Proposition 5 For any p◦ ∈ (pm, pM ), Pr(pj = p◦) = 0 for any j.

Proof. If φj(p
◦) < φj(p

◦+) for some j, then p◦ ∈ Sj by definition.
According to Proposition 3(iv), p◦ ∈ Si for some i 6= j. For any such i,
Πi(p

◦−) = Πi(p
◦+) if and only if [∂Zi(p

◦, φ−i)/∂φj ]φ−i(p◦)6φ−i6φ−i(p◦+) = 0.
Then, by Lemma 1(iv), [∂Zj(p

◦, φ−j)/∂φi]φ−j=φ−j(p◦) = 0 for any i such

that p◦ ∈ Si. Finally, because of Lemma 1(vi), there is G(φ̂(p)) such that
Zj(p;φ−j(p)) = G(φ̂(p))pKj in a neighborhood of p◦, where φ̂(p) is the set
of all φr(p) such that p◦ /∈ Sr. This contradicts the fact that in the same
neighborhood, or part of it, Zj(p;φ−j(p)) must be constant.

Next we show that, as in the duopoly, pM is charged with positive prob-
ability by the largest firm if and only if K1 > K2; furthermore, equilibrium
strategies are the same for any firm with the largest capacity.

Proposition 6 (i) Let K1 > K2. Then φ1(pM ) < 1. (ii) Let K2 = K1.
Then: (ii.a) for any r such that Kr = K1, φr(pM ) = φ1(pM ) = 1 and (ii.b)
φr(p) = φ1(p) throughout [pm, pM ]. (ii.c) For any j such that Kj < K1,

p
(j)
M < pM .

Proof. (i) If φ1(pM ) = 1, then, because of Proposition 2, φi(pM ) = 1
(each i). Hence Π∗

i = Πi(p
−
M ) = pM max{D(pM ) − ∑

j 6=iKj , 0} for i ∈
M −{1}. But then Πi(p) > Π∗

i for some p ∈ (0, pM ), since arg max p[D(p)−∑
j 6=iKj ] ∈ [0, pM ) and Πi(p) > p[D(p) − ∑

j 6=iKj ] since a firm cannot get
less of the profit obtained when all other firms charge a lower price.

(ii.a) Suppose contrariwise that, say, φ1(pM ) < φr(pM ) = 1. Then
Lemma 2(a) and Lemma 1(ix) would yield Πr(p

−
M ) > Π1(pM ) = Π∗

1, contrary
to Proposition 2.

(ii.b) The claim is obviously true at any p ∈ S1∩Sr: if, say, φr(p) > φ1(p)
then by Lemma 2(a) and Lemma 1(ix) it would be Πr(p) > Π1(p), contrary
to Proposition 2. One can similarly rule out φr(p) > φ1(p) over some interval
belonging to S1 and not to Sr. If φr(p) > φ1(p) over some interval belonging
to Sr and not to S1, then φ1(p) should subsequently jump up, contrary to
either Proposition 5 or Proposition 6(ii.a).

(ii.c) If p
(j)
M = pM , the contradiction in the proof of part (i) holds, since

φ1(pM ) = 1 because of part (ii.a).
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In a different context Ubeda [16] has proved that Π∗
i = Π∗

j for any i and
j such that Kj = Ki < K1. In the following we also prove that φi(p) = φj(p)
if [∂Zi(p;φ−i)/∂φj ]φ−i=φ−i(p) < 0. Because of Lemma 1(vi)-(vii), this means

that either φi(p) = φj(p) or φi(p) and φj(p) are not fully determined. This
will be clarified below.

Proposition 7 Let Kj = Ki < K1. Then:
(i) Π∗

j = Π∗
i ;

(ii) if (φ1(p), ..., φn(p)) is such that [∂Zi(p;φ−i)/∂φj ]φ−i=φ−i(p) < 0 for

any p∈ (pm, pM ), then φi(p) = φj(p) for any p ∈ (pm, pM ).

Proof. (i) Note that Π∗
i ≥ Zi(p

(j)−
m , φ−i(p

(j)−
m )) ≥ Zj(p

(j)−
m , φ−j(p

(j)−
m )) =

Π∗
j , the second inequality following from Lemma 1(ix) since, of course,

φi(p
(j)−
m ) ≥ φj(p

(j)−
m ) = 0, no matter whether p

(i)
m S p

(j)
m . It is similarly

Π∗
j ≥ Zj(p

(i)−
m , φ−j(p

(i)−
m )) ≥ Zi(p

(i)−
m , φ−i(p

(i)−
m )) = Π∗

i , hence Π∗
j = Π∗

i .
(ii) For any p ∈ Si ∩ Sj , it must obviously be φi(p) = φj(p), other-

wise part (i) would be contradicted because of Lemma 1(ix). The argument
is completed by proving that Si = Sj . Let p ∈ Sj and φi(p) > φj(p).
Given this and recalling part (i) above and Lemma 1(ix), Π∗

j = Π∗
i ≥

Πi(p) = Zi(p, φ−i(p)) > Π∗
j , a contradiction. Hence φi(p) 6 φj(p) for any

p ∈ Sj . Similarly, p ∈ Si implies φj(p) 6 φi(p) and therefore p
(j)
M = p

(i)
M and

p
(j)
m = p

(i)
m . Finally, it cannot be that some interval is in Sj and not in Si,

otherwise Pr(pi = p◦) should be positive at some higher p◦ ∈ Si (contrary

to Proposition 5), since p
(i)
M = p

(j)
M .

The following result concerns equilibrium profits for firms j ∈ {2, ..., n}.
(For a proof of part (ii) in a different context, see [16].)

Proposition 8 Let j ∈ {2, ..., n}. Then: (i) Π∗
j = pmKj for any j such that

Kj = K2; (ii) Π∗
j/Kj 6 Π∗

i /Ki for any i such that Ki < Kj.

Proof. (i) If Kj = K2 = K1, then Π∗
j = pmKj because of Proposition

4(i)-(iii) (note that D(pm) >
∑

i6=1Ki, hence Πj(p
−
m) = pmKj). Next, let

Kj = K2 < K1. If p
(j)
m = pm, then Π∗

j = pmKj since Πj(p
−
m) = pmKj (again,

since D(pm) >
∑

i6=1Ki). If p
(j)
m > pm,17 then, by Proposition 5, Π∗

j =

Zj(p
(j)
m ;φ−j(p

(j)
m )). Then, by Proposition 3(iii), p

(i)
m = pm and Π∗

i = pmKi

for some i such that Ki ≤ K2, whereas, as a consequence of Lemma 1(x),

17In our study of the triopoly below we will identify the subset of the capacity space
where p

(2)
m > pm.
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(Kj/Ki)Zi(p
(j)
m ;φ−i(p

(j)
m )) > Zj(p

(j)
m ;φ−j(p

(j)
m )). Hence pmKj = (Kj/Ki)Π

∗
i >

(Kj/Ki)Zi(p
(j)
m ;φ−i(p

(j)
m )) > Zj(p

(j)
m ;φ−j(p

(j)
m )) = Π∗

j > Πj(p
−
m) = pmKj .

(ii) If p
(j)
m = pm, then Π∗

j = Πj(p
−
m) = pmKj whereas Π∗

i > pmKi.

Suppose next p
(j)
m > pm. Then, if p

(i)
m < p

(j)
m , the claim follows imme-

diately from Lemma 1(x). If p
(i)
m ≥ p

(j)
m , it must be noted that Π∗

i ≥
Πi(p

(j)
m ) = Zi(p

(j)
m ;φ−i(p

(j)
m )) = Zi(p

(j)
m ;φ−i−j(p

(j)
m ), 0) (the latter equality

following from Proposition 5 since p
(j)
m > pm) and that Π∗

j = Zj(p
(j)
m ;φ−j(p

(j)
m )) =

Zj(p
(j)
m ;φ−i−j(p

(j)
m ), 0). Thus we are done since (Kj/Ki)Zi(p;φ−i−j , 0) >

Zj(p;φ−i−j , 0) (as shown in the proof of Lemma 1(x)).

The previous result has an immediate corollary.

Corollary. Let p
(j)
m > pm and Π∗

j > pmKj for some j such that Kj <

K1. Then p
(i)
m > pm for i such that Ki < Kj.

We can now compare equilibrium profits (Π∗
i ) with minmax profits (Πi,mM )

in circumstances where the equilibrium is in mixed strategies. (Close scrutiny
of these issues was already provided by Ubeda [16] in a different context.)
Let pi,mM be firm i’s minmax price.

Proposition 9 (i) Π∗
i = Πi,mM for any i : Ki = K1. (ii) For any i such

that Ki < K1, Π∗
i > Πi,mM .

Proof. (i) Let σ−i denote a mixed strategy profile on the part of firm
i’s rivals and let p(σ−i) denote any of firm i’s best response to σ−i. Since
pM > pc and pm min{D(pm),K1} = pM [D(pM ) − ∑

j 6=1Kj ], then clearly
Πi(p(σ−i), σ−i) > pM (D(pM ) − ∑

j 6=1Kj), with strict equality holding for
some σ−i. Thus pi,mM = arg max p(D(p) − ∑

j 6=1Kj) and Πi,mM = Π∗
1.

(ii) We know that Π∗
i > pmKi, hence the claim is obviously true if

Πi,mM = 0, i.e., if
∑

j 6=iKj > D(0). If
∑

j 6=iKj < D(0), then pi,mM =
max{pc, arg max p[D(p)−∑

j 6=iKj ]}, which is less than pM . Now, if pi,mM >
pc, then Πi,mM = pi,mM [D(pi,mM )−∑

j 6=iKj ] and the claim is immediately
proved when pi,mM ∈ (pc, pm] since then pmKi > Πi,mM . If pi,mM > pm,
then Π∗

i > Πi,mM since Πi(pi = pi,mM , φ−i(pi,mM )) > Πi,mM (in fact,
φ1(pi,mM ) < 1 since pi,mM < pM ).

Let Λ(p) = {i : p ∈ Si} for an equilibrium profile of strategies (φ1(p), ..., φn(p)).
Then, because of Proposition 5,

Π∗
i = Zi(p;φ−i(p)) (7)
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each i ∈ Λ(p). Hence if a profile of strategies is known, equations (7) are
able to determine the equilibrium profits relative to that profile. Conversely,
assume to know Λ(p◦), φj(p◦)’s (any j /∈ Λ(p◦)), and the equilibrium payoffs
Π∗
i ’s for each i ∈ Λ(p◦). Then, over some neighborhood of p◦, system (7)

defines implicitly φj(p)’s (any j ∈ Λ(p◦)) provided that the Jacobian deter-
minant ∂(Zi∈Λ(p◦)/∂(φi∈Λ(p◦)) is different from zero at p◦ and Λ(p) = Λ(p◦)
in that neighborhood. An obvious case in which Λ(p) 6= Λ(p◦) for some p in
that neighborhood is when φj(p) (some j) so defined is decreasing for that
p (concavity of the demand function is not enough to rule out such an event
when #Λ(p◦) > 2).

Note that according to Lemma 1(vi)-(vii) the Jacobian determinant
∂(Zi∈Λ(p◦)/∂(φi∈Λ(p◦)) is equal to zero if ∂Zi/∂φj = 0 and both i and j
are in Λ(p◦). In that case there is an infinite number of solutions. In fact
the same Lemma 1(vi)-(vii) allows system (7) to be written as:

Π∗
i = Qi(p; φ̃−i(p)) − pRi(φ̃−i(p))

∑

s∈ ˜̃N

φs(p)Ks, i ∈ Ñ ∩ Λ(p◦) (8)

Π∗
j = Qj(p; φ̃−j(p))+

Rj(φ̃−j(p))

Ri(φ̃−i(p))
[Π∗

i −Qi(p; φ̃−i(p))], i 6= j ∈ Ñ∩Λ(p◦) (9)

Π∗
r = pKrG(φ̃(p)), r ∈ ˜̃N ∩ Λ(p◦) (10)

There are #(Ñ ∩Λ(p◦))−1 linearly independent equations (9) which jointly
with one equation (10) are able to determine the #(Ñ ∩ Λ(p◦)) functions
φi(p) for i ∈ Ñ ∩ Λ(p◦).18 Finally, equation (8) is the equality constraint

upon the #( ˜̃N ∩ Λ(p◦)) functions φi(p) for i ∈ ˜̃N ∩ Λ(p◦).
An example may be useful. It is easily checked that if n = 4 and K1 +

K2 > D(p) > K1 +K3 +K4, then φ1(p) and φ2(p) are uniquely determined,
but φ3(p) and φ4(p) may not be so. If they are determined, then either
φ3(p) = φ4(p) = 0 or φ3(p) = φ4(p) = 1. Otherwise they just need to satisfy
the equation K3φ3(p) +K4φ4(p) = D(p)−K1 −K2 +

√
K1K2(p− pm)/p.19

A special case obtains for p ∈ (P (K1), pM ) (see Lemma 2), when #Λ(p) >
2. It must preliminarily be noted that p ∈ S1. (For the sake of brevity we

18We are excluding any indeterminacy not connected with the structure of zeros.
19Let D(p) = 16−p, K1 = 9, K2 = 6, K3 = 1.2 ,K4 = 0.8. It is easily verified that pM =

4, pm = 16/9, Π∗

1 = 16, Π∗

2 = 32/3; in the range (pm, p), where p ≃ 1.799049189, φ1(p) =
(18p− 32)/[3p(p− 1)], φ2(p) = (9p− 16)/[p(p− 1)], and φ3(p) = φ4(p) = 0; in the range
(p, p), where p ≃ 2.190859761, φ1(p) =

p

K2(p− pm)/K1p, φ2(p) =
p

K1(p− pm)/K2p,
and φ3(p) and φ4(p) are indetermined; in the range [p, pM ], instead, φ3(p) = φ4(p) = 1,
φ1(p) = (18p− 32)/[3p(1 + p)], φ2(p) = (9p− 16)/[p(1 + p)].
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do not provide a proof; the reader can easily find it along the same lines
of the proof given for the following proposition.) Further, no equation (9)
exists since Ñ = {1}. Equation (10) yields φ1(p) = (p− pm)/p, whereas the
φj ’s (any j 6= 1) are not determined for any j = #Λ(p) − {1}: they need to
satisfy the equation

p
∑

j 6=1

Kjφj(p) = pD(p) − Π∗
1 (11)

and inequalities 1 > φj(p) > φj(P (K1)). An even more special case obtains
when K1 > D(pm).

Proposition 10 If K1 > D(pm), then Pr(pi = pm) = 0 for each i, Π∗
1 =

pmD(pm) and Π∗
j = pmKj for j 6= 1; φ1(p) = 1 − pm/p, while the φj(p)’s

are any (n− 1)-tuple of non-decreasing functions such that 20 equation (11)
holds, φj(pm) = 0 and φj(pM ) = 1 for any j 6= 1. Equation (11) is consistent
with any L such that 1 ∈ L and 2 6 #L 6 n, and even with gaps in Sj.
Among the infinite solutions, there exists a symmetric one in which

φj(p) =
pD(p) − Π∗

1

p
∑

j 6=1Kj
for j 6= 1.

Proof. It is easily checked that Zj(p, φ−j(p)) = p[1 − φ1(p)]Kj for
any j 6= 1: in fact, φi(p) (each i 6= 1, j) does not affect firm j’s payoff when
charging p such thatD(p) < K1, the residual demand forthcoming to j being
either zero (if p1 < p) or higher than Kj (if p1 > p, since D(p) >

∑
j 6=1Kj

for p 6 pM ). Thus φ1(p) = (p − pm)/p on a neighborhood of pm - hence
φ1(p

+
m) = 0 - since Π∗

j = Zj(p, φ−j(p)) = pmKj for j ∈ L − {1}. In fact, if
instead Π∗

j = Zj(p, φ−j(p)) < pmKj for j ∈ L− {1} - and hence φ1(p
+
m) > 0

- then Π∗
j = Zj(p

+
m;φ−j(p+

m)) < Πj(p
−
m) = pmKj : a contradiction. Since

Zi(p, φ−i(p)) = Zj(p, φ−j(p))(Ki/Kj) for all i, j 6= 1, it is in fact φ1(p) =
(p − pm)/p throughout [pm, pM ] so that Π∗

i = pmKi for each i 6= 1. To
see this, note that, if φ1(p) < (p − pm)/p for some p ∈ (pm, pM ), then
Πj(p) = p[1 − φ1(p)]Kj > pmKj , a contradiction for j ∈ L− {1}. If instead
φ1(p) > (p − pm)/p over some interval in (pm, pM ), then that interval is a
gap in Si (each i 6= 1) since then Zi(p, φ−i(p)) < Πi(pm) = pmKi for p in
that interval. Thus either Proposition 3(iv) is contradicted or that interval
is a gap in S1 too: but then, at some lower price p◦, φ1(p

◦+) > φ1(p
◦) =

(p◦ − pm)/p◦, contrary to Proposition 5.

20That there is a continuum of equilibria in this region has also been proved by Hirata
(see Claim 2 in [11]).
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Therefore, any equilibrium (φ1(p), ..., φn(p)) is a solution of the n-equation
system Π∗

i = Zi(p;φ−i(p)), where the left side equals pmKi for each i 6= 1,
a system containing just two independent equations. Thus any φ−1(p) such
that Π∗

1 = Z1(p;φ−1(p)) - namely, such that equation (11) holds - is part of
an equilibrium, so long as, each j 6= 1, φj(pm) = 0, φj(pM ) = 1, φ′j(p) > 0,
and φj(p

+) = φj(p) for any p ∈ [pm, pM ]. Indeed, if φj(p
+
m) > 0 for j 6= 1,

then Π∗
1 = Z1(p

+
m;φ−1(p

+
m)) < Π1(p

−
m) = pmD(pm): a contradiction. It

is easily checked that the symmetric equilibrium solution satisfies the con-
straints φj(pm) = 0, φj(pM ) = 1, and φ′j(p) > 0 throughout [pm, pM ). Exis-
tence of equilibria with gaps in some Sj 6= 1 is quite obvious.

4 Triopoly: equilibrium profits and upper and lower

bounds of the supports of equilibrium strategies

In the previous sections we established a number of properties for the mixed
strategy equilibrium under oligopoly. Equipped with these results and in
order to get further insights for oligopoly, in the remainder of the paper
we provide a comprehensive study of mixed strategy equilibria in triopoly.
Compared to duopoly, triopoly will be seen to allow for much wider diversity
throughout the region of mixed strategy equilibria, the equilibrium being
affected on several grounds by the ranking of pm and pM relative to the
demand prices of different aggregate capacities, namely, P (K1+K2), P (K1+
K3), and P (K1).

As soon as one sets out to construct the equilibrium it emerges that
features of the equilibrium vary considerably throughout the region of mixed
strategy equilibria.21 Let us build a partition of the region of mixed strategy
equilibria that fully accounts for the diversity in the equilibrium profits, the
bounds of the equilibrium supports, and the degree of determinateness of
the equilibrium. (Note that, because of Proposition 2 and Proposition 4(ii)
pM and pm are known once K1, K2, and K3 are given.)

First of all, we partition the region of mixed strategy equilibria into two
parts: that in which K2 > K3 and that in which K2 = K3. The first part
is then partitioned into four regions: those in which pm 6 P (K1 + K2),
P (K1 +K2) < pm < P (K1 +K3), P (K1 +K3) 6 pm < P (K1), and pm >
P (K1), respectively. The first region is partitioned into the sets

A = {(K1,K2,K3) : K1 > K2 > K3, pm 6 P (K1 + K2), pM 6 P (K1 +
K3)}

21More precisely, in the subset of the region of mixed strategy equilibria where K1 >
K2 > K3.
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Figure 1: Taxonomy for D(p) = 1 − p and K2 +K3 = 1/4.

B1 = {(K1,K2,K3) : K1 > K2 > K3, pm 6 P (K1 +K2), P (K1 +K3) <
pM 6 P (K1)}

E1 = {(K1,K2,K3) : K1 > K2 > K3, pm 6 P (K1 +K2), pM > P (K1)}.
The second region consists of set
C1 = {(K1,K2,K3) : K1 > K2 > K3, P (K1 +K2) < pm < P (K1 +K3)}.
The third region is partitioned into the sets
C2 = {(K1,K2,K3) : K1 > K2 > K3, P (K1 +K3) 6 pm, pM 6 P (K1)}
C3 = {(K1,K2,K3) : K1 > K2 > K3, P (K1+K3) 6 pm < K1−K3

K1
P (K1), pM >

P (K1)}
F = {(K1,K2,K3) : K1 > K2 > K3,max{P (K1 +K3),

K1−K3
K1

P (K1)} 6
pm < P (K1), pM > P (K1)}.

The fourth region is part of the set
D = {(K1,K2,K3) : K1 > K2 > K3, pm > P (K1)}.
The part of the region of mixed strategy equilibria in which K2 = K3

is partitioned into two regions, in which pm < P (K1) and pm > P (K1),
respectively. The first region is partitioned into the sets

B2 = {(K1,K2,K3) : K1 > K2 = K3, pm < P (K1), pM 6 P (K1)}
E2 = {(K1,K2,K3) : K1 > K2 = K3, pm < P (K1), pM > P (K1)}.
The second region is what remains of set D. We will prove that all points

in the sets labeled by the same letter are alike in terms of the determina-
tion of equilibrium profits, the upper and lower bounds of the supports of
equilibrium strategies,22 and the determinateness of equilibrium.

22Compared to [10], in [11] Hirata arrives at a partition almost as fine as ours (which
we already achived in [7]), except that no distinction is made between our sets A and B1.
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One can devise an almost complete graphical representation of the above
partition in a (K1,K2) plane, by focusing on a convenient two-dimension
surface of the capacity space. This is done in Figure 1, where it is assumed
that D(p) = 1−p and K2 +K3 = 1/4. For obvious reasons, K2 ∈ [1/8, 1/4);
and, for the equilibrium to be in mixed strategies, K1 >

3
8 . Then pM = 3

8
and Π∗

1 = 9
64 . Sets B2 and E2 are located on the straight line K2 = 1

8 : B2

for 3/8 < K1 6 3/8, E2 for 3/8 < K1 < (4 +
√

7)/8. To locate the other
sets we need to insert other geometrical loci. Along curve α in the figure

(hyperbola K2 = −9−64K1+64K2
1

64K1
), pm = P (K1 +K2): A ∪ B1 ∪ E1 is not

above this curve whereas C1 ∪C2 ∪C3 ∪F ∪D is. Along curve β (hyperbola

K2 =
9−48K1+64K2

1
64K1

), pm = P (K1 +K3): A ∪ B1 ∪ E1 ∪ C1 is above this
curve whereas C2 ∪ C3 ∪ F is not and D is below. Along the straight line
γ (K2 = K1 − 3

8), pM = P (K1 +K3): A is not below it whereas B1 ∪ E1

is. Along the vertical line K1 = 5
8 , pM = P (K1): A is on the left of it,

B1 ∪B2 ∪C2 is not on the right of it whereas C3 ∪E1 ∪E2 ∪F ∪D is. Along

curve δ (hyperbola K2 =
25−80K1+64K2

1
64(1−K1) ), pm = K1−K3

K1
P (K1): C3 is above

it whereas F is not. Along the vertical line K1 = 4+
√

7
8 , pm = P (K1): D is

not on the left of it whereas all other sets are. Note that set C2 is empty.
Simple calculations show that, with D(p) = 1 − p, set C2 is empty so long
as K2 +K3 6 1

3 , whereas set E1 is empty so long as K2 +K3 > 1
3 .

It is also checked that actually K1 > K2 + K3 whenever pM > P (K1),
hence at any (K1,K2,K3) ∈ C3 ∪D ∪E1 ∪E2 ∪ F, and K1 > K2 whenever
pM > P (K1 +K3), hence at any (K1,K2,K3) ∈ B1 ∪ C2.

The following theorem collects all the results to be achieved in this sec-
tion. From the previous section we know about Π∗

1 and Π∗
2 and we also

know that Π∗
3 > pmK3 if K2 > K3 and Π∗

2 = Π∗
3 if K2 = K3. Among other

things, the theorem locates the region where Π∗
3 = pmK3 and the region

where Π∗
3 > pmK3 and determines p

(3)
m and Π∗

3 in the latter region.

Theorem 1. (a) In A, Π∗
i = pmKi for all i, L = {1, 2, 3} and M =

{1, 2}.
(b) In B1 ∪B2, Π∗

i = pmKi for all i and L = M = {1, 2, 3}.
(c) In C1 ∪ C2 ∪ C3, Π∗

i = pmKi for i 6= 3 and Π∗
3 > pmK3; L = M =

{1, 2}; p(3)
M < P (K1). Let φ1α(p) and φ2α(p) be defined by equations Π∗

1 =
Z1(p;φ2α, 0) and Π∗

2 = Z2(p;φ1α, 0) so that φ1α(p) and φ2α(p) are firms 1
and 2’s equilibrium strategies and Z1(p;φ2α(p), 0) and Z2(p;φ1α(p), 0) firms

1 and 2’s equilibrium payoffs, respectively, over the range α = [pm, p
(3)
m ].23

23We take it for granted that [pm, bpm] ∈ S1 ∩ S2. For the sake of simplicity the proof
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Then Π∗
3 = maxp∈eα Π3α(p) and p

(3)
m = arg maxp∈eα Π3α(p), where Π3α(p) =

Z3(p;φ1α(p), φ2α(p)), α̃ = [pm, p
∗
M ] and p∗M is such that φ2α(p∗M ) = 1.24

(d) In D, Π∗
1 = pmD(pm) and Π∗

j = pmKj for j 6= 1; φ1(p) = 1− pm/p,
while φ2(p) and φ3(p) are any pair of non-decreasing functions such that

pK2φ2(p) + pK3φ3(p) = pD(p) − Π∗
1, (12)

φj(pm) = 0 and φj(pM ) = 1 for j 6= 1, and S2 ∪ S3 is connected.
(e) In E1 ∪ E2, Π∗

i = pmKi for all i, L = {1, 2, 3} and #M > 2
with p̂M > P (K1). Over [P (K1), pM ], φ1(p) = 1 − pm/p, and φ2(p) and
φ3(p) are any pair of non-decreasing functions such that equation (12) holds,
φj(P (K1)

+) = φj(P (K1)
−) and φj(pM ) = 1 for j 6= 1, and S2 ∪S3 is con-

nected.
(f) In F , Π∗

i = pmKi for all i, L = {1, 3} and p
(2)
m > P (K1). Over the

range [P (K1), pM ] strategies are determined as in E1 ∪ E2.
(g) Pr(pi = pm) = 0 for each i ∈ L.

To establish Theorem 1 we begin by determining L and Π∗
3 whenever

3 ∈ L. Then we analyze the cases in which φ2(p) and φ3(p) are not fully
determined. Next, we determine M whenever φ2(p) and φ3(p) are fully
determined. Finally, we complete the proof of the Theorem. In connection
to the first task an intermediate step is the following Lemma.

Lemma 3. If #L = 2, then Pr(pj = pm) = 0 for each j ∈ L; if #L = 3
and Pr(pi = pm) > 0 for some i, then Pr(pj = pm) = 0 for each j 6= i.

Proof. Let L = {i, j}. If Pr(pj = pm) > 0, then, taking account of
Proposition 4(iii), Π∗

i = Πi(p
+
m) < pm min{D(pm),Ki} while Πi(p

−
m) =

pm min{D(pm),Ki}: a contradiction. A similar argument proves what is
claimed when L = {i, j, k}.

We can now address the determination of L. Note that Pr(pi = pm) =
φi(p

+
m). Furthermore, recall that if L = {1, 2, 3}, then equilibrium strategies

are a solution of system

Π∗
i = Zi(p;φ−i(p)), φi(p) > 0, φ′i(p) > 0 for each i, (13)

in an open to the left right neighborhood of pm, where Π∗
3 is a constant to

be determined.

that there is no gap in the range [pm, bpm] is postponed to the next section.
24The fact that p

(3)
m > pm and Π∗

3 > pmK3 in what is here called C1, C2, and C3 has also
been recognized by Hirata (see [11], Claims 4 and 5). However, Hirata is not concerned

with how p
(3)
m and Π∗

3 are actually determined in that event.
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Proposition 11 (i) Let (K1,K2,K3) ∈ A ∪ B1 ∪ E1. Then L = {1, 2, 3},
Pr(pi = pm) = 0 and Π∗

i = pmKi for each i.
(ii) Let (K1,K2,K3) ∈ B2 ∪ E2. Then L = {1, 2, 3}, Pr(pi = pm) = 0

and Π∗
i = pmKi for each i, φ2(p) = φ3(p) throughout [pm, P (K1)].

25

(iii) Let (K1,K2,K3) ∈ C1∪C2∪C3. Then (iii.a) L = {1, 2}, Π∗
i = pmKi

for i 6= 3, and Π∗
3 > pmK3,(iii.b) p

(3)
M < P (K1).

(iv) Let (K1,K2,K3) ∈ F . Then L = {1, 3}, p(2)
m > P (K1) and Π∗

i =
pmKi for all i.

Proof. (i) Since pm 6 P (K1 + K2), it follows from Proposition 4(iii)
that L = {1, 2, 3} = {i, j, r}. Further, it is checked that φi(p

+
m) = 0 for each

i at any solution of system (13). Suppose first that pm < P (K1 +K2). Then
the equations in system (13) read

Π∗
1 = pφ2(p)φ3(p)[D(p) −K] + pK1,

Π∗
2 = pφ1(p)φ3(p)[D(p) −K] + pK2,

Π∗
3 = pφ1(p)φ2(p)[D(p) −K] + pK3.

Hence [dZi(p;φ−i(p))/dp]p=p+m = 0 for each i if and only if

(D −K)[φ2φ3 + pm(φ′2φ3 + φ2φ
′
3)] +D′pmφ2φ3 +K1 = 0,

(D −K)[φ1φ3 + pm(φ′1φ3 + φ1φ
′
3)] +D′pmφ1φ3 +K2 = 0,

(D −K)[φ1φ2 + pm(φ′1φ2 + φ1φ
′
2)] +D′pmφ1φ2 +K3 = 0,

where D,D′, φ1, φ2, φ3, φ
′
1, φ

′
2, and φ′3 are all to be understood as limits for

p→ p+
m. Suppose contrariwise that φi(p

+
m) > 0. Then, according to Lemma

2, φj(p
+
m) = φr(p

+
m) = 0, and the system above becomes

pm(D −K)(φ′jφr + φjφ
′
r) = −Ki,

pm(D −K)(φ′iφr + φiφ
′
r) = −Kj ,

pm(D −K)(φ′iφj + φiφ
′
j) = −Kr.

But this system cannot hold. Indeed, in order for the first equation to hold
either φ′j = ∞ or φ′r = ∞ (or both): then, either the third equation or the
second equation (or both) cannot hold. The same logic applies when pm =
P (K1 + K2). Finally, that Π∗

i = pmKi for each i follows straightforwardly
from L = {1, 2, 3} and Pr(pi = pm) = 0.

25That L = 3 in the circumstances of Proposition 11(i)-(ii) was to a large extent discov-
ered also by Hirata [11] (Claims 3 and 6). Hirata does not address the issue of Pr(pi = pm).
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(ii) In view of Proposition 3(iii), Proposition 8 and Proposition 9(i),
Π∗

3 = Π∗
2 = pmK2, L = {1, 2, 3} and φ2(p) = φ3(p) throughout [pm, P (K1)].

Then it follows immediately from Lemma 3 that φ2(p
+
m) = φ3(p

+
m) = 0.

That φ1(p
+
m) = 0 is established along the lines of the proof of the part (i)

above if pm 6 P (K1 +K2). If instead pm > P (K1 +K2) and φ1(p
+
m) > 0,

then Π∗
j = Zj(p

+
m, φ−j(p

+
m)) < Πj(p

−
m) = pmKj for j 6= 1: a contradiction.

(iii.a) If φ3(p) = 0 on a neighborhood of pm, then φ1(p) and φ2(p)
are the solutions of equations Π∗

1 = Z1(p;φ2, 0), Π∗
2 = Z2(p;φ1, 0) over

that neighborhood: this yields φj(p)=
(pm−p)Ki

p[D(p)−Ki−Kj ] for j = 1, 2. One

can easily check that it is then Π3(p) > pmK3 over such a neighborhood,
since Π3(pm) = pmK3 and limp→pm+ Π′

3(p) > 0.26 Hence Π∗
3 > pmK3 and

φ1(p
+
m) = φ2(p

+
m) = 0 if L = {1, 2}. Now, suppose contrariwise that

L = {1, 2, 3} and denote by φ̂i(p) firm i’s equilibrium strategy (i = 1, 2, 3)
on a right neighborhood of pm. Then, it should be Π∗

1 = Z1(p; φ̂2(p), φ̂3(p))

and Π∗
2 = Z2(p; φ̂1(p), φ̂3(p)). Clearly, φ̂1(p) < φ1(p) and φ̂2(p) < φ2(p)

because of Lemma 2(b) and since φ̂3(p) > 0. Consequently, a fortiori
Z3(p; φ̂1(p), φ̂2(p)) > pmK3 contrary to the presumption that L = {1, 2, 3}
(implying Π∗

3 = Π3(p
−
m) = pmK3)).

Assume now that L ∈ {1, 3}. In C1, Π∗
3 = pK3 for p ∈ (pm,min{p(2)

m , P (K1+
K3)}]: an obvious contradiction. In C2 ∪ C3, Π∗

i = pφj(p)(D(p) − Kj) +

p(1 − φj(p))Ki for p ∈ (pm,min{p(2)
m , P (K1)}], i, j = 1,3; as a consequence,

φj(p)= (pm − p)Ki/p[D(p)−Ki −Kj ] over that range. By charging a price
there firm 2 would get

Π2(p) = pφ1(p)(1 − φ3(p))[D(p) −K1] + p(1 − φ1(p))K2,

which is lower than pmK2 at any p < P (K1). Hence p
(2)
m > P (K1). But this

is impossible: in C2 since pM 6 P (K1), in C3 since otherwise φ3(P (K1)) =
{[P (K1) − pm]/P (K1)}(K1/K3) > 1, since pmK1 < (K1 −K3)P (K1).

(iii.b) This is trivial in C2 since pM 6 P (K1). In C1 ∪ C3, if p
(3)
M >

p > P (K1), then Π∗
3 = p[1 − φ1(p)]K3 and hence φ1(p) < 1 − pm/p since

pmK3 < Π∗
3. On the other hand, it is also Π2(p) = p[1 − φ1(p)]K2 so that

Π2(p) > pmK2: an obvious contradiction.

(iv) The event of L = {1, 2, 3} is ruled out as in the proof of part (iii.a).

Under the event L = {1, 2}, by an argument in the proof of part (iii.b) p
(3)
M <

26For example, in C1, Π′

3(p) = [1 − φ1(p)φ2(p) − p(φ′

1(p)φ2(p) + φ1(p)φ
′

2(p))]K3 and
limp→pm+ Π′

3(p) = K3 since φ1(p
+
m) = φ1(p

+
m) = 0, limp→pm+ φ

′

1(p) ∈ (0,∞), and
limp→pm+ φ

′

2(p) ∈ (0,∞).
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P (K1) and hence φ2(p) =
p[D(p)−K3]−Π∗

1
pK2

over the range (p
(3)
M , P (K1)).

27 But

then φ2(P (K1)) 6 0 since pmK1 > (K1−K3)P (K1). Thus p
(1)
m = p

(3)
m < p

(2)
m .

Further, p
(2)
m cannot be lower than P (K1), otherwise, as emerged in the

proof of part (iii.a), Π∗
2 = Π2(p

(2)
m ) < pmK2. Thus φj(p) = (pm−p)Ki

p[D(p)−Ki−Kj ] for

j = 2, 3 over the range [pm, P (K1)].

The following proposition finds the sets where the equilibrium is inde-
terminate at p ∈ (P (K1), pM ) not investigated by Proposition 10.

Proposition 12 (a) Let (K1,K2,K3) ∈ F . Then over the range [P (K1), pM ],
φ1(p) = 1 − pm/p. If K1−K3

K1
P (K1) < pm, then φ2(p) and φ3(p) are any

pair of non-decreasing functions meeting (12) and such that φ3(P (K+
1 ) =

φ3(P (K−
1 ), φ2(P (K+

1 ) = 0, and S2∪S3 is connected. This is consistent with

#M = 3, p
(2)
M < pM , and p

(3)
M < pM , and even with (non-overlapping) gaps

in both S2 and S3. If K1−K3
K1

P (K1) = pm, then S2 ∩ S3 = {P (K1)} and the

equilibrium is determined.28

(b) Let (K1,K2,K3) ∈ E1 ∪ E2. Then p
(j)
M > P (K1) for j 6= 1. For p ∈

[P (K1), pM ], φ1(p) = 1−pm/p while φ2(p) and φ3(p) are any non-decreasing
functions consistent with equation (12) and such that φj(P (K1)

+) = φj(P (K1)
−),

φj(pM ) = 1 for j 6= 1, and S2 ∪ S3 is connected. This is consistent with

#M = 3, p
(2)
M < pM , and p

(3)
M < pM , and even with (non-overlapping) gaps

in S2 and in S3.

Proof. It was established above for the oligopoly that, at any p ∈
[P (K1), pM ], p ∈ S1 so that equation (11) holds, and that φ1(p) = 1−pm/p.
Further, because of Proposition 3(iv) gaps in S2 and S3 cannot overlap. To
complete the proof we must add the following.

(a) In this case φ3(P (K1)
−) > 0 and φ2(P (K1)

−) = 0 because of Propo-

sition 11(iv) Quite interestingly, it can be p
(2)
m > P (K1) rather than p

(2)
m =

P (K1). In the former case, φ3(p)=
pD(p)−Π∗

1
pK3

over the range [P (K1), p
(2)
m ] and

still φ2(p
(2)
m )+) = 0. Finally, φ3(P (K1)) = 1 if and only if K1−K3

K1
P (K1) =

pm; in this special case, φ2(p)=
p[D(p)−K3]−Π∗

1
pK2

over range [P (K1), pM ].

(b) If p
(j)
M < P (K1), then φ1(p) = 1 − pm/p as soon as p > p

(j)
M : as a

consequence, Πj(p) > Π∗
j for p ∈ [p

(j)
M , P (K1)].

27In the assumption that (p
(3)
M , P (K1)) ⊂ S1 ∩ S2. Assuming otherwise that this range

belongs neither to S1 nor to S2 would lead to a contradiction. See below, Proposition
14(ii).

28See also Hirata [11] (Claim 5) for a proof of a similar result.
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We still have to determine M in A ∪ C1 ∪ C2 ∪ C3 ∪B1 ∪B2.

Proposition 13 (i) Let (K1,K2,K3) ∈ A∪C1∪C2∪C3. Then M = {1, 2}.
(ii) Let (K1,K2,K3) ∈ B1 ∪B2. Then M = {1, 2, 3}.

Proof. (i) Let us partition set A into subsets A1 (pM 6 P (K1 +K2)),
A2 (P (K1 +K2) < pM < P (K1 +K3)), A3 (pM = P (K1 +K3)), and set C1

into subsets C11 (pM < P (K1+K3)), C12 (P (K1+K3) 6 pM < P (K1)), C13

(pM > P (K1)). The claim is already proved in C13 and C3, given Proposition
11(iii.b). A constructive argument is provided for A1. By Proposition 11(i),
on a right neighborhood of pm equilibrium strategies are the solutions of the
three-equation system

pmKi = pφj(p)φr(p)(D(p) −Kj −Kr) + p(1 − φj(p)φr(p))Ki,

so that φi(p) = (Kj/Ki)φj(p). Based on this, it cannot be #M = 3 nor

p
(2)
M < pM : it is instead p

(3)
M < pM , S1 = S2 = [pm, pM ], and S3 = [pm, p

(3)
M ].

As to the other subsets, we first rule out the event of #M = 3 and

then the event of p
(2)
M < pM . Recall that, by Proposition 3, with #M = 3

we have φ1(pM ) < 1 = φ2(pM ) = φ3(pM ). Further, in a left neighborhood
of pM equilibrium strategies would be the solutions of the three-equation
system (13), call them φ◦i(p). Let us consider A3 first. As seen more
exhaustively in the following section, solving this system yields φ◦1(p) =√

K2
K1

(p−pm)
p , φ◦2(p) = K1

K2
φ◦1(p), and φ◦3(p) = D(p)−K1−K2

K3
+ K1

K3
φ◦1(p)

for p ∈ [P (K1 + K2), P (K1 + K3)]. Since φ◦2(P (K1 + K3)) = 1, then
φ◦1(P (K1+K3)) = K2/K1; upon differentiation of φ◦3(p) and recalling that
D(pM ) −K2 −K3 + pM [D′(p)]p=pM = 0 and Π∗

1 = pM [D(pM ) −K2 −K3],

we find
[
φ◦′3(p)

]
p=P (K1+K3)−

=
[D′(p)]p=pM

2K3
< 0: a contradiction.

The event #M = 3 in the other subsets can be dismissed more eas-
ily. Under that event, Π2(p

−
M ) = Z2(pM ;φ−2(pM )) = Π∗

2 and Π3(p
−
M ) =

Z3(pM ;φ−3(pM )) = Π∗
3. These two equations contradict each other since

φ2(pM ) = φ3(pM ) = 1. For example, if the former holds, then Π3(p
−
M ) < Π∗

3

and the latter cannot hold. Let us see how this works in each case. Note
that in C2 ∪ C12, pM > P (K1 +K3). Hence under our working assumption
we would have Π∗

2 = pmK2 = pM [1 − φ1(pM )]K2. This yields φ1(pM ) = 1 −
pm/pM , in turn implying Z3(p

−
M ) = pM [1−φ1(pM )]K3 = pmK3, contrary to

Proposition 11(iii.a). In C11, Π∗
2 = pmK2 = Z2(p

−
M ) = pM [φ1(pM )(D(pM )−

K1 − K3) + (1 − φ1(pM ))K2], yielding φ1(pM ) = pM−pm
pM

K2
K−D(pM ) . By
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substituting this into Z3(p
−
M ) = pM [1 − φ1(pM )]K3 we obtain Z3(p

−
M ) =

pM [K1+K3−D(pM )]+pmK2

K−D(pM ) K3. Note that pM [K1+K3−D(pM )]+pmK2

K−D(pM ) < pm since

P (K1 +K3) > pM ; hence Z3(p
−
M ) < pmK3, again contradicting Proposition

11(iii.a). (A similar argument applies to A2).

It remains to dismiss the event of p
(2)
M < pM in A2 ∪A3 ∪C11 ∪C12 ∪C2.

This is done by showing that otherwise Π2(p) would be greater than Π∗
2 in

a left neighborhood of pM . If p
(2)
M < pM in C11 ∪ C12 ∪ C2, then Π3(p

−
M ) =

pM [1−φ1(pM )]K3 = Π∗
3 > pmK3, implying φ1(pM ) = 1− Π∗

3
pMK3

< 1− pm
pM

and

hence Π2(p
−
M ) = pMφ1(pM ) max{0, D(pM )−K1−K3}+pM [1−φ1(pM )]K2 >

pmK2. If p
(2)
M < pM in A2 ∪ A3 , then φ1(p) = 1 − pm

p in a neighborhood of
pM . Consequently, by charging a price in that neighborhood firm 2 would
earn Π2(p) = pφ1(p)φ3(p)[D(p)−K1−K3]+pφ1(p)(1−φ3(p))[D(p)−K1]+
p(1 − φ1(p))K2 > p(1 − φ1(p))K2 = pmK2 = Π∗

2.

(ii) Recall that, by Proposition 11(i)-(ii), L = {1, 2, 3} and Π∗
i = pmKi

for each i. Consider B1 first. If p
(j)
M < pM for some j 6= 1, then one can

easily check that Πj(p) > Π∗
j for p ∈ [max{p(j)

M , P (K1 + K3)}, pM ]. Turn
next to B2. Here M = {1, 2, 3} follows directly from Proposition 3(iii) and
the fact that φ2(p) = φ3(p) (see Proposition 8). Proof. (of Theorem 1)
For parts (a) and (b), see Propositions 11 and 13. For the first claim in part
(c), see Proposition 11(iii). For part (d), see Proposition (10); because of
Proposition 3(iv) gaps in S2 and S3 cannot overlap. For parts (e) and (f),
see Propositions 11 and 12. Part (g) is a consequence of Propositions 10, 11
and 12 and Lemma 3. Hence we need just to prove the last claim in part
(c). (Figure 2 may help the reader in following the proof.)

It is easily checked that Π3α(pm) = pmK3 = Π3α(P (K1)) and, if P (K1) >
p∗M , Π3α(p∗M ) < pmK3; furthermore, [Π′

3α(p)]p=pm > 0.29 It follows immedi-
ately that Π3α(p) has an internal maximum over the range [pm,min{P (K1), p

∗
M}].

Thus p
(3)
m 6 arg maxΠ3α(p), otherwise Π∗

3 = Π3α(p
(3)
m ) < max Π3α(p), while

firm 3 can earn maxΠ3α(p) by charging arg maxΠ3α(p). To rule out the

event of p
(3)
m < arg maxΠ3α(p), note that, on a right neighborhood of

p
(3)
m , Π∗

i = Πi(p) = Zi(p;φ−i(p)) = Zi(p;φ−iα(p)) for i ∈ {1, 2}, where
φ3α(p) = 0. Thus, taking account of Lemma 2(b), on a right neighbor-

hood of p
(3)
m , φ2(p) < φ2α(p) and φ1(p) < φ1α(p) since φ3(p) > 0, imply-

ing that Z3(p;φ−3(p)) > Z3(p;φ−3α(p)). Hence if p
(3)
m < arg maxΠ3α(p),

29In C1, Π′

3α(p)p=pm
= K3, in C2 ∪ C3, Π′

3α(p)p=pm
= pm [φ′

1α]
p=pm

[D(pm) − K1 −

K3] +K3, where [φ′

1α]
p=pm

= − K2

pm[D(pm)−K1−K2]
.
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Figure 2: Π3α(p) := Z3(p, φ1α(p), φ2α(p)), where pmK1 = Z1(p, φ2α(p), 0)
and pmK2 = Z2(p, φ2α(p), 0); Π3γ(p) := Z3(p, φ1γ(p), φ2γ(p)), where
pmK1 = Z1(p, φ2γ(p), 1) and pmK2 = Z2(p, φ2γ(p), 1)
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we get a contradiction since Z3(p;φ−3α(p)) > Z3(p
(3)
m ;φ−3α(p

(3)
m )) = Π∗

3 =

Z3(p;φ−3(p)) on a right neighborhood of p
(3)
m .30

Two remarks are in order about the last proof. If arg maxp∈eα Π3α(p) 6=
P (K1 +K3), then [φ′3(p)]p=p(3)m +

= 0 and [φ′j(p)]p=p(3)m +
= [φ′j(p)]p=p(3)m − for

j = 1, 2; whereas if arg maxp∈eα Π3α(p) = P (K1+K3), then [φ′3(p)]p=p(3)m − > 0

and [φ′j(p)]p=p(3)m +
< [φ′j(p)]p=p(3)m − for j = 1, 2. (We omit the proof, which

can be derived straightforwardly.)

Finally, when M = {1, 2}, p(3)
M is easily determined once Π∗

3 has been

computed. Let γ = [p
(3)
M , pM ] so that we can refer to the equilibrium strate-

gies of firms 1 and 2 over this range as φ1γ(p) and φ2γ(p) (see Figure 2):
clearly, Z2(p;φ1γ(p), 1) = Π∗

2 and Z1(p;φ2γ(p), 1) = Π∗
1. Next consider

Z3(p;φ1γ(p);φ2γ(p)) on any left neighborhood of pM . On reflection, p
(3)
M is

such that Z3(p
(3)
M ;φ1γ(p

(3)
M ), φ2γ(p

(3)
M )) = Π∗

3 whereas Z3(p;φ1γ(p), φ2γ(p)) >

Π∗
3 on a left neighborhood of p

(3)
M and Z3(p;φ1γ(p), φ2γ(p)) 6 Π∗

3 for p ∈
(p

(3)
M , pM ].

5 Triopoly: gaps in supports and uniqueness of

equilibrium strategies

In the duopoly, concavity of the demand function is sufficient to have con-
nected supports of equilibrium strategies, whereas, without concavity, φj(p)

(some j) may be constant over some interval α ⊂ (p
(j)
m , p

(j)
M ) (as clarified by

Osborne and Pitchik, [15]). Quite differently, under triopoly the Sj ’s need
not be connected, even if the demand function is concave. As already seen,
equilibria with gaps in S2 and S3 exist when (K1,K2,K3) ∈ D∪E1∪E2∪F ,
due to the degree of freedom in the determination of φ2(p) and φ3(p) for
p > P (K1). In this section, it will be seen that gaps are also conceivable
when (K1,K2,K3) ∈ A ∪B1 ∪B2 ∪C1 ∪C2 ∪C3 ∪E1 ∪E2, over some sub-
set of [pm, P (K1)], hence independently of equilibrium indeterminateness.
Consider system

Π∗
i = Zi(p;φ−i(p)), for i : p ∈ [p(i)

m , p
(i)
M ], (14)

and denote by φi
◦(p) (each i : p ∈ [p

(i)
m , p

(i)
M ]) its solution at any p ∈ [pm, pM ].

We will show that the φi
◦(p)’s (each i : p ∈ [p

(i)
m , p

(i)
M ]) are in fact the

30One might wish to account for the event of Π3α(p) reaching its maximum more than

once in eα. Arguing as in the text, it is established that p
(3)
m = max{arg maxp∈eα Π3α(p)}.
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equilibrium strategies (namely, the φi(p)’s) if all of them are increasing

throughout [p
(i)
m , p

(i)
M ]. Furthermore, we will see how gaps are determined in

the event of φi
◦′(p) < 0 for some i and establish uniqueness of equilibrium,

whether or not gaps arise. Finally, it will be seen that S1∪S2∪S3 = [pm, pM ].
The following section makes these results all the more relevant by showing
that gaps can actually arise in B1 and C1.

Proposition 14 (i) Let (K1,K2,K3) ∈ A∪B1∪B2∪C1∪C2∪C3∪E1∪E2.

Then: (i.a) (φ1
◦(p), φ2

◦(p), φ3
◦(p)) is unique at any p ∈ [p

(3)
m ,min{p(3)

M , P (K1)}];
(i.b) if φ1

◦(p), φ2
◦(p), and φ3

◦(p) are increasing over the range [p
(3)
m ,min{p(3)

M , P (K1)}],
then φ1

◦(p), φ2
◦(p), and φ3

◦(p) are the equilibrium strategies throughout that
range.

(ii) Let (K1,K2,K3) ∈ C1 ∪ C2 ∪ C3. Then: (ii.a) (φ1
◦(p), φ2

◦(p)) is

unique at any p ∈ [pm, p
(3)
m ] and φi

◦(p), i = 1, 2, is increasing there; (ii.b)
φ1

◦(p) and φ2
◦(p) are the equilibrium strategies throughout that range.

(iii) Let (K1,K2,K3) ∈ F . Then: (iii.a) (φ1
◦(p), φ3

◦(p)) is unique at
any p ∈ [pm, P (K1)] and φi

◦(p), i = 1, 3, is increasing there; (iii.b) φ1
◦(p)

and φ3
◦(p) are the equilibrium strategies throughout that range.

(iv) Let (K1,K2,K3) ∈ A ∪ C1 ∪ C2 ∪ C3. Then: (iv.a) (φ1
◦(p), φ2

◦(p))

is unique at any p ∈ [p
(3)
M , pM ] and φi

◦(p), i = 1, 2, is increasing there; (iv.b)
φ1

◦(p) and φ2
◦(p) are the equilibrium strategies throughout that range.

Proof. (i.a) Let contrariwise (φ̂◦1(p), φ̂
◦
2(p), φ̂

◦
3(p)) be another so-

lution and let, without loss of generality, φ̂◦1(p) < φ◦1(p) at some p ∈
[p

(3)
m ,min{p(3)

M , P (K1)}]. Then, since ∂Z3/∂φ2 < 0 and ∂Z2/∂φ3 < 0 be-

cause of Lemma 2(b), φ̂◦2(p) should be greater than φ◦2(p) in order for
Z3(p, φ̂

◦−3(p)) = Π∗
3 and hence φ̂◦3(p) > φ◦3(p) in order for Z2(p, φ̂

◦−2(p)) =
Π∗

2. Consequently, since ∂Z1/∂φj < 0 for j 6= 1 because of Lemma 2(a),

Z1(p, φ̂
◦−1(p)) would be less than Π∗

1: a contradiction.

(i.b) The statement is violated if and only if there is a gap (p̃, ˜̃p) ⊂
[p

(3)
m ,min{p(3)

M , P (K1)}] in Sj for some j, such that φj(˜̃p) = φj(p̃
+). But

then φj
◦(˜̃p

+
) > φj(p̃) = φj

◦(p̃): consequently, either p̃ or ˜̃p or both are
charged with positive probability, contrary to Proposition 5.

Parts (ii.a), (iii.a), and (iv.a) are obvious consequences of Theorem 1
and concavity of demand function (Lemma 2). Parts (ii.b), (iii.b), and
(iv.b) hold since a gap in a single Si contradicts Proposition 3(iv) and an
overlapping gap (p, p) in both supports contradicts Proposition 5, as in the
proof of part (i.b).
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In light of these results, gaps may only occur over the range [p
(3)
m ,min{p(3)

M , P (K1)}]
and only when φj

◦′(p) < 0 for some j. However, gaps have not been char-
acterized as yet. Note that, because of Proposition 3(iv), either gaps do not
overlap or they do in all three supports. In order to rule out the latter event,
we establish the following lemma.

Lemma 4. Let pm < P (K1). (i) Z1(p;φ2, φ3) is concave and increasing
in p throughout [pm, pM ].

(ii) If pm < P (K1 +K3), then Z2(p;φ1, φ3) is concave in p over ranges
[pm, P (K1+K3)] and [P (K1+K3), P (K1)], but locally convex at P (K1+K3)
if φ3 > 0; otherwise it is concave in p throughout [ pm, P (K1)].

(iii) If pm < P (K1 + K2), Z3(p;φ1, φ2) is concave in p over ranges
[pm, P (K1+K2)] and [P (K1+K2), P (K1)], but locally convex at P (K1+K2);
otherwise it is concave over range (pm, P (K1)].

(iv) In ranges where Zi(p;φ1, φj), i, j = 2, 3, is concave in p but not
strictly concave, it is increasing in p.

Proof. (i) For each φ2 and φ3, function Z1(p;φ2, φ3) is a weighted
arithmetic average of functions of p which are concave and increasing over
the range [pm, pM ].

(ii)-(iv) See Lemma 1(i)-(ii).

Proposition 15 (i) Let (K1,K2,K3) ∈ A∪B1∪B2∪C1∪C2∪C3∪E1∪E2.

(i.a) Assume that some interval (p̃, ˜̃p) ⊂ [p
(3)
m ,min{p(3)

M , P (K1)}] is a gap
in Si while belonging to Sj and Sr. Then φi

◦(p) > φi(p). As a consequence

φi
◦(p) is decreasing in a left neighborhood of ˜̃p.
(i.b) No subset of range [p

(3)
m ,min{p(3)

M , P (K1)}] is a gap in all supports.
(ii) S1 ∪S2 ∪S3 = [pm, pM ], wherever (K1,K2,K3) falls in the region of

mixed strategy equilibria.

Proof. (i.a) In (p̃, ˜̃p) we have

Π∗
i > Zi(p, φj(p), φr(p)) (15)

Π∗
j = Zj(p, φi(p), φr(p)) (16)

Π∗
r = Zr(p, φi(p), φj(p)). (17)

Because of inequality (15), either φj(p) > φj
◦(p) or φr(p) > φr

◦(p), or both.
Assume φj(p) > φj

◦(p); then equation (17) implies φi(p) < φi
◦(p). Thus

φi
◦(p) is decreasing in a left neighborhood of ˜̃p since it must be φi(˜̃p

+
) =

φi(˜̃p). Note that then equation (16) implies φr(p) > φr
◦(p).
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(i.b) Arguing ab absurdo, let (p̃, ˜̃p) ⊂ [p
(3)
m ,min{p(3)

M , P (K1)}] be the
largest interval constituting a gap in S1, S2, and S3. It must first be noted
that the gap in S1 must extend on the left of p̃. In fact, if p̃ ∈ S1 such
that Π∗

1 = Π1(p̃), we would have Π1(p) > Π∗
1 at p slightly higher than p̃ -

a contradiction - since dZ1/dp = ∂Z1/∂p on a right neighborhood of p̃ and,
by Lemma 4(i), ∂Z1/∂p > 0. To avoid a similar contradiction for firms 2
and 3, we must have ∂Z3/∂p 6 0 and ∂Z3/∂p 6 0 in a right neighborhood
of p̃. Now this requirement is violated if K1 +K3 < D(pm) and p̃ falls in
any subset of [pm, P (K1 +K3)]. Consider first subset [pm, P (K1 +K2)] (of
course, in the assumption that K1 +K2 < D(pm)). Here

Z2(p;φ1, φ3) = [pφ1φ3(D(p) −K1 −K3) + (1 − φ1φ3)]K2.

Then

∂Z2
∂p = K2 + φ1φ3(D(p) −K + pD′(p)) >

> K2 + P (K1+K2)−pm
P (K1+K2)

K2
K3

(D(p) −K + pD′(p)) >
> K2{1 + P (K1+K2)−pm

P (K1+K2)
1
K3

[−K3 + P (K1 +K2)D
′(p)p=P (K1+K2)]} =

= K2
K3P (K1+K2){pmK3 + P (K1 +K2)D

′(p)p=P (K1+K2)[P (K1 +K2) − p
m

]} >
K2

K3P (K1+K2) [Π
∗
1 − (K1 −K3)P (K1 +K2)]> 0.

The equalities derive from simple manipulation. The first inequality fol-
lows from the requirement that Z2(p, φ1, φ3) = pmK2 on a left neighbor-
hood of p̃, implying φ1φ3 = p−pm

p
K2

K−D(p) as we are stipulating that p̃ ∈
[pm, P (K1 + K2)]: thus φ1φ3 is increasing in p and hence not higher than
P (K1+K2)−pm
P (K1+K2)

K2
K3

. The second inequality holds since (D(p) −K + pD′(p)) is

a decreasing function. The third inequality follows since pD′(p) + (D(p) −
K2 −K3) > 0 throughout [pm, pM ); the last inequality follows since Π∗

1 >
p[D(p) −K2 −K3] throughout [pm, pM ]. We similarly rule out the event
of p̃ ∈ [P (K1 + K2), P (K1 + K3)] (when letting K1 + K2 < D(pm)) or
p̃ ∈ [pm, P (K1 + K3)] (when letting K1 + K2 > D(pm)), since ∂Z3/∂p =
K3(1 − φ1φ2) > 0 over those ranges.

A contradiction of a different type is reached by conceding p̃ ∈ (P (K1 +
K3), P (K1)) or - if K1 +K3 > D(pm) - p̃ ∈ (pm, P (K1)). If p̃ is in any such

range, then also ˜̃p is, and either ˜̃p ∈ S2 or ˜̃p ∈ S3, or both. Suppose ˜̃p ∈ S3.
From the requirement that ∂Z3/∂p = 0 at p = p̃ (otherwise an immediate

contradiction obtains) it follows that ∂Z3/∂p < 0 at p = ˜̃p since Z3 is strictly

concave in p when φ2 = φ2(p̃) = φ2(˜̃p) ∈ (0, 1) and φ1 = φ1(p̃) = φ1(˜̃p) > 0.
But this violates the requirement that dZ3/dp = 0 on a right neighborhood
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of ˜̃p. A similar contradiction arises if ˜̃p ∈ S2. Hence no interval (p̃, ˜̃p) ⊂
[p

(3)
m ,min{p(3)

M , P (K1)}] may be a gap in all supports.
(ii) It follows from part (i.b) and Propositions 12 (gaps in S2 and S3

cannot overlap for p > P (K1)) and 14.

We finally see how equilibrium strategies are determined in the event of
φ◦′i(p) < 0 for some i.

Proposition 16 Let (K1,K2,K3) ∈ A∪B1 ∪B2 ∪C1 ∪C2 ∪C3 ∪E1 ∪E2,
let N = {i, j, r}, and suppose φ◦i(p) is decreasing on a left neighborhood

of ˜̃p > p
(3)
m , where [˜̃p,min{p(3)

M , P (K1)}] is the largest (possibly degenerate)

left neighborhood of min{p(3)
M , P (K1)} where φ◦i(p), φ◦j(p), and φ◦r(p) are

increasing. Denote by p̃ the largest solution of φi
◦(p) = φi

◦(˜̃p) in the range

(p
(3)
m , ˜̃p). Then there is a unique equilibrium, namely:

(a) Equilibrium strategies are φ◦i(p), φ◦j(p), and φ◦r(p) over [˜̃p,min{p(3)
M , P (K1)}],

Sj and Sr are both connected throughout [p̃,min{p(3)
M , P (K1)}] while (p̃, ˜̃p) is

a gap in Si.

(b) If φ◦i(p), φ◦j(p), and φ◦r(p) are increasing all over (p
(3)
m , p̃), then

they are the equilibrium strategies throughout this range. Otherwise there is
a gap to be determined as in (a). More precisely, suppose there is ˜̃q, such

that [˜̃q, p̃] is the largest (possibly degenerate) left neighborhood of p̃ where
φ◦i(p), φ◦j(p), and φ◦r(p) are increasing, but φ◦j(p) is decreasing on the left

of ˜̃q; let q̃ be the largest solution of φj
◦(p) = φj

◦(˜̃q) in the range (p
(3)
m , ˜̃q);

then equilibrium strategies are φ◦i(p), φ◦j(p), and φ◦r(p) over [˜̃q, p̃], Si and

Sr are both connected throughout (q̃, p̃] while (q̃, ˜̃q) is a gap in Sj.
(c) If the determination of equilibrium is not yet complete after step (b),

the above procedure is repeated up to the stage in which φ◦i(p), φ◦j(p), and

φ◦r(p) are increasing on the right neighborhood of p
(3)
m still left to analyze:

φ◦i, φ◦j, and φ◦r are the equilibrium strategies over that range.

Proof. By construction, each firm gets its equilibrium payoff at any

p ∈ [˜̃p,min{p(3)
M , P (K1)}] and the same holds for j and r at any p ∈ (p̃, ˜̃p),

where Zj(p, φi
◦(p̃), φr(p)) = Π∗

j and Zr(p, φi
◦(p̃), φj(p)) = Π∗

r . Further, it

does not pay for firm i to charge any p ∈ (p̃, ˜̃p): Zi(p, φj(p), φr(p)) < Π∗
i =

Zi(p, φj
◦(p), φr◦(p)) since φj(p) > φ◦j(p) and φr(p) > φ◦r(p) throughout

(p̃, ˜̃p). One can argue likewise while moving on the left of p̃ and up to p
(3)
m :

thus the strategy profile under consideration constitutes an equilibrium.
To check uniqueness, we begin by noting that, arguing as in the proof of

Proposition 14(i.b), none of φi(p), φj(p) and φr(p) can be constant over any
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interval in [˜̃p, p(3)
M ]. By the same token we can dismiss any strategy profile

with any subset of [p̃, p
(3)
M ] other than (p̃, ˜̃p) constituting a gap in Si. Nor can

there be equilibria with a gap (p, p) in Sj such that p ∈ (p̃, ˜̃p). This would

restrict the gap in Si to (q, ˜̃p), where q ∈ [p, ˜̃p), so that φi(˜̃p) = φ◦i(˜̃p) =

φ◦i(q), contrary to the fact that φ◦i(q) > φ◦i(˜̃p).
The results of this section allow us to supplement Theorem 1 with a

uniqueness result.

Theorem 2. In A, B1 ∪ B2, and C1 ∪ C2 ∪ C3, the equilibrium
strategies are uniquely determined throughout [pm, pM ] ; in F and E1 ∪E2,
the equilibrium strategies are uniquely determined throughout [pm, P (K1)].

6 On the event of a disconnected support

Based on the results above the mixed strategy equilibrium can be computed
once the demand function and the firm capacities are fixed. To illustrate
how this task is accomplished, in this section we will determine the equi-
librium for (K1,K2,K3) ∈ B1. This set is of special interest because S3

proves disconnected under well-specified circumstances. Yet the possibility
of gaps is by no means restricted to this set. This will be proved at the
end of the section by means of a numerical example yielding a gap in S2 for

(K1,K2,K3) ∈ C1. The example also shows that range [˜̃p, p(3)
M ] may in fact

be degenerate, as acknowledged in Proposition 16.
In set B1 we partition the range [pm, pM ] into three subsets: α =

[pm, P (K1+K2)), β = [P (K1+K2), P (K1+K3)), and γ = [P (K1+K3), pM ].
In α system (14) read





Π∗
1 = p[φ2αφ3α(D(p) −K2 −K3) + (1 − φ2αφ3α)K1]

Π∗
2 = p[φ1αφ3α(D(p) −K1 −K3) + (1 − φ1αφ3α)K2]

Π∗
3 = p[φ1αφ2α(D(p) −K1 −K2) + (1 − φ1αφ2α)K3],

and the solution is

φ◦1α =

√
K2

K1

(pm − p)K3

p(D(p) −K)
, φ◦2α =

K1

K2
φ◦1α, φ

◦
3α =

K1

K3
φ◦1α. (18)

In β, system (14) read
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



Π∗
1 = p [φ2βφ3β(D(p) −K2 −K3) + φ2β (1 − φ3β) (D(p) −K2) + (1 − φ2β)K1] ,

Π∗
2 = p[φ1βφ3β(D(p) −K1 −K3) + φ1β (1 − φ3β) (D(p) −K1) + (1 − φ1β)K2],

Π∗
3 = p[φ1β (1 − φ2β) + (1 − φ1β)]K3,

and the solution is

φ◦1β =

√
K2

K1

(p− pm)

p
, φ◦2β =

K1

K2
φ1β, φ

◦
3β =

D(p) −K1 −K2

K3
+
K1

K3
φ◦1β .

(19)
In γ, system (14) read





Π∗
1 = p [φ2γφ3γ(D(p) −K2 −K3) + pφ2γ (1 − φ3γ) (D(p) −K2)

+ (1 − φ2γ)φ3γ(D(p) −K3) + (1 − φ2γ) (1 − φ3γ)K1]
Π∗

2 = p [φ1γ (1 − φ3γ) (D(p) −K1) + (1 − φ1γ)K2]
Π∗

3 = p [φ1γ (1 − φ2γ) (D(p) −K1) + (1 − φ1γ)K3] ,

and the solution is

φ◦1γ =

√
K2K3(p− pm)2

p2(D(p) −K1 −K2)(D(p) −K1 −K3) + (p− pm)K1p(D(p) −K1)
,

φ◦2γ(p) = 1 − K3

K2
+
K3

K2
φ◦3γ

φ◦3γ =
(p− pm)K2 + pφ◦1γ(p)(D(p) −K1 −K2)

pφ◦1γ(D(p) −K1)
.

In range α, φ◦′iα(p) > 0. (If φ◦′iα(p) 6 0 for some i, then φ◦′jα(p) 6 0 for
all j 6= i, thereby violating the requirement that Π′

i(p) = 0 since Lemma 4
holds.) On the other hand, while φ◦1α(P (K1 +K2)) < 1 and φ◦2α(P (K1 +
K2)) < 1 (the latter is checked by simple manipulation and using the
fact that Π∗

1 > p(D(p) − K2 − K3) throughout [pm, pM )), we might have
φ◦3α(P (K1 + K2)) > 1 (as illustrated by the third example below), which
would obviously prevent the equilibrium strategies from coinciding with the
φ◦iα(p) throughout α. In range γ, φ◦1γ(pM ) < 1 = φ◦2γ(pM ) = φ◦3γ(pM )
and φ◦′iγ > 0 in the interior of γ, with φ◦′3γ = φ◦′2γ = 0 at p = pM .31 As to
range β, φ◦iβ(P (K1 +K3)) < 1 for all i. This is seen almost immediately as

31On all this, see the appendix in [7].
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far as φ◦1β(p) is concerned. As to φ◦jβ(p) (j 6= 1), by simple computations it
is found that φ◦jβ(P (K1+K3)) < 1 if and only if Π∗

1 > (K1−K2)P (K1+K3),
which certainly holds since Π∗

1 > p(D(p) −K2 −K3) throughout [pm, pM ).
In a left neighborhood of P (K1 +K3) φ

◦′
3β(p) might be negative. Note

that

φ◦′3β(p) =
D′(p)
K3

+
K1

K3
φ◦′1β(p) =

D′(p)
K3

+
1

2

(
K2

K1

(p− pm)

p

)−1/2 K2

K3

pm
p2
.

Since φ◦′3β(p) is decreasing, φ◦′3β(p) > 0 throughout β if and only if [φ◦′3β]p=P (K1+K3) >
0. This in turn amounts to

K2pm > −2
[
D′(p)

]
p=P (K1+K3)

× [P (K1 +K3)]
2

√
K2

K1

(
1 − pm

P (K1 +K3)

)
.

(20)
If this inequality holds, then equilibrium strategies are actually the φ◦iβ’s
throughout β. (Note that in this case, φ◦3α(P (K1 +K2)) < 1 since φ◦′′3β < 0
throughout β.) If not, then, by Proposition 16, there is a gap [p̃, P (K1+K3)]
in S3. Two cases are possible according to whether φ◦3β(P (K1 + K3)) >
φ◦3β(P (K1 +K2)) or φ◦3β(P (K1 +K3)) < φ◦3β(P (K1 +K2)). In the former
case p̃ is such that φ◦3β(p̃) = φ◦3β(P (K1 +K3)); in the latter it is such that
φ◦3α(p̃) = φ◦3β(P (K1 +K3)). In the former case, the equilibrium strategies
are provided by equations (18) throughout α and by equations (19) over
subset [P (K1 +K2), p̃] of β, the remaining subset [p̃, P (K1 +K3)] being the

gap in S3: here φ3(p) = φ◦3β(P (K1 +K3)), φ1(p) =
Π∗

2−pK2

p[D(p)−K1−K2−φ3K3] and

φ2(p) =
Π∗

1−pK1

p[D(p)−K1−K2−φ3K3] . In the latter case, equations (18) provide the

equilibrium strategies over subset [pm, p̃] of α and φ3(p) = φ◦3β(P (K1+K3))

throughout range [p̃, P (K1+K3)], the gap in S3. Now φ1(p) =
Π∗

2−pK2

pφ3(p)(D(p)−K)

and φ2(p) =
Π∗

1−pK1

pφ3(p)(D(p)−K) over subset [p̃, P (K1 + K2)] of the gap and

φ1(p) =
Π∗

2−pK2

p[D(p)−K1−K2−φ3(p)K3] and φ2(p) =
Π∗

1−pK1

p[D(p)−K1−K2−φ3(p)K3] over the

remaining subset [P (K1 +K2), P (K1 +K3)].

We provide one example for each of the three cases which can arise for
(K1,K2,K3) ∈ B1: no gap in any Si, a gap in S3 with p̃ ∈ β, and a gap in
S3 with p̃ ∈ α.

First example: D(p) = 10− p, K1 = 5.98, K2 = 1, and K3 = 0.97. Then
pM = 4.015, pm = 4.0152/5.98, and Π∗

i = pmKi for each i. Condition (20)
is met, hence Si = [pm, pM ] for all i.
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Second example: D(p) = 10 − p,K1 = 23/4, K2 = 3, K3 = 2. Then
pM = 2.5, pm = 25/23, and Π∗

i = Π∗
i = pmKi for each i. Condition

(20) is violated, hence φ3 is constant over range [p̃, P (K1 + K3)], where
P (K1+K3) = 2.25. It is easily found that p̃ ≈ 1.57358 > P (K1+K2) = 1.25.

Third example: D(p) = 10 − p, K1 = 5.45, K2 = 3, and K3 = 2.2.
Then pM = 2.4, pm = 2.42/5.45, and Π∗

i = pmKi for each i. Condition
(20) is violated, hence φ3 is constant over range [p̃, P (K1 + K3)], where
P (K1+K3) = 2.35. It is easily found that p̃ ≈ 1.48165 < P (K1+K2) = 1.55.
In fact, one can also easily check that φ◦3αP (K1 +K2) ≈ 1.036.

Finally, to get further insights on gaps we worked out an example for set
C1. Let D(p) = 20 − p and (K1,K1,K1) = (15, 4, 0.5). Then, pM = 7.75,
Π∗

1 = 60.0625, pm = 4.00416, and Π∗
2 = 16.016. Note that (15, 4, 0.5) ∈

C1 since P (K1 + K2) = 1 < pm = 4.00416 < P (K1 + K3) = 4.5. We

partition [pm, pM ] into α = [pm, p
(3)
m ), β = [p

(3)
m , p

(3)
M ), and γ = [p

(3)
M , pM ].

In α, φ1α = 4(4.00416−p)
p(1−p) and φ2α = 15(4.00416−p)

p(1−p) . One can easily check

that arg maxp∈[pm,P (K1)] Z3(p, φ1α, φ2α) = P (K1 +K3), hence p
(3)
m = 4.5 and

Π∗
3 = Π3(p

(3)
m ) ≈ 2.11620. To find p

(3)
M , note that, in γ, φ1γ = 1 − (pm/p) =

1 − (4.00416/p) and φ2γ =
p(D(p)−K3)−Π∗

1
pK3

= 2p(19.5−p)−60.0625
p . Then the

equation Z3(p, φ1γ , φ2γ) = Π∗
3 over range [pm, P (K1)] yields p

(3)
M ≈ 4.66038.

Turning to range β, denote the solutions to system (14) by φ◦1β(p), φ
◦
2β(p),

and φ◦3β(p).
32 One can check that

[
φ◦′2β(p)

]
p=p

(3)
M

< 0. Therefore, there is

a gap [p̃, ˜̃p] in S2, with ˜̃p = p
(3)
M . As to p̃, this is found by solving φ◦2β(p) =

φ◦2β(˜̃p) = .487931 over (p
(3)
m , p

(3)
M ), which yields p̃ ≈ 4.57316. Further, one

can check that φ◦1β(p), φ
◦
2β(p), and φ◦3β(p) are all increasing throughout

[p
(3)
m , p̃], so there are no further gaps. To sum up: S1 = [4.00416, 7.75],

S2 = [4.00416, 4.57316] ∪ [4.66038, 7.75], and S3 = [4.5, 4.66038].

7 Concluding remarks

In this paper we extended the analysis of price competition among capacity-
constrained sellers beyond the duopoly and symmetric oligopoly cases. We
first derived some general and in a sense obvious results on the pure strategy
equilibrium under oligopoly, and then turned to mixed strategy equilibrium
under oligopoly. We proved - among other results - that the minimum of

32System (14) lead to a second degree algebraic equation, only one of the solutions for
φ◦

2β(p) being nonnegative.
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the support of the equilibrium strategy is determined for the largest firm
as in the duopoly (a similar result was recently provided for the maximum)
and that also the equilibrium profit of the second-largest firm is determined
as in the duopoly (a similar result was known for the largest firm). We
have also shown that there are circumstances where equilibrium strategies
are not fully determined for some firms and have found the single equation
then constraining those strategies.

It emerged in the course of our investigation that mixed strategy equi-
libria might look quite different depending on firms’ capacities: supports
of the equilibrium strategies may or may not coincide across all firms, the
equilibrium need not be fully determined as far as the firms other than the
largest are concerned, and equilibrium payoffs may or may not be propor-
tional to capacities. Thus a complete characterization of mixed strategy
equilibrium requires a taxonomy, and we provided it for triopoly. We parti-
tioned the region of the capacity space where the equilibrium is mixed into
several subregions according to the set of properties of the equilibrium spe-
cific to each subregion. Another novel feature - in the context of concave
demand, constant and identical unit cost and efficient rationing - revealed
by our analysis is the possibility of the support of an equilibrium strategy
being disconnected, and we showed how gaps are actually determined in
that event. Having made the taxonomy of mixed strategy equilibria - in
terms of the minima and maxima of the supports - having determined the
equilibrium payoffs of the firms and the degree of determinateness of the
equilibrium, and having seen how any gap is determined, computing the
mixed strategy equilibrium is an easy task, as exemplified in Section 6.
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