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The Behavior of Trust-Region Methods in FIML-Estimation*

C. Weihs, Basel, G. Calzolari, and L. Panattoni, Pisa

Abstract — Zusammenfassung

The Behavior of Trust-Region Methods in FIML-Estimation. This paper presents a Mente-Carlo study
on the pracucal reliability of numerical algorithms for FIML-estimation in nenlinear econometric
models. The performance of different techniques of Hessian approximation in trust-region algorithms is
compared regarding their “robustness™ against “bad” starting potnts and their “global™ and "local”
convergence speed, e, the gainin the objective lunction, caused by individual itecation steps far off from
and near to the optimurn.

Concerning robustness and global convergence speed the crude GLS-1ype Hessian approximations
performed best, efficiently exploiting the special structure of the likelihood function. But, concerning
local speed, general purpose techniques were strongly superior. So, some appropriale mixtures of these
two types of approximations turned out to be the only lechniques to be recommended.

AMS Subject Classificarions: 62P20, 65C05, 65U05.

Key words: Econometrics, Monte-Carlo methoeds, numerical methods, trust-region methods, FIML-
esumanon.

Das Verhalten von Trust-Region-Algorithmen zur FIML-Schitzung. Diese Arbeit beschreibt eme Monte-
Carlo-Studie iiber die praktische VertiBlichkeit numerischer Algorithmen zur FIML-Schitzung in
nichtlinearen dkonemetrischen Moedellen. Dabei wird die Gite verschiedener Hessematrixndherungen
n trust-region Algorithmen verglichen hinsichtlich der . Robustheit'* gegentiber ,,schlechten™ Start-
werten und hinsichtlich ,,globaler” und ,.Jokaler" Konvergenzgeschwindigkeit, d.h. der GréBe der
Yerbesserung der Zielfunkiion bei Tierationsschntten weit entfernt bzw. in der Nihe vom Oplimum.

Withrend sich GLS-Typ Niherungen der Hessematrix hinsichtlich Robustheit und globaler Konvergenz
als deutlich Uberlegen erweisen wegen ihrer cffizienlen Ausnuizung der speziellen Struktur der
Likelihcod-Funktion, konvergieren Verfahren, die lir allgemeine Zielfunktionen entwickelt wurden.
wesentlich schneller in der Nihe des Optimums. Fiir die praklische Anwendung erweisen sich daher
lediglich geeignete ,, Mischungen™ dieser beiden Niherungsiypen als empfehlenswert.

0. Introduction

Recently more and more attention was paid to the development of numerical
algorithms for the computation of full-information-maximum-likelihood (FEML)
estimates in nonlinear interdependent econometric models. Several optimization
techniques have been proposed in the last few years, utilizing all the well-known
tools of numerical analysis. Search algorithms were proposed {see e. g. Parke (1982)),
which do not make use of any derivatives. At the same time, Newton-like methods

* This work was mainly carried out during a research visit of C. Weihs al the Scientific Center of 18BM
[talia int Pisa.



were suggested (see e.g. Belsley (1980)), using not only first but also second order
derivatives. Moreover, stressing the excessive cost required to calculate the Hessian,
quasi-Newton methods were recommended, approximating the Hessian by various
techniques. Some of these approximations were motivated by the special structure of
the likelihood function (see e.g. Berndt, Hail, Hall and Hausman (1974), Amemiya
(1977) or Dagenais (1978)), others exclusively by their numerical properties lor
general objective functions (see e.g. Belsley (1979)). Also combinations of such
techniques were suggested (see e.g. Weihs (1985)).

Ten years ago the econometric model builder was lucky to have any algorithm to
compute FIML-estimates. In the meantime, some guideline seems to be necessary to
get an idea, which ol all these algorithms might be reliable in practice. A [irst step
into this direction was done in Calzolari, Panattoni(1985), where the performance of
some of those algorithms was tested by means of a large number ol Monte-Carlo
experiments. Considering the “robustness’™ of the algorithms against “*bad” starting
points and the “gain’ in the objective function, caused by individual iteration steps,
this study supports the idea of a mixture of algorithms.

Motivated this way, the authors decided to investigate the rejative performance of
such mixed algorithms in more detail. This resulted in two papers. In Calzolari,
Panattoni and Weths (1985) different techniques of Hessian approximation were
studied in the classical [ramework of line search algorithms (extending the work in
Calzolari, Panattoni (1985)). In the present paper a modern “trust-region”
algorithm serves as the basis for the implementation of approximation techniques
(extending the work in Weibs (1985)). Objects of investigation are some quasi-
Newton approximations to the Hessian and their “mixtures”. Their performance will
be judged on the basis of dilferent Monte-Carlo statistics, characterizing both the
“global” and the *local” convergence of the iteration process. “Global” con-
vergence 1s related to the capability and speed of an algorithm to reach a
neighborhood of the optimum, whereas “local” convergence is related to the speed
near to the optimum. Surely an econometric mode! builder would at once agree to
the relevance of “‘global™ convergence. But “local™ convergence is certainly just as
important, since if an algorithm converges slowly near to optimum “we may never
be able to see it converge” (cp. Dennis, Moré (1977), 50).

The plan of this paper is the following. In sections | and 2 the theoretical
econometric model and the FIML-estimator are defined. In sections 3 and 4 the
“trust-region” algorithm and the techniques of Hessian approximation are
introduced. In sections 5 and 6 the Monte-Carlo experiment and the tested
empirical econometric models are described. In section 7 the results of the Monte-
Carlo study are discussed and in section 8 the paper is completed by a conclusion.

1. The Theoretical Econometric Model

Consider a multi-equation nonlinear interdependent econometric model which can
be represented by:
Y,=f{Y, X, a%)+e, i=1,...m,

Yo=f(Y,X), i=m+1,. M, t=1,..,T,

(n



where Y:=(Y,,... Y,,) is the vector of jointly dependent wvariables, the
X;,j=1,...,P, are predetermined variables (possibly including lagged joinlly
dependent variables), a* is the (unknown) vector of “true” (functional) parameters
and the ¢, are error terms assumed to be independently and identically N (0, X)-
distributed with 2 unknown but assumed to be positive definite. The [irst m
equations are called behavioral equations, the others identities.

2. The FIML-Estimator

If observations y;,, i=1,...,M, x;,, j=1,..,Pt=1,..., T, are lixed for the model
variables, then the model error
en::yi:_fi(ynxna)w i=1,...,m, : (2)

gives a measure [or the goodness of [it corresponding to a parameter vector a
(usually #a*). The FIM L-estimator a for a* can be computed by minimizing the
(negative) logarithmic concentrated likelihood function

T R T
Kla):=— log(det £ (a) — ¥ log|det(J,(a))l, (3)
where -

. I
,Z(d);=7 Y. e(d)e(ay

1s the FIML-estimaltor for the covariance matrix X, if ¢ 1s the FIM L-estimator lor a*
(cp.1.), and where J, (a) is the Jacobian of e, with regard to the variables y,,, ..., v,
(taking into account the identities, il any, see Dagenais (1978), 1354 —3).

3. The Minimizing Algorithm

Since the minimization problem is extremely non-linear, the algorithm used is
iterative, generaling in every step an approximation g, o the optimum 4, starting
from a user supplied starting vector a,. The algorithm is part of a modern class of
numerical algorithms, the so-called trust-region algorithms. Such algorithms were
first discussed by Powell (1975).

They fit a quadratic

1
Qk(ak+s):=K(ak)+g;s+—2~s’Hks 4)

to the likelihood function K in the approximation a,, where g, is the gradient vector
of K in @, and H, is an approximation ol the Hessian of K in a,. This quadratic s
then minimized in a neighbourhood N, of a,, the so-called trust-region. This
generates an updating step s,. Obviously, the usefulness of s, depends on the
goodness of the fit of the quadratic Q, to the objective K in the trust-region N,.
Intending to obtain the maximum gain in the objective K, the trust-region N,
possibly should not exclude any area, where K is reasonably approximated by the



quadratic Q,. Therefore, starting from some initial region N, the size of N, is
flexibly uwpdated depending on the correspondence of (he reductions in @, and K
cavsed by step 5,. If the reduction in K i1s “wmunch smaller™ 1han expecied by the
reduction in Q,, 5, s rejected and the trust-region is reduced becavse of bad fif,
hoping {or a more trustworthy approxumation in the new region. In (he case of
reasonable fit the trust-region 15 extended for a ir1al, and

Qa1 i=0t 3 (3)

is taken (o be the new approximation 1o the oplimal parameter vector Nole Ltha( [ine
searches are avoided in this way. Further no(e (tha( the updating siep s, is eithec
equal to the Newton-like step

sii==H . (6)

or, il H, is not invertible or sy is nol a feasible point, s, 1s a Leveaberg-Marquardt
step such that a,,, is placed near to the boundary of the trost-region. A specizl
feature of the implemented 1rusi-region algorithm is iis aulomatic scahing procedure,
which allows econometric models 16 be not well scaled.! For the selection of £,
various approaches have been tested.

4. Approximations 10 {he Hessian

Fust and second derivatives of K have the following representauions.

-

oK

da

(0)=G(a) S(&)~ " e(a). where
Ga):=(G,(ay ..G,(a),

il !
G;(U)'»='£(ﬂ)--:f Ri(aY e(a), e{a):=(e, (o) .. ex(a)), (N

1

! cJ,
Rila):=B,(0)® I, B{a):= Y J(a)* E‘—(n).

and S(@:=S{0)®/;

& K de ., Qe
5 alﬁ(o)—a—a'(a) S(a) E}j(a)
8 o8
~a—e-(o)'8(a)"—(a)smr'eta) (8)
a; 0(1}
NI ) ior R st et
c’)a)ﬁa,(a) a)~' e(a) 7_ea Ba,w @)™ ela).

For (he approximation of the exact Hessian as given tn (8) only firsi oeder
information will bc vsed.

' For more details sec Weihs (1985) For 2 summary of «2suhis on rudi-1¢zion algorithms se¢ Moee
(1983).



4.1 Generalized-Least-Square -Types Approximations

Amemiya {1977, 962) proposed the following Hessian approximation:

H,(ay:=Glay S(ct)"%e-(a]. 9)

4]

This matrix asymptotically coincides with the exact Hessian for linear models (see
Amemiya (1977), 963). Dagenais (1978) experimented with a slightly different
approximation, also menticned by Amemiya (1977, 963):

Hpla):=Gla) S(a)™" Gla). (10)

Looking at (8), another variation of {9) seems to be natural (see Weihs (1983)):
de _, de
Hyp(a): =~ (@) S(a)™" = a). (11
da da

Nate that the last two approximations have the same form as the corresponding
matrix used in Aitken-Zellner-estimation of linear models {cp. Dagenais (1978),
1354).

4.2 Exact Hessians for Linear Models

For models linear in the parameters, (8) simplifies to

e
_(a)

de
(Hyla)), =——(a) S{a)™"
¢a;

8o
?e (@) S{a) ! ?—S(Q)S(a)“l e(a)
o ay OQJ

| (12)
—&-—j;e(a)’(C,-J‘(aﬂ)@I)S(a)_1 ela),
where C;(a):= )" J (a)" 2? () J, (@) %J—(a).

1
r=1 i d;

For nonlinear models one may hope that Hy(a) is a betler approximation to the
Hessian than H,, (a)(cp. (8), (ll)). Note that no second order derivatives are used lor
the computation of Hy, but only first order derivatives and mixed derivatives
concerning parameters and variables. In this sense, only first order inlormation is
used,

4.3 BFGS-Upduting Formula

Up te this point, only approximations were described. which exploit the special
structure of ihe likelihood function K. The following well-known BFGS-quasi-
Newton-updating [ormula was established for the approximation of the Hessian in
the general case (see e g. Dennis, Moré (1977), 74):



Let Hy , be a positive definite matrix, then

v, 0 Hy wseso H
E SR B s the BFGS-update, where

(13}
K 0K
o= ) — Ay, sii=apy, — (CP- (5))-
aa &a

4.4 Pure and Mixed Approximations

To combine the advantages ol different Hessian approximations, the above
approximation fechniques are also mixed in some profitable way, as motivated (e. g.)
in Weihs (1985, 12). Altogether, 5 distinet versions of the trust-region-algoritm 3. are
investigated, differing only in the method of Hessian approximation:

(@) Hye=Hyla), k=0,1,2,..,(see(lDin 4.1). This approximation technigue will
be referred to as GLS-solo. Using H , {see (9}) or H,, (see (10)} instead of H,
resulted in very similar convergence properies.

(by Hy=Hgla). k=0,1,2 . . (see(12)in 4.2). This approximation technique will
be referred to as Hessian-solo.

() Hyi=Hylap) Ho=Hg,, k=1,2,.. {see (13) in 4.3). This approximation
technique will be referced to as BF GS-solo.

(dy Hy=Hpia), k=0,1,2 ., til 5. 84/(14+Yaf}<001, then H,=H,,.
Obviously this s a mixture of (a), (c) and will be referred to as BFGS-mix (lor
theoretical properties cp. Weihs (1985)).

(&) Ho=Hyla), k=012, ., untl s, 641+ {a <001, then H,:=H (a,}
Obviously thisis the analogon of {d) for the Hessian approximation H , which is
exact [or linear modeis. This technigue will be referred o as Hessian-mix.

5. The Monte-Carlo (MC)-Experiment

To be able t¢ compare the mean performance of the different versions of the
algorithm using dilferent Hessian approximations (see 3,4), FIML-estimates for
various real-world econometric models were computed for hundreds of artificially
generated sets of model variables. The basic MC-experiment is the following?:

(i)  The exogenous mode! variables in the reference period and the endogenous
starting values (i.e. the realisations ol lagged endogenous variables cutside the
reference period) are Nxed to be equal to their “real-world-observations™. For
data generation, the parameter vector and the covariance matrix of the modet
residuals are fixed Lo be equal to the FIML-estimates & and Z respectively,
computed by using the observed endogenous variables alse. Let j:=1.

2

® The MC-expenments were performed using the 1AS-Systern Boan, 2 software system develaped to
support econometnc model building {¢f. Weihs (1984)).



(13)

(i)

(iv)

(v)

(vili)

Determine realisations of the model residuals which are (pseudo-) N (0, £)
distributed, immdependently for all t=1,..., 7.

Using the data from (i), (i1) determine reahisation for the endogenous variables
by solving the model lor these variables for all t=1,..., 7.

Using the data from (i) for the exogenous model variables and the endogenous
starting values, and the data from (iii} [or the endogenous variables in the
reference period, compute OLS-estimates for the (functional) parameters a*
which serve as starting values ¢ for the computation of the FIM L-estimates
4V =a},. During the computation of @ record all the intermediate values K}
of the objective funcuion, k=0, ..., L}.

Repeat steps (i) —(1v) for j=2,3,..., V.

For the comparison ol (he relative performance of different versions of the
mimmization algorithm two distinct aspects ol the convergence process have
been considered.

The overall performance (or global convergence)ol the algorithm is represented
by the evolution ol the mean ol the fraction of the distance between the values
of the objective function in the starting point ag’ and the optimum of}, which
was covered alter k iterations. To this end the optimal value 1s compulted very
exactly (with a tolerance of 5.107'4),

To characterize the convergence neur the optimum (local convergence) two
different statistics are used. In both cases only the very last part of the course of
iterations is considered On the one hand rhe distribution of the number of
iterations s reported which were required to reach the optimum, starting from
that iteration where [irst more than 99.9% of the distance to the optimal value
ol the objective function was covered. On the other hand we report the mean
number of digits of the optimum value of the objective function which was
gained k iterations before the algorithm stopped.

The analysis of the ontcomes of the MC-experiment can be lormalized as
follows:

Compute the error in the objective function after & iterations:
EP:=KP~KP k=1, Ljj=1..,N.

Compute the mean of the relative reduction of the distance (o the optimal
value of the objective funclion, gained after k iterations:

_ [
Rk::ﬁ Y ERVER, k=1,..  .maxLj,
J=1 /

where E:=0 for k> Lj. Then EG,:= —log,(R}), k=1,...,max Lj, is the

2
number of digits up to which in iteration k the distance EY) — E” [rom the
starling point coincides with the total distance EY’ on the average. The course
of EG, is utihzed to characterize the mean global convergence ol the
algorithm.

Determine the number of iterations Nj where {irst more than 99.99¢ of the
distance to the optimal value of the objective function was covered:



LY/EY <0.000 and ER . ,/EY>0.001. The empirical distribution of the
remaining iterations Mj = Lj— Nj+ [ characterizes the local convergence of

the algorithm.

(x)  Compute the number of digits of the optimal value of (he objective function,
gained k ilerations belore the algorithm stopped:

DY:= =102, (EY,_ /| KQN), k=1, .. maxLj.
J

where EY) =0 lor k> Lj.
Then the course of the mean of these digits (or small k:
AR
EL,(::«I-V— Y DY k=1,... 10 (say).

=)

charvacterizes the local convergence of the algorithm,

Note that the statistic EG, will be strongly dominated by replications with
untypically slow convergence. Therefore EG, tends 1o be 100 pessimistic judging the
mean global performance of the algorithm.

Further note that the MC-experiment can be easiy generalized so that the
exogenous model vanables are independently, identically normally distributed with
means and covariance-matrix estimated from historical data (cp.(i)}. The results,
however, should not be particularly sensitive 1o such different choice of the
exogenous variables (cp. Calzolari, Panationi (1984), 19).

6. Empirical Econometric Models

The MC-experiment described in S. was applied to some “real-world™ economelne
models jn order to judge the performance of the FIML-algorithm in relevant
situnations. These models can brieflly be characterized as follows:

1. The well-known Klein-1 modetl has 6 equations, 3 of which stochasuc, and J2
unknown functional parameters. The historical reference period has length
T=21 [see e.g. Theil (1971), 432 — 434, 456).

2. Astrongly nonlinear version of the Klein-1 model was obtained by usinga Cobb-
Douglas-type consumption function (with additive error term) mvolving (he
same arguments as in the Jinear case.

(]

A strongly nonlinear mode! for the German economy (see Weihs (1987)) consists
of 30 equations, S of which stochastic with J& unknown functional parameters.
Toinvestigate the influence of sample sizes T on convergence, 7=2{ (model 3a)
and 7=27(mode) 3b) were used. Historical data were only available for the {irst
period. For Lhe extension to 7'=27, exogenous vanables weye fixed to follow
some reasonable course. For both sample sizes the FIML-estimates 4, i,
computed on the basis of bistorical data only (7=21), were used 1o generaie
endogenous simulation data in the MC-experiment (cp. S (1)).



The MC-experiments on models 1, 2, 3a, 3b were performed using N =100
replications each (cp. 5 (v)). In each repiication all the 5 versions ol the trust-region-
algorithm 3., described in 4.4, performed on the same set of data. 1n this way the
comparison of the resulls seems to be reasonable without further increasing the
number of replications.

The results of the experiments may be summarized as lollows:

(i)

(11}

The version Hessian-solo of the algorithm never led to convergence tn more
than 50% of the replications. This type of approximation turned out to be usefu)
only in the very close neighborhood of the optimum. This obviously cor-
responds to a well-known property of the classical Newton-method (cp. e.g.
Dennis, Moré (1977), 49). Because of these unfavorable results this type of
approximation was excluded from comparison. Moreover, the statistics charac-
terjzing convergence (cp. 5 (vii) —{ix)) have been computed, considering only
those replications where the remaining 4 versions of the algorithm converged to
{nearly) the same optimum. This generally resulted in quite a few rejected
replications: 15%, for model |, 27 for model 2. 07, for models 3a, 3 b.

Concerning local converyence there can be no doubt that there is a unmque
ranking of the remaining 4 versions of the algorithm. Indeed. the relative
performance of the different versions turned out to be remarkably stable. Both
local statistics resulted in the same ranking of the versions for all models:

[: Hessian-mix, 1I: BFGS-mix, I1I: BEGS-solo, [V: GLS-solo.

The typical plot of the empirical distribution function of the number of
iterations M, needed to cover the last 0.1%; ol the distance Lo the optimum (cv.
5 (viil)), is reproduced in Fig.1. Note that the scale of the horizental axis
naturally differs for different models.

From Fig. 1 the superiority of Hessian-mix (1) is quite obvious. This might
indicate that none of the considered model is that much nonlinear to cause a

80 4

60

a0

20T

nymber of iterations Mj

Fig. 1. Empirical distribution luncuon of M



bad fit of Hy, to the exact Hessian. Indeed. it 1s well-known that exact Newion
steps (cp. (6) with H, equal to the exact Hessian} are leading to quadratic
convergence (cp. Dennis, Moré (1977). 62).

On the other hand, the GLS-solo version performed reasonably well in
comparison with the ather versions only for modet 3. Really competitive results
GLS-solo only produced for model 3 and 27 observations {cp. [Va in Fig. 1}.
[ndeed, increasing the pumber of observations results in less iterations {or all
versions and in a relatively better performance of the GLS-solo version. The
Jatter may be motivaied by the copsistency of GLS-type approximations for
linear models (cp.4.1). Concerning the BFGS-versions (J1, 1), the results
indicale that using BFGS-updales only near the optimum profitably influence
local convergence. Thus, improving the statting matrix for the updating process
may well be pa)d off by local speed. But switching too late may offse( this effect.
Thereflore the goodness of the switching criterion has to be discussed mainly in
the context of global convergence (cp. (iii)}.

These results are strongly supported by the other local statistic £L,, the mean
npumber of digits of the opuimal value of the objective fupction, gaimed &
ierations beforve the algoritam stopped (ep. 5(ix)}. The typical plot of E L, 1s
reproduced in Fig. 2. In particular, Fig. 2 once more demonstraltes that the
performance of GLS-solo strongly depends on the model experimented with.
Note that even for linear models GLS-solo may perform horribly bad {Tvd
represents the pecformance of the linear model ).

number of iterations k

Fig 2, Mean number of correct digits, k jlerations before the algorithm stopped

(1i1) Stable and (ast global convergence 15 crucial for econometric mode! builders
who are most of the time jnierested in getting only few correct digits of the
optimum in minimum tiroe. Fortunately the ranking of the versions concerning
global convergence turped out (o be essentially the same as for tocal
convergence. There are only minor dilferences. Note in particular that the
supertority of Hessian-mix to BFGS-mix does not seem o be very dramatic in



genecal. Only for model 3 and 21 observations BFGS-mix performed
substanlally worse. This might be a result of the very few “degrees ol freedom™
in ihis case (21 observations, 18 paramelers).

Concerning global convergence, both “pure” versions BFGS-solo and GLS-
solo generally performed substantially slower than the mixed versions, though
due to very dilferent reasons. Whereas BF(GS-solo generally needed many
iterations to reach a neighborhood of the optimum, GLS-solo had strong
difliculties to improve near to the optimum. The latter obviously coincides with
the results on local convergence (cp. (ii)). Fig. 3 shows the typical plot of £G,,
the number of correct digits of the distance to the optimum, gained alter &
jterations on the average. Note in particular that for mode] 3 and 27
observations (cp. IV a) GLS-solo performs laster than BFGS-solo, even if one is
interested in 7 correct digits.

EG T

12

10 [ [ irl
8 IVa
6 I¥d
4 4

2

Q

number of iterations %

Fig.3. Number of correct digits ol the distance 1o the oplimum, on average gained afler & ilerations

Moreover, Fig. 3 indicaies that the criterion lor switching to the locally
preferable approximations (cp. 4.4 d), ¢)) has been posed reasonably well (cp.
the increase of curves I, IT, IVa, IVd).

8. Conclusion

Reconsidering all the results of the MC-experiments, the superiority of the mixed
approximations (Hessian-rmx and BFGS-mix) should be obvious. Using such
mixtures instead of the pure approximations (Hessian-solo, BFGS-solo or GLS-
solo) will surely be paid olf to the model builder by obtaining estimations much
faster. Indeed, the pure approximanons all had more or less serious defects
concerning either plobal or local convergence.

Furthermore, it seems that one does not have to be too untucky not being able to
compute exact Hessians, because BFGS-mix never performed that bad that
it was not able to offset the greaier computational eflort per iteration needed by
Hessian-mix.



The relevance of these results is strongly supported by analogous results for a ling-
search-based algorithm in Calzolari, Panatton: and Weihs (1985), Thus it may be
interesting to compare the relative performance of BEGS-mix (say) in the trust-
region algerithm and the line-search-based algorithm. But up to now no atiempt
was made in this direction, mainly because the algorithms ran under incompatible
regimes.
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