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Estimation of a simple genetic
algorithm applied to a laboratory
experiment

Simone Alfarano1, Eva Camacho Cuena2, and Josep Domènech Sòria3

Abstract The aim of our contribution relies on studying the possibility of
implementing a genetic algorithm in order to reproduce some characteristics
of a simple laboratory experiment with human subjects. The novelty of our
paper regards the estimation of the key-parameters of the algorithm, and the
analysis of the characteristics of the estimator.

1 Introduction

Nowadays, a large part of economists expresses dissatisfaction (or sometimes
rejection) to the wide-spread paradigm of full or strict rationality in theoriz-
ing the behavior of economic agents. Laboratory experiments showed that,
even in simple settings, human subjects are not consistent with the assump-
tions implied by their supposed perfect rationality. An existing alternative
paradigm in economic theory considers that economic agents have limited
capabilities in processing the information and in taking their decisions. Con-
trary to the fully rational paradigm, it does not exists a unified theory of
bounded rationality. Therefore, many different models of human behavior
which account for bounded rationality have been proposed in the literature
(See for example [3]).

The adaptation of genetic algorithms (GA) from the realm of optimization
literature to the description of human learning is an example of the creative
ability of researchers to introduce bounded rational models.1 A number of
papers are now available in the literature which apply different versions of
GAs in order to reproduce the behavior of economic agents in different con-
texts (See, for example, [9], [1], [2], [7]). GAs have also been applied in the

1 For more details on GA and their application to Economics see [6].
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context of laboratory experiments in order to reproduce the human subjects’
behavior in different experimental settings (See [10], [4]).

However, up to now the different contributions are almost entirely based
on a rough calibration of the underlying crucial parameters. To the best
of our knowledge, our paper constitutes the first attempt to estimate the
underlying parameters of a genetic algorithm. In this paper we provide a
method to estimate the key parameters of the GA by means of an extensive
simulation-based approach, using an extremely simple experimental setting of
a common-pool resources problem.The experiment exhibits, in fact, a single
dominant and symmetric Nash equilibrium as illustrated in the next section.
The paper is organized as follows: in section 2 we illustrate briefly the the-
oretical and empirical results of the experimental setting. In section 3 we
detail the characteristics of the implementation of our GA agents. In section
4 we present the estimation procedure. Finally, in section 5 we conlcude.

2 Experiment: Setting and Results

In this section we will summarize the experimental setting and main results
used as benchmark in order to build the GA and the corresponding parame-
ters estimation.(See [5] for the details on the experiment.)

Consider an industry consisting of n symmetric firms where each firm
i = {1, ..., n} is characterized by both its default profit Π0, incurred with-
out engaging in any abatement activity, and by its abatement technology
represented by an abatement cost function C(ai), where we use ai to de-
note the firm’s abatement level.2 Zero abatement leads to a maximal emis-
sion level emax. Accordingly, the profit function of each firm can be writ-
ten as Πi = Π0 − C(ai). Total emissions by industry are then given by
E =

∑n

i=1
(emax − ai) and are evaluated by using a social damage function

D(E) = d [
∑n

i=1
(emax − ai)], where d > 0 denotes the marginal social dam-

age.
In this industry the regulator decides to implement the tax-subsidy mech-

anism, proposed by [12]. This mechanism works as follows: Whenever the
aggregate abatement level falls short of (exceeds) the socially optimal aggre-
gate abatement level A∗, the regulator charges all the firms with a tax (or
pays a subsidy to all the firms) proportional to the difference between opti-
mal and actual abatement. Note that the total tax bill (subsidy payment) is
the same for each firm. Thus with this mechanism a typical firm’s profit can
be written as:

Πi(ai, a−i) = Π0 − C(ai) − s

[

A∗ −

n
∑

i=1

ai

]

, (1)

2 The abatement cost function satisfies the following properties: C(0) = 0, C′ > 0, and
C′′ > 0.
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where s denotes the tax or subsidy rate and a−i the vector of the decisions
by the other firms except from i. When implemented as a one-shot or finitely
repeated game, the unique Nash equilibrium is characterized by the the fol-
lowing condition: C ′(ai) = s, i.e. the firms choose an abatement level with
a marginal cost equaling the tax or subsidy rate. The Nash strategy is also
a dominant strategy that leads to the first-best allocation, i.e. ai = a∗, if s

equals the marginal social damage d.3

In [5] they consider an industry consisting of 5 firms (n = 5) with a default
profit Π0 = 200 ECU (Experimental Currency Unit, which is then converted
into Euros at a given exchange rate, known to the subjects at the beginning
of the experiment), an optimal subsidy of s = 50 and a discrete abatement
cost schedule presented in table 1. Abatement schedule and marginal damage
imply a socially optimal abatement level of a∗ = 2 for any i = 1, ..., 5, leading
to an optimal aggregate abatement level of A∗ = 10.

Table 1 Abatement cost schedule

Abated units Marginal cost Total cost

0 0 0

1 20 20
2 40 60
3 60 120
4 80 200

The mechanism was administered as a non-cooperative game and was re-
peated over 20 periods. In total 8 sessions with 5 subjects each were con-
ducted. Figure 1 illustrates the aggregate results obtained in the experiments
regarding the frequency of each possible abatement decision.

3 Genetic Algorithm

The basic philosophy in implementing our version of the GA is to be “as
close as possible” to the laboratory setting described in the previous section.
Therefore, the parameters of the algorithms and the implementations of its
internal procedures are chosen, when possible, directly from the experimental
design. Additionally, we do not intend to describe a general implementation of
GA, neither mention all possible alternative implementations of its operators
that can be found in the literature (See [6]). Instead, we directly illustrate
what we have used to implement the experimental setting.

Our genetic algorithm is characterized by the following elements:

3 Note that the mechanism is not collusion-proof in a repeated setting as stressed by [8].
Therefore, if firms succeed in coordinating on a higher abatement level than is socially
optimal, they can earn a higher profit than in the one–shot Nash equilibrium.
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Fig. 1 Histogram of experimental subjects decisions.

• Strategy: Each chromosome in the genetic algorithm represents a possible
strategy that a subject can follow, that is, the abatement level decided
by the subject. It is encoded as a single gene which takes integer values
between 0 and 4. This is the basic element of the GA in the evolution of
the algorithm. This choice follows directly the experimental setting.

• Fitness Function: It is associated to each strategy and accounts for the
actual or potential payoff that derives from the use of a given strategy.
In our setting, the GA player uses as measure of fitness the profit func-
tion that the experimental subjects face in the laboratory (as shown in
Equation 1).

• Time window: In order to associate a fitness measure to each strategy,
we compute the cumulative potential profit that a given strategy would
have had if played in the past w time periods. This time window represents
the time memory that the GA subjects use to evaluate each single strategy
from its population.

• Population: Each subject is endowed with a set of P strategies. The
limited size of this set bounds the sophistication of the GA subject when
deciding which strategy to apply.

• Mutation: It implies that with a probability m one of the strategies in-
cluded in the population will be randomly changed into any other strategy
included in the entire set of potential strategies.

• Choice rule: Given the fitness measure and the population, for each single
period, the GA subject chooses to play the fittest strategy available in its
population.
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• Learning: Typically there exists two different learning mechanisms: single
population vs. multi population. Under the first one, each GA agent has
a set of strategies that evolve independently of the strategies of the other
agents. In a multi population approach, part of the genetic material is
exchanged among the GA agents. This creates some sort of interaction
or imitation among agents. Given that in the laboratory setting, total
abatement was the only information provided to the subjects and that no
communication among subjects was allowed, we decided to implement the
leaning mechanism based on a single population approach.

The number of GA agents is N = 5, following the experimental setting.
Moreover, given our limited number of possible strategies, and in order to
simplify the estimation procedure, we decide not to implement the crossover
operator, which is typically present in the GA (see [4]). The GA parameters
we aim at estimating are population (P ), time window (w) and mutation rate
(m).

4 Estimation: Procedure and Results

In order to estimate the key parameters of the GA described in the previous
section, we fit the distribution of strategies observed in the 8 experimental
sessions (See Figure 1).

Let us define as θ = (P, w, m) the vector of the parameters to be estimated.
The optimal value of θ is calculated by minimizing the distance between the
empirical histogram of the strategies from the experimental data (see Figure
1.) and the histogram of the GA strategies computed using 5000 Monte Carlo
simulations. The optimal value is then given by the following expression:

θ
∗ = arg min

θ

4
∑

i=0

[fexp(i) − fsim(i|θ)]
2

. (2)

where fexp(i) is the empirical frequency of the strategy i computed from the
histogram of experimental data, and fsim(i|θ) is the frequency of strategy
i computed from 5000 Monte Carlo simulations of the GA with parameters
θ. More precisely, given a vector of parameters θ, the GA runs 5000 times
for a 20 periods4 for each realization; then the distance between the result-
ing simulated histogram of strategies and the empirical one is evaluated and
minimized using a Nelder-Mead optimization algorithm. The Nelder-Mead
method was proposed by [11] as an unconstrained optimization algorithm. It
is commonly used when the derivatives of the objective function are not avail-
able. The number of Monte Carlo repetitions has been decided taking into
account the computational effort and the precision of evaluation of the sim-

4 The number of periods is equal to the periods conducted in the experimental sessions.
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ulated histogram. The optimization procedure takes around an hour, which
is a reasonable time. The optimal value is θ

∗ = (11, 10, 0.36).
In order to evaluate the performance of the entire estimation procedure, we

run a series of Monte Carlo simulations using the previously described mini-
mizing procedure with artificially generated histograms as benchmark instead
of the experimental data. The vector of parameters of the GA is θ

∗. Essen-
tially, we re-estimate the known parameters of the GA, valuating then the
ex-post resulting distribution of the estimated θ̂. The benchmark histogram
is computed averaging over an increasing number of single simulations of 20
periods (see details in Figure 2). We have computed 500 Monte Carlo repli-
cations of the re-estimation procedure for each benchmark histogram. The
entire process required about 60 days of computing time, although it was
parallelized in a 20-node cluster to cut the simulation time to three days.

5 Conclusions

The first important result of our computational exercise is to demonstrate
that it is possible to estimate the parameters of a GA using experimental
data. As it turns out, the estimation of the key-parameters of GA applied to
this set of experiments gives satisfactory results, considering the small data
sample available and the highly complex nature of the GA algorithm. The
different parameters can be, in fact, estimated with reasonable errors, as the
Monte Carlo numerical re-estimation exercise shows. We have performed the
re-estimation procedure with a benchmark histogram averaged over 8, 16, 32
and 400 replications of the genetic algorithm. The case using 400 repetitions
was conducted as a computational exercise to see the asymptotic properties of
the estimator. From an experimental point of view, our Monte Carlo exercise
shows that are enough few experimental sessions to generate a sufficiently
large data set in order to reliably estimate the parameters.

As final remarks, we would like to stress that our computational exercise,
although promising, it is just a first step in developing a general compu-
tational approach to complement the laboratory experiments in analyzing
economic phenomena. The robustness of the GAs with respect to changes
in the experimental setting, the flexibility of GA under changes in its inter-
nal operators, the importance to obtain reasonable and consistent values of
the parameters in describing human behavior are just few examples of open
problems that we have in our research agenda.
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(a) P with 8 repetitions
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(b) w with 8 repetitions
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(c) m with 8 repetitions
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(d) P with 16 repetitions
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(e) w with 16 repetitions
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(f) m with 16 repetitions
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(g) P with 32 repetitions
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(h) w with 16 repetitions
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(i) m with 32 repetitions
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(j) P with 400 repetitions
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(k) w with 400 repetitions
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(l) m with 400 repetitions

Fig. 2 Distribution of parameter values: P, w and m for different number of repetitions.


